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Abstract  —  The paper deals with transimpedance 
amplifiers (TIA) for optical telecommunication systems in 
the 10 to 43 Gb/s speed range. The limits of performance in 
HBT, pHEMT and CMOS technologies are investigated. 
Detailed noise analysis of the photodiode-TIA cluster is 
carried out and the factors limiting TIA sensitivity are 
determined. It is shown that with existent technologies the 
GaAs pHEMT provides lowest TIA noise. 

I. INTRODUCTION

Transimpedance amplifier (TIA), as a first element fol-
lowing the photodiode (Fig. 1a), is the most critical ele-
ment on the receiving side of an optical link. Both noise 
performance and time domain response have to be consi-
dered when the sensitivity of an optical receiver is opti-
mized. 
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Fig. 1.   a) structure of a typical optical receiver, b) small signal 
model of the photodiode used in this paper. 

All available technologies are used currently in the TIA 
design [1-4] and the performance achieved qualifies these 
circuits for both 10 Gb/s and 40 – 43 Gb/s systems. Two 
major TIA configurations predominantly used are shown 
in Fig. 2. 
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This paper attempts to analyze the characteristics of the 
two configurations in a more general way and to provide 
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Typical transimpedance amplifier configurations: a) 
n resistive feedback, b) using inherently low impedance 
age (called straight TIA in the text) 

res to determine achievable gain and noise perfor-
. Many simplifications were conscientiously used 
 the resulting equations manageable. 

owing major assumptions were made: a) voltage 
er stage has unity voltage gain and low output 
ance (which may not be true in the 40 GHz 
ncy range);  b) noise contribution comes from the 
age and it’s load only. 
e first part of the paper the gain and frequency res-
are considered and the limits on gain for a given 
idth are derived.
e second part, general (although simplified) equa-
or the equivalent input noise current are presented 
ed to compare both the two configurations and the 
le technologies.

II. GAIN ANALYSIS

 analysis of the TIA is based on an equivalent 
ignal model shown in Fig. 2. The amplifier itself 
idered unilateral and its output impedance is 
ted. Input impedance Zin is generally high in case 
back TIA and low in the straight TIA. The mo-
lies to both configurations – for a straight TIA 

istance of RF is infinite.
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Fig. 2. Equivalent small signal and noise model of a transimpedance amplifier
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General expression for circuit transimpedance (Fig. 2) is 
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Noise current density referenced to input (IS source termi-
nals) inin = Vno / ZT   is computed as 
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In case of no-feedback configuration – like common base 
input stage – general expressions for ZT and inin are 

PDin

v
T CjYD

A
Z

ω+⋅
=  (3) 

( ) PDnSnananin CeeiDi ωj⋅++⋅=  (4) 

RB Gin Cπ RDCµ Cµ

gm⋅Vin 

Vin 1⋅V1V1 

Gin Cπ RD

Cµ

Cµgm⋅VVin 1⋅V1V1 

common base/gate stage voltage follower 

ri 

V

common emitter/source stage
voltage follower 

a)

b)

Fig. 3.    Simplified small signal equivalent circuit of an amplifier 
for a straight (a) and feedback (b) configuration. RB is a bias resis-
tor for the input transistor. Relatively small Gin in b) may be neg-
lected at higher frequencies. 

The two cases will be dealt with separately. For the 
straight (no-feedback) circuit the voltage gain may be ap-
proximated to the first order as 
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where Cµ = Cbc or Cgd . 
Substituting (5) into (3) the expression for ZT may be 
derived in case of LB = 0. This will allow evaluating inhe-
rent limitations for this configuration. ZT is given by 
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where the time constants are: τa = 2RDCµ and τD = RSCPD , 
and Gin = gm , ωT ≈ gm /(Cπ + Cµ ). This equation sets the 
limit on the transimpedance ZT (0) = RD given the photo-
diode and transistor parameters. For a given bandwidth B
an upper limit for the allowable time constant τa may be 
found and hence the RD value for a certain transistor size 
and technology. 

Next, the gain limits will be derived for three illustrative 
sets of transistor and photodiode parameters for 10 Gb/s 
and 40 Gb/s transmission: 
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 For LB
 = 50 GHz,   B = 10 GHz,  CPD = 0.2 pF, RS = 30 Ω. 
 = 100 GHz, B = 10 GHz, CPD = 0.2 pF, RS = 30 Ω. 
 = 160 GHz, B = 40 GHz, CPD = 50 fF,   RS = 20 Ω. 
stor fT may easily be achieved with existing bipolar, 
 or CMOS technologies and case A may be rep-
tive for a 0.25 µm CMOS, case B for a 0.13 µm 
 and case C for a 90 nm CMOS [9]. 
n LB is included into the circuit, the transimpedance 
n by the fourth order equation: 
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ation (6) has been solved for the three cases 
ered for a range of transistor gm values. Assumption 
ade that transistor dimensions are kept constant and 
changed by appropriate adjustment of transistor 

t. Cµ was taken as 15 fF for cases A and B, and 10 fF 
e C. Resulting RD values are plotted in Fig. 4 with 
nes. Eq. (7) was used next to find numerically maxi-
RD and suitable inductance LB to achieve required 
idth B. Additional constraint was imposed on the fre-
 response to be monotonic, without any significant 
This requirement is needed to assure adequate res-
in time domain and sufficiently clean eye diagram 
he results are shown in Fig. 4 with dashed lines. 

