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Chapter 1

Introduction to dynamic MRI

Magnetic Resonance Imaging (MRI) is a valuable non-invasive diagnostic tool used in medicine for ac-
quiring cross sectional images of the human body. Dynamic MRI refers to the application of Magnetic
Resonance (MR) to the study of a dynamic process: in order to capture the dynamic evolution, a time
sequence of images of the same slice of the human body is acquired at high temporal rate. Dynamic
MRI is often used in contrast–enhanced dynamic imaging or in functional brain studies. An emerging
application field of dynamic MRI is interventional MRI, i.e. the use of MRI for planning, monitoring and
guiding a medical intervention. In such dynamic applications of the MRI technique, temporal resolution
is fundamental in order to completely capture the evolution of the imaged process. Unfortunately, there
are technological and physiological limits on the MR technique that make difficult to simultaneously
obtain high spatial and temporal resolution. The diagnostic efficiency of MRI is then seriously limited
by the relatively long scan necessary for acquiring each image of the sequence. In the past years many
methods have been introduced to fulfil the request for ever-faster dynamic MRI methods. Some of the
proposed methods achieve high temporal resolution by sacrificing spatial resolution in the data acquisition
process and they are therefore called reduced encodings methods. Such new methods include various and
different methods; in this work we are considering a subset of reduced encodings methods constituted by
zero padding-like methods [2], Keyhole-like methods [6, 15, 4, 8] and RIGR-like methods [8]. All these
methods can be represented by a common numerical model [5] that theoretically unifies them and allows
to conceptually understand their characteristics. Since high spatial resolution is desirable in order to have
images of good quality, the imaging methods must supply the lack of acquired spatial information by
incorporating a priori information about the imaged object into the reconstruction process. The various
reduced encodings methods differ in how the missing high spatial frequencies are extrapolated, i.e. in
how the a priori information is incorporated into the numerical model.
MRI is by its nature a Fourier encoded modality: the data are collected in the k -space, a frequency
two-dimensional domain whose principal directions are called frequency-encoded direction (kx) and phase-
encoded direction (ky). When the data of a dynamic MRI experiment are acquired with the spin-echo
technique [11, 7], the k -space is sampled line by line and the data points on each line are equally spaced;
in this way, the sample points coincide with a uniform rectangular grid. When this cartesian sampling
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trajectory is followed, the images can be very quickly reconstructed by using a two-dimensional Discrete
Inverse Fourier Transform (2DIFT) of the data. In the dynamic experiments, the data are usually uni-
formly sampled in time.
In the reduced encodings methods, the acquisition time is decreased by acquiring a time series of reduced
dynamic data sets and one and/or two high-resolution reference data sets which are usually collected
before and/or after the dynamic process. The reference data set acquired before the dynamic process is
called baseline data set while the reference data set acquired after the dynamic process is called active
data set. The reference data sets provide the a priori information on the imaged object. The dynamic
data sets consist of a small and central part (a k -hole) of the k -space constituted by the low phase-encoded
spatial frequencies: the dynamic data are undersampled in the ky direction while they are fully encoded
in the kx direction. The rationale for truncating the dynamic data lies in the fact that the morphological
details are mainly encoded by the high frequencies while the dynamic information is mainly contained in
the low frequency part of the k -space. Thus, assuming that during the dynamic process no significant
changes occur in the underlying morphology, the dynamic variation can be characterized by repeated
sampling of the central k -hole. The information on the portion of the k -space uncollected during the
dynamic process is derived from the reference data sets.
The reference images, i.e. the images corresponding to the reference data sets, are obtained by a two-
dimensional Discrete Inverse Fourier Transform (2DIFT) of the reference data sets. When the data are
undersampled along one direction of the k -space the images reconstructed by means of a 2DIFT suffer
from the well-known truncation artifacts which include ringing and blurring. To overcome the impossibil-
ity of employing conventional Fourier techniques, the reduced encodings methods obtain dynamic images
of good quality from the undersampled dynamic data sets by incorporating into the imaging process the
a priori information deriving from the reference images.
In this work we present a unifying numerical model for representing the reduced encodings methods. The
presented unifying model allows a comprehensive evaluation of the methods performance with respect to
the dynamic MRI applications. Moreover, it explains how the various methods incorporates the a priori
information into the imaging process in order to provide the missing high spatial frequencies. In the
presented unifying approach, the unknown MR images are represented by means of a parametric model
with basis functions; we explore the use of both exponential basis functions and B-spline basis functions.
Exponential basis functions are traditionally used in literature for the reduced encodings methods. We
have recently proposed the use of B–spline basis functions [12] in a parametric model for representing
dynamic MR images and we extend here their use to the wider class of the reduced encodings methods.
There is a variety of reasons for the use of B-splines as basis functions. The recursion formula by which
they can be computed and the resulting computational efficiency make them an obvious and ideal choice
for a parametric model. Moreover, B-splines have a smoothing effect on the noise that is always present
in the acquired data in medical applications. Finally, B-splines are widely used for image fitting and
representation (see [14] and the references therein). Furthermore, in order to reduce the presence of noise
and truncation artifacts in the reconstructed dynamic images, we incorporate into the parametric model
some “regularization strategies”. Therefore, in this work, we describe a new approach to dynamic MRI
in which a regularization term is included in the parametric model with B-spline basis functions.
The sequel is organized as follows. In chapter 2 the unifying model is introduced and then the different
reduced encodings methods represented by the model are described. In chapter 3 the results of numer-
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ous numerical experiments on both simulated and real MR data are presented in order to illustrate the
performance of the methods described in chapter 2.
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Chapter 2

