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Abstract—We report, for the first time, our experimental

results of a high frequency Micromixer operating from 17 to 26 
GHz in SiGe technology. Good linearity performance is achieved:
typically 0 dBm input-referred P-1dB and 8 dBm IIP3. The
conversion gain and double side band noise figure at 23 GHz RF
input are –3.6 dB and 18.2 dB, respectively. The local oscillator
power required for proper operation is below 0 dBm and the DC
power consumption   is 86 mW for a 3.3 V supply. For purpose of 
comparison, a Gilbert mixer is also implanted on the same wafer.
The experimental results are compared for the two active mixers.
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I. INTRODUCTION

Active mixers are popularly used nowadays in construction
of RF and microwave transceivers. One design challenge 

of this kind of mixers comes from linearity requirement in the
transceiver application. Normally speaking, Micromixer [1]-
[3] has advantage of better linearity performance than 
standard Gilbert mixers [8]-[11]. It also has high port-to-port
isolation and wideband input impedance match (e.g. from DC
to 9GHz) [4]-[7]. The main drawback is its high noise figure.
Micromixers published so far have been designed for RF
frequencies below 9 GHz [1]-[7], and it is doubted whether
Micromixer topology can be useful in high frequency (>20 
GHz) applications.

With the aggressive development of low cost
semiconductor technologies in recent years, such as advanced
RF CMOS and SiGe BiCMOS, the transistors deliver better
and better noise and gain performances at frequencies well 
beyond deep millimeter waves. It is therefore interesting to 
explore the possibility of improving the linearity of high-
frequency mixers via deploying linearity-favored circuitry,
such as Micromixer, rather than applying large bias current
that is normally used in Gilbert mixer for linearity
improvement [10].

In this paper, we report, for the first time, our experimental
results of a high frequency Micromixer operating from 17 to
26 GHz. It converts the RF input to an IF output of 1 Ghz and
is manufactured in STMicroelectronics’ SiGe BiCMOS 
technology.  The performance of the mixer will be discussed
in terms of its conversion gain, noise figure, DC power 
consumption and, especially, the input-referred third-order
intercept point (IIP3). A Gilbert mixer operating at the same
frequency range is manufactured on the same wafer as well.
The performance of the two mixers will be compared
experimentally.
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II. MICROMIXER CIRCUIT

circuit schematic of the Micromixer is shown in Fig. 1. 
xer core consisting of (Q5-Q8) is identical to a Gilbert
The differences lie in the trans-conductance stage [1]-
ring a positive excursion of the RF input voltage, a 
mirror consisting of Q1 and Q2 delivers output I1 to

xer core; while during the negative excursion, the
n-base-biased Q3 provides equal but anti-phase current
rinciple, such trans-conductance stage can handle large
amplitudes. This is why Micromixer is generally more
han standard Gilbert mixer [1]. Unlike Gilbert mixer,
ias current is not required to improve the linearity.

icromixer consumes less DC power. Q4 is added to
er the Vce of Q1 and Q2, as well as to reduce the LO to 
kage [1]. Inductors L1, L2 and L3 as well as Re1 and 
 used for input impedance match and controlling the

sion gain. The drawback with this topology is that its
igure is relatively high. One obvious reason is that
ransistors are used in the trans-conductance stage as 
ed with Gilbert mixer.
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 Circuit schematic of Micromixer

 Micromixer is fabricated in STMicroelectronics'
SiGe BiCMOS process. The SiGe HBT in use has an 

 width of 0.4µm (drawn size), featuring 70GHz fT and 
 fmax [12]. The technology offers 5 metal layers for 
nnect, MIM capacitors of 2fF/µm2, various kinds of 



resistors and inductors, all scalable. The physical dimension of
circuit including pads is 0.70x0.69 mm2.

Fig. 2. Chip photo of Micromixer

III. MIXER PERFORMANCE

Simulations are carried out in ADS using Harmonic
Balance analysis. Long RF paths are represented in the
simulation by using ADS built-in transmission line models.
The simulated mixer performance is presented below and will
be compared with measured results.