Transimpedance vs. gm
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ilar considerations were carried out for a feedback 
elevant equations are given below. 
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It is interesting to note that to the first order the response 
does not depend on transistor fT assuming that Cµ is con-
sistent with required bandwidth. The major pole is formed 
by the feedback resistor RF and the photodiode capacitance. 

Analysis similar to the presented above has been perfor-
med and the results are presented in Fig. 5 for B = 10 GHz 
and in Fig. 6 for the bandwidth B = 40 GHz. It was assu-
med that the load resistance RD needed might be achieved 
with appropriate circuitry (passive or active). 

Transimpedance vs. gm - BW = 10 GHz
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Fig. 5.    Transimpedance vs. transistor gm for the three cases and B
= 10 GHz. Solid lines – circuit without LB , dotted lines – for 
inductive compensation. Results for the voltage gain gmRD = 10 , 
20 and 30 are shown. 

Transimpedance vs. gm - BW = 40 GHz
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Fig. 6.    Transimpedance vs. first transistor gm for the three cases 
and B = 40 GHz. Solid lines – circuit without LB , dashed lines – 
for inductive compensation. 

It may be noticed that the feedback circuit provides ap-
proximately 2 times more gain than the straight TIA under 
comparable conditions. LB inductor in general allows incre-
asing the gain at a given bandwidth, although the compen-
sation is feasible over a relatively narrow range of gm valu-
es. Particularly in a straight configuration, the low input im-
pedance (at high gm ) causes peaking in the frequency res-
ponse and corresponding distortion of the eye diagram (see 
Fig. 7). 
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III. NOISE ANALYSIS

eral expressions for the input current noise density 
en by (2) and (4). Noise sources ena and ina include 
utions from the first transistor, its load and possib-
 the bias resistor RB  (Fig. 8). 

RD inL inT inB 

enT
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Tran-
sistor
[ Y ]

   Noise sources in the amplifier stage. enT and InT charac-
irst transistor 

ise sources ena and ina are given by 
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 expressions were adopted for transistor noise des-
n [2, 3, 5]: 

ipolar transistor: 
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: CG is the total gate to channel capacitance, RG is 
sistance, RC  is a  part of a channel resistance under 
e and Cn is the fitting coefficient [5]. 
ropriate correlations were taken into account. Input 
urrent density is given below. 

on-feedback amplifier: 
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For amplifier with feedback: 
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Equations (11) and (12) show the significance of the 
photodiode capacitance – it is important to use the diode 
with the lowest possible CPD in high sensitivity systems. 

Selected results of analysis are shown in Fig. 9 and 10. 
Only feedback TIA is presented here as the straight 
configuration has higher noise, because: transistor input 
voltage noise is somewhat higher, gain (and hence RD  is 
lower and additional contribution from input RB. 

Input noise current density - pHEMT-RF = 700Ω
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Input noise current density - RF = 700 Ω, LB = 1nH
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In Fig. 10, three technologies were compared for a par-
ticular case of a 10 GHz feedback circuit. Representative 
transistor parameters were taken from publications [4, 6, 
8] and all other factors were kept equal. As may be ex-
pected the lowest noise is achieved with the pHEMT de-
vices. Results for 40 GHz TIAs are similar in nature. 

When the noise properties are considered under supply 
power restrictions, the lowest noise at a given bias cur-
rent is achieved with SiGe and InP bipolar devices, beca-
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IV. CONCLUSIONS

the two major configurations of transimpedance 
iers the feedback TIA (Fig. 2a) provides higher 
t given bandwidth and with the same transistors 
n terms of transimpedance gain, the existing tech-
es (CMOS, HEMT and bipolar) have comparable 
lities. In terms of sensitivity, (equivalent input 
urrent) HEMT transistors give best results. 

APPENDIX

ort noise figure F vs. source impedance YS may be 
sed as 

( )
dfGT

Yei
  YF

S

Snn
S ⋅⋅

⋅−
+=

0

2

k4
1)( (A.1)

cing correlation admittance and equivalent noise 
ce RN and conductance GN     

dfRkTedfGTi

e

ei
BGY

NnNn

n

nn
corcorcor

0
2

0
2

2

*

4     k4

j

==

=+=
(A.2)

-port noise parameters are given by (A.3) 
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