Numerical methods

In this chapter we introduce a unifying framework for dynamic MRI in which the zero padding-like
methods, the Keyhole-like methods and the RIGR-like methods are expressed by a common parametric
equation. A unifying approach to dynamic MRI has been recently proposed by Tsao et al. [5] to treat the
entire class of the reduced encodings methods; in this work we restrict our attention to the aforementioned
methods and we propose the use of B-spline basis functions and regularization to improve the quality of
the reconstructed dynamic MR images.
Before describing the model-based unifying approach, in the following section we formally describe the
problem of dynamic MRI and we introduce the adopted notation.

2.1 The problem of dynamic MRI

In MRI two domains are considered: the data domain, the k -space, and the image domain. These do-
mains are mutually related through the Fourier transform (figure 2.1). The k -space is a complex domain;
its horizontal (kx) and vertical (ky) directions are frequency-encoded and phase-encoded directions, re-
spectively. In spin-echo MR experiments, the k -space is built-up row-wise and the data are sampled on
a 2D rectangular trajectory as shown in figure 2.2. The detected data, called raw data, are collected in
a 2D k -space data matrix. Let Ω be the grid of points that fully cover the k -space:

Ω = {(n∆kx,m∆ky) |n = −N/2, . . . , N/2− 1, m = −M/2, . . . , M/2− 1} (2.1)

where ∆kx and ∆ky are machine-dependant sampling intervals. Let D(n∆kx,m∆ky) be the k -space
datum acquired at the grid point (n∆kx, m∆ky); the detected data form a N × M matrix D(kx, ky)
whose (n,m)-th element is defined as:

(
D(kx, ky)

)
n,m

= D(n∆kx,m∆ky), (n∆kx,m∆ky) ∈ Ω. (2.2)

In a spin-echo experiment, the measured data matrix is first inverse Fourier transformed along the
frequency-encoding direction, then the resulting spectra are inverse Fourier transformed along the phase-
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Figure 2.1: k -space and the MR image space

encoding direction yielding the desired image. Let I(x, y) be the N×M image reconstructed by a 2DIFT
of the data matrix D(kx,ky):

I(x, y) = 2DIFT (D(kx, ky)) (2.3)

defined as: (
I(x,y)

)
j,i

= I(j∆x, i∆y), j = 0, . . . , N − 1, i = 0, . . . , M − 1 (2.4)

where
∆x =

1
N∆kx

, ∆y =
1

M∆ky
(2.5)

and

I(j∆x, i∆y) =
1

NM

N/2−1∑

n=−N/2

M/2−1∑

m=−M/2

D(n∆kx,m∆ky)e
2
√−1π

(
n j
N +

m i
M

)

(2.6)

for j = 0, . . . , N − 1, i = 0, . . . , M − 1.
The final MR image that is represented is the magnitude of I(x, y).