Fig. 3.  Fundamental and IM3 power versus RF input power at
23GHz

    Mixer IIP3 performance is determined by two-tone
measurement. The frequency spacing between the two tones is 
100 KHz. Fig.3 show the measured two-tone inter-modulation
performance of the mixer versus RF input power at 23GHz.
Here, the LO power is -0.7 dBm. The input referred 1 dB
compression point P1dB and IIP3 are found to be 0 dBm and 8 
dBm, respectively. In Fig.4, IIP3 as a function of LO power is
plotted. The simulated curve shows a feature similar to the 
measured one, thought it underestimates the IIP3. 

Conversion gain is measured using spectrum analyzer and 
the double side band (DSB) noise figure is measured using
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igure meter. The gain is also monitored during noise
measurement and the results obtained are consistent
easurement using spectrum analyzer. The simulated

easured conversion gain and DSB noise figure as a
n of LO power is plotted in Fig. 5. The maximum
ed gain is about –3 dB and this is about 4 dB less than
diction from simulation. Related to this, the measured
oise figure is also about 4 dB higher than simulated
g. 5 shows that the gain and noise figure are quite flat
 power from -2 dBm to 6 dBm. Thus, considering IIP3, 
d noise figure performance together, LO power around
should be optimal for this Micromixer.
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Measured and simulated Gain and noise figure vs. LO
 RF frequency is 23 GHz 

 Micromixer demonstrates wideband characteristic.
ement shows that it operates normally for RF input
cies from 17 GHz up to 26 GHz. Fig. 6 plots the

sion gain over input RF frequency. The corresponding
ise figure and IIP3 are plotted in Fig. 7. The measured

igure increases 5 dB over the frequency range.  These 
e obtained at a LO power of –0.7 dBm. The conversion
noise figure and IIP3 all vary smoothly and
nically over this frequency range (Fig. 6 and Fig. 7).
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Fig. 6. Conversion gain versus RF frequency, data obtained at
–0.7 dBm LO power.

0

4

8

12

16

20

17 18 19 20 21 22 23 24 25 26
RF Frequency (GHz)

D
S

B
 N

oi
se

 F
ig

ur
e 

(d
B

)

-5

0

5

10

15

20

25

30
IIP

3 
(d

B
m

)
NF NF_sim IIP3 IIP3_sim

Fig. 7. DSB noise figure and IIP3 versus RF frequency, data
obtained at –0.7 dBm LO power. 
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Gilbert mixers are active mixers more commonly used than
Micromixers. Such a mixer is fabricated on the same wafer as
the Micromixer and is designed for the same frequency range 
[11]. In Table I we list the experimental performance of the
two mixers at 23 GHz RF input. An exclusive comparison is
not justified here, because the two mixers are measured under
their optimal bias conditions that differ for the two mixers.
Nevertheless, we hope that Table I could give a crude feeling
on how the two types of mixers behave at high frequencies.
The Micromixer consumes much less DC power,
demonstrates better IIP3, and at the same time has higher
noise figure and lower conversion gain.

[6] C.C
iso
we
Cir

[7] C.C
inte
out
Fre
200

[8] S. 
Tre
inte
vol

[9] S. 
dem
Mic

V. ONCLUSION

    A Micromixer have been designed and manufactured in
SiGe BiCMOS technology. Its performance over 17-26 GHz 
is presented in terms of conversion gain, noise figure and 
linearity. As compared with Gilbert mixer, the Micromixer
requires much less DC current to achieve a certain level of
linearity. But its noise figure is relatively high and, therefore,
can be recommended only when noise figure is not a 
paramount design requirement.
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TABLE I 
PERFORMANCE OF MICROMIXER AND GILBERT MIXER 

Micromixer Gilbert Mixer

IIP3 (dBm) 8.6 3.5
P1dB (dBm) 0 -6
Gain (dB) -3.6 5.8
Noise Figure (dB) 18.2 8.2
DC power (mW) 86 140
LO power (dBm) -0.7 2.0
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