In a dynamic MRI experiment, the imaging time is decreased by only collecting the low spatial
frequencies in the phase-encoded direction. Then, let Ωlow the grid points of the low-sampled k -space:

Ωlow = {(n∆kx,m∆ky) |n = −Nlow/2, . . . , Nlow/2− 1,m = −M/2, . . . , M/2− 1, Nlow ¿ N}. (2.7)

A sequence of low sampled dynamic Nlow ×M data matrices Dt(kx, ky) defined as
(
Dt(kx, ky)

)
n,m

= Dt(n∆kx,m∆ky), (n∆kx,m∆ky) ∈ Ωlow, t = 1, . . . , T, (2.8)

is acquired at T successive time instants. Two fully encoded reference data sets are acquired to provide
the information on the outer k -space region uncollected during the dynamic process. Let us denote
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(a) Sampling trajectory (b) Raw data matrix

Figure 2.2: k -space sampling

DB(kx,ky) and DA(kx, ky) the N×M baseline and active reference data sets, respectively. The baseline
and active reference images IB(x, y) and IA(x, y) are reconstructed by a 2DIFT:

IB(x,y) = 2DIFT (DB(kx, ky)) , IA(x, y) = 2DIFT (DA(kx, ky)) . (2.9)

The acquired dynamic data sets Dt(kx, ky), t = 1, . . . , T , are first inverse Fourier transformed along
the fully encoded horizontal direction. Since the number of phase-encodings is reduced from N to Nlow,
performing a DIFT along the vertical direction gives images with evident truncation artifacts. A recon-
struction method should solve this situation providing good quality high resolution images.
Let D̂t(kx, y) be the data matrix Dt(kx, ky) transformed by DIFT along the rows:

D̂t(n∆kx, i∆y) =
1
M

M/2−1∑

m=−M/2

Dt(n∆kx,m∆ky)e2
√−1π

(
m i
M

)
(2.10)

with n = −Nlow/2, . . . , Nlow/2− 1, i = 0, . . . , M − 1.
A crucial point is that the dynamic image It(x,y) can be reconstructed column-wise from D̂t(kx,y) by
reconstructing independently each column of D̂t(kx, y). In this way, the problem of reconstructing a
N ×M dynamic image is reduced to the problem of reconstructing M signals of size N .
Therefore, in the sequel, we will present the model-based approach to dynamic MRI only in the one
dimensional case. The extension to the two dimensional case is immediate and is described in section
2.7. For easier notation, in the following sections, we omit the temporal index t. Specifically, we indicate
with D(k) a generic low sampled dynamic data vector of the sequence with elements:

(
D(k)

)
n
= D(kn), kn := n∆k, n =

−Nlow

2
, . . . ,

Nlow

2
− 1. (2.11)

Moreover, we denote with I(x) a generic high resolution dynamic signal defined as
(
I(x)

)
j

= I(xj), xj := j∆x, j = 0, . . . , N − 1, (2.12)
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where
∆x =

1
N∆k

. (2.13)

Furthermore, I(x̃) denotes the low resolution dynamic signal obtained by a DIFT of the dynamic data
set D(k): (

I(x̃)
)
j

= I(x̃j), j = 0, . . . , Nlow − 1 (2.14)

where
x̃j := j∆x̃, ∆x̃ =

1
Nlow∆k

(2.15)

and

I(x̃j) =
1

Nlow

Nlow/2−1∑

n=−Nlow/2

D(n∆k)e
2
√−1π

(
n j
N

)

(2.16)

with j = 0, . . . , Nlow − 1.
Finally, DB(k) (DA(k)) indicates the baseline (active) reference data vector and IB(x) (IA(x)) indicates
the corresponding high resolution baseline (active) reference signal:

(
DA(k)

)
n

= DA(kn),
(
DB(k)

)
n
= DB(kn), n = −N

2
, . . . ,

N

2
− 1, (2.17)

(
IA(x)

)
j

= IA(xj),
(
IB(x)

)
j

= IB(xj), j = 0, . . . , N. (2.18)

2.2 The unifying numerical model

In this section we present a model-based framework that unifies the wide class of the reduced encodings
methods. In addition, we describe an algorithm for computing the model parameters.
The components

(
I(x)

)
j

of the unknown dynamic signal are ideally the values of a continuous dynamic
function I(x) at the points xj :

(
I(x)

)
j

= I(xj), j = 0, . . . , N − 1. (2.19)

The unknown dynamic function I(x) can be factorized as:

I(x) = I+(x) + I∗(x) · Id(x) (2.20)

where I+(x) and I∗(x) are additive and multiplicative constraints built into the model (2.20) for dynamic
MRI. The function Id(x) represents the dynamic features of I(x) not present in either I+(x) or I∗(x).
This function is represented by a parametric model as

Id(x) =
Nlow−1∑

`=0

α`φ`(x). (2.21)

11



The number of terms in the summation is determined by the number of available information on the
desired dynamic signal, i.e. the number of acquired k -space dynamic data. The parametric model (2.21)
for the dynamic function Id(x) allows to select basis functions other than the complex exponential basis
functions that are traditionally used in Fourier-based MRI. By substituting the representation (2.21) for
Id(x), equation (2.20) becomes:

I(x) = I+(x) + I∗(x) ·
Nlow−1∑

`=0

α`φ`(x). (2.22)

Equation (2.22) describes the wide class of the model-based reduced encodings methods in which, given
the constraints functions I+(x) and I∗(x) containing the a priori information and given the basis functions
φ0(x), . . . , φNlow−1(x), then every continuous dynamic signal I(x) is uniquely determined by the model
parameters α0, . . . , αNlow−1.
By discretizing the continuous equation (2.20) in the N points x0, . . . , xN−1, we obtain the discrete model
for the desired dynamic signal I(x):

I(x) = I+(x) + I∗(x). ∗ Id(x) (2.23)

where .∗ indicates the element-wise product and I+(x), I∗(x) and Id(x) are discrete N × 1 vectors
containing, respectively, the values of I+(x), I∗(x), and Id(x) at the points xj :

(
I+(x)

)
j

= I+(xj), j = 0, . . . , N − 1, (2.24)
(
I∗(x)

)
j

= I∗(xj), j = 0, . . . , N − 1, (2.25)
(
Id(x)

)
j

= Id(xj), j = 0, . . . , N − 1. (2.26)

Following the continuous parametric model (2.21), the signal Id(x) is represented as:

Id(x) =
Nlow−1∑

`=0

α`φ`(x) (2.27)

where
φ`(x) =

(
φ`(x0), . . . , φ`(xN−1)

)t
, ` = 0, . . . , Nlow − 1. (2.28)

Therefore, equation (2.23) becomes:

I(x) = I+(x) + I∗(x). ∗
Nlow−1∑

`=0

α`φ`(x). (2.29)

Equation (2.27) can be represented in matrix form as:

Id(x) = Φα (2.30)
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where Φ is the N ×Nlow matrix of the basis functions whose columns are the vectors φ`(x):

Φ =




φ0(x0) φ1(x0) . . . φNlow−1(x0)
φ0(x1) φ1(x1) . . . φNlow−1(x1)

...
...

. . .
...

φ0(xN−1) φ1(xN−1) . . . φN−1(xN−1)


 (2.31)

and the vector α contains the coefficients values:

α = (α0, . . . , αNlow−1)t. (2.32)

In the discrete setting, the vectors I+(x) and I∗(x) are called additive and multiplicative factors, re-
spectively. They are additive and multiplicative constraints used in model (2.23) to provide the a priori
information necessary to compensate for the lack of low spatial frequencies encodings and to enable the
reconstruction of high resolution signals from undersampled data. Better results are obtained by choosing
constraint factors that are as close to the true dynamic signal as possible. In practice, the constraint
factors are chosen to be the reference signals or a linear combination of them. If I+(x) = 0 and I∗(x) = 1
where 0 and 1 are the vectors with components equal to 0 and 1, respectively, then no a priori informa-
tion is used in the reconstruction process. The vector Id(x) is called dynamic factor and it accounts for
the dynamic changes in the signal occurring during the dynamic evolution. Basically, the dynamic factor
Id(x) is a signal with reduced details since it contains the dynamic information that are incomplete.
The parametric model (2.21) for the continuous signal I(x) is the fundamental tool for reconstructing
a high resolution dynamic factor Id(x) and, consequently, a high resolution dynamic signal I(x) from a
low resolution dynamic data set D(k). In fact, given the additive and multiplicative factors I+(x) and
I∗(x) and selected a set of basis functions φ0(x), . . . , φNlow−1(x), the dynamic signal I(x) can be com-
puted from relation (2.29) if the coefficients α0, . . . , αNlow−1 are determined. In this way, the problem of
reconstructing the dynamic signal I(x) is converted to a coefficients estimation problem.
The crucial issue of determining the model coefficients α0, . . . , αNlow−1 is faced by fitting the dynamic
signal Id(x) to the measured dynamic data D(k). In particular, the parameter estimation problem is
solved in two steps: first the low resolution version Id(x̃) of the dynamic factor is determined and then,
an interpolation problem is solved in order to obtain the model coefficients α`.
Specifically, let us consider the low resolution version I(x̃) of I(x); for the signal I(x̃) equation (2.20)
becomes :

I(x̃) = I+(x̃) + I∗(x̃). ∗ Id(x̃) (2.33)

where I+(x̃) and I∗(x̃) are the low resolution versions of the additive and multiplicative factors obtained
by DIFT of the low frequencies part of their spectrum and

Id(x̃) =
Nlow−1∑

`=0

α`φ`(x̃) (2.34)

with
φ`(x̃) =

(
φ`(x̃0), . . . , φ̃`(x̃Nlow−1)

)t
. (2.35)
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The data space is related to the signal space by means of the Fourier transform, therefore by applying
the DFT to both the terms of (2.33), we obtain the expression

D(k) = D+(k) + D∗(k)⊗Dd(k) (2.36)

where ⊗ represents the convolution product, D(k) is the dynamic undersampled data set and

D+(k) = DFT
(
I+(x̃)

)
, (2.37)

D∗(k) = DFT
(
I∗(x̃)

)
, (2.38)

Dd(k) =
Nlow−1∑

`=0

α`DFT
(
φ`(x̃)

)
. (2.39)

The convolution product in (2.36) can be represented in matrix form as

D(k) = D+(k) +H(D∗)Dd(k) (2.40)

whereH(D∗) is a Nlow×Nlow matrix with Block Toeplitz structure constructed from the Fourier transform
of the multiplicative factor I∗(x):

H(D∗) =




D∗(0) D∗(−1) . . . D∗(−Nlow + 1)
D∗(1) D∗(0) . . . D∗(−Nlow + 2)

...
...

. . .
...

D∗(Nlow − 1) D∗(Nlow − 2) . . . D∗(0)


 . (2.41)

Therefore, given D+(k) and D∗(k), the unknown vector Dd(k) is obtained by solving the linear system

H(D∗)Dd(k) = D(k)−D+(k). (2.42)

Since H(D∗) is relatively small (typically of size 64×64) and has hermitian Toeplitz structure, the system
(2.42) can be solved efficiently.
The low resolution Nlow × 1 dynamic factor Id(x̃) is obtained by a DIFT of the computed data vector
Dd(k):

Id(x̃) = DIFT
(
Dd(k)

)
. (2.43)

Once the dynamic factor Id(x̃) has been determined, the next step consists in calculating the model
coefficients α`. The coefficients estimation problem is solved as an interpolation problem: the coefficients
α0, . . . , αNlow−1 are determined such that the continuous function Id(x) interpolates the sample points
Id(x̃0), . . . , Id(x̃Nlow−1):

Id(x̃j) = Id(x̃j) (2.44)

where Id(x) is represented by the parametric model (2.21). Relation (2.44) is represented in matrix form
as

Φ̃α = Id(x̃) (2.45)
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where the coefficient matrix Φ̃ is the Nlow ×Nlow matrix of the basis functions φ` sampled at the points
x̃j :

Φ̃ =




φ0(x̃0) φ1(x̃0) . . . φNlow−1(x̃0)
φ0(x̃1) φ1(x̃1) . . . φNlow−1(x̃1)

...
...

. . .
...

φ0(x̃Nlow−1) φ1(x̃Nlow−1) . . . φNlow−1(x̃Nlow−1)


 . (2.46)

The solution of the linear system (2.45) gives the desired model coefficients α0, . . . , αNlow−1. Actually the
computation of the coefficients α` requires the solution of two linear systems: the first one (eq. (2.42)) is
required for determining Id(x̃) and the second one (eq. (2.45)) for computing the model parameters α`.
When the coefficients α0, . . . , αNlow−1 are determined, the dynamic factor Id(x) is computed by relation
(2.27) requiring a matrix-vector product. Finally, the dynamic signal I(x) is computed by equation
(2.23). It is evident that a large variety of methods can be derived from the introduced model-based
equation (2.23) simply by choosing different factors I+(x) and I∗(x) and basis functions φ`(x) and by
using different methods for estimating the model parameters α`.

Remark 1. We observe that the low resolution dynamic factor Id(x̃) can be directly derived from equation
(2.33) without solving any linear system:

Id(x̃) =
(
I(x̃)− I+(x̃)

)
./I∗(x̃) (2.47)

where ./ is the element-wise division. This approach for determining Id(x̃) also suggested in [10], is
less expensive but indeed less effective. If Id(x̃) is given by (2.47), regularization is necessary to avoid
divisions by zero and equation (2.47) is replaced by the modified equation

Id(x̃) =
(
I(x̃)− I+(x̃)

)
./

(
I∗(x̃) + λ

)
(2.48)

where λ is a small positive regularization parameter. Our experience indicates that the quality of the
reconstructions obtained via equation (2.48) is degraded by evident artifacts depending on λ. Therefore,
in the presented unifying approach, we follow equation (2.36) for reconstructing the dynamic factor
because, in this case, the obtained Id(x̃) is of better quality. Since the linear system (2.42) is a small
size system, its solution is not computationally expensive; we still suggest to use equation (2.48) when
computational problems arise in the solution of (2.42).

Remark 2. In practice, it is not necessary to compute the low resolution factors I+(x̃) and I∗(x̃) to
obtain the Nlow × 1 vectors D+(k) and D∗(k). Let us consider the N × 1 factors I+(x) and I∗(x); the
components D+(n∆k) and D∗(n∆k) of their spectra are defined by a DFT:

D+(n∆k) =
N−1∑

j=0

I+(j∆x)e−2
√−1π

j n
N , n = −N

2
, . . . ,

N

2
− 1, (2.49)

D∗(n∆k) =
N−1∑

j=0

I∗(j∆x)e−2
√−1π

j n
N , n = −N

2
, . . . ,

N

2
− 1, (2.50)
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where ∆x∆k = 1/N . Then, D+(k) and D∗(k) are the Nlow × 1 data vectors defined as:

(
D+(k)

)
n

= D+(n∆k), n = −Nlow

2
, . . . ,

Nlow

2
− 1, (2.51)

(
D∗(k)

)
n

= D∗(n∆k), n = −Nlow

2
, . . . ,

Nlow

2
− 1. (2.52)

We summarize this discussion by specifying the algorithm of the presented unifying model-based
method for dynamic MRI.

Algorithm 2.1. Unifying model-based algorithm for dynamic MRI.

Input: dynamic data D(k)
additive factor I+(x)
multiplicative factor I∗(x)
basis functions φ0(x), . . . , φNlow−1(x)

Output: dynamic signal I(x)

Step 1: Compute the spectra D+(k) and D∗(k) (as in (2.51) and (2.52)) and the matrix
H(D∗).

Step 2: Compute Dd(k) by solving the linear system

H(D∗)Dd(k) = D(k)−D+(k).

Step 3: Compute the low resolution dynamic factor Id(x̃):

Id(x̃) = DIFT
(
Dd(k)

)
.

Step 4: Compute the basis functions matrix Φ̃ and compute the model coefficients vector
α by solving the linear system:

Φ̃α = Id(x̃).

Step 5: Compute the basis functions matrix Φ and compute the high resolution dynamic
factor Id(x):

Id(x) = Φα.

Step 6: Compute the high resolution dynamic signal I(x):

I(x) = I+(x) + I∗(x). ∗ Id(x).
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2.3 Choice of the basis and estimation of the model coefficients

In the unifying model (2.29), the dynamic factor Id(x) is represented in terms of continuous basis functions
φ`(x). Indeed, the reconstruction of the dynamic signal basically requires the solution of an interpola-
tion problem: a set of continuous basis functions must be selected and the model coefficients must be
determined. We have already stated that the model parameters are obtained from the solution of a linear
system of equations. In this section we consider in detail the use of two classes of bases for signal repre-
sentation: the Fourier basis and the B-spline basis; furthermore, we derive the algorithms for determining
the model coefficients in both cases.

2.3.1 Fourier basis

The Fourier basis, traditionally used in MRI, uses a set of Nlow complex exponential functions defined as

φ`(x) = e2π
√−1(k`x) (2.53)

where the discrete frequency index ` ranges from −Nlow/2 to Nlow/2− 1.
With this choice of basis functions, the parametric model (2.21) becomes

Id(x) =
Nlow/2−1∑

`=−Nlow/2

α`e
2π
√−1(k`x) (2.54)

where an index translation has been introduced in order to adapt the notation to the Discrete Fourier
analysis traditional notation. In the discrete setting, for the low resolution dynamic factor Id(x̃), equation
(2.54) becomes:

Id(x̃j) =
Nlow/2−1∑

`=−Nlow/2

α`e
2π
√−1

j `
Nlow , j = 0, . . . , Nlow − 1. (2.55)

That is, the vector α = (α−Nlow/2, . . . , αNlow/2−1)t is exactly:

α = DFT
(
Id(x̃)

)
. (2.56)

Therefore, from the relations (2.43) and (2.56), it immediately follows

Dd(k) = α, (2.57)

i.e. the model parameters α−Nlow/2, . . . , αNlow/2−1 represent the low frequencies of the dynamic factor
Id(x). Namely, it is not necessary to solve the linear system (2.45) to estimate the model coefficients.
The high resolution dynamic factor is obtained by padding with zeros the lacking high frequencies and
then by applying a DIFT to the zero-filled spectrum. That is,

Id(x) = DIFT
(
ZP

(
Dd(k)

))
(2.58)
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where ZP
(
Dd(k)

)
indicates the zero-padded N × 1 data vector:

ZP
(
Dd(k)

)
:= ( 0, . . . , 0,︸ ︷︷ ︸

N −Nlow

2

Dd(k),︸ ︷︷ ︸
Nlow

0, . . . , 0︸ ︷︷ ︸
N −Nlow

2

). (2.59)

The Fourier basis is computationally advantageous because, if it is used in (2.21), the linear system (2.45)
has not to be solved and Id(x) is merely reconstructed by a DIFT. However, the DIFT of a zero-padded
vector yields a signal with substantial truncation artifacts degrading the quality of the reconstructed
dynamic factor Id(x) and, consequently, of the dynamic signal I(x).
The general algorithm 2.1 with Fourier basis can be stated as follows.

Algorithm 2.2. Unifying model-based algorithm for dynamic MRI with Fourier basis.

Input: dynamic data D(k)
additive factor I+(x)
multiplicative factor I∗(x)

Output: dynamic signal I(x)

Step 1: Compute the spectra D+(k) and D∗(k) and the matrix H(D∗).

Step 2: Compute Dd(k) by solving the linear system

H(D∗)Dd(k) = D(k)−D+(k).

Step 3: Compute the high resolution dynamic factor Id(x):

Id(x) = DIFT
(
ZP

(
Dd(k)

))
.

Step 4: Compute the high resolution dynamic signal I(x):

I(x) = I+(x) + I∗(x). ∗ Id(x).

2.3.2 B-spline basis

B-spline functions are polynomial functions forming a basis for the spline space; they give piecewise
interpolation polynomials that are continuous everywhere and do not tend to oscillate in the case of high
polynomial degree. Because of their compact support and other attractive numerical properties (fast
evaluation of individual B-spline functions by a recursion relation, band-structured matrix of values,..),
B-splines are a good choice for the interpolation problem. B-spline interpolation is accurate and has a
relatively low computational cost, therefore the use of a B-spline basis is proposed as a valid alternative to
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the usual Fourier basis in MR signal representation. In addition, a regularization procedure is introduced
into the B-spline coefficients computation in order to reduce noise and artifacts in the reconstructed
dynamic signal. The possibility of regularizing the model parameters α−Nlow/2, . . . , αNlow/2−1 is a further
advantage of the B-spline basis over the classic Fourier basis.
A basis of Nlow normalized B-splines Bq

0(x), . . . ,Bq
Nlow−1(x) of order q (and degree q − 1) is defined as

follows. Given the interpolation points x̃0, . . . , x̃Nlow−1 in the interval [0, (Nlow−1)/Nlow], let {tj}Nlow−1+q
j=0

be the extended knot partition of [0, (Nlow − 1)/Nlow] determined by the formula:

tj =





x̃0, j = 0, . . . , q − 1;

1
q − 1

j+q−1∑

i=j+1

x̃i−q, j = q, . . . , Nlow − 1;

x̃Nlow−1, j = Nlow, . . . , Nlow − 1 + q.

(2.60)

The j-th normalized B-spline Bq
j (x), j = 0, . . . , Nlow − 1, of order q has support [tj , tj+q] and is defined

by the recursion relation:

Bs
j (x) =





x− tj
tj+s−1 − tj

Bs−1
j (x) +

tj+s − x

tj+s − tj+1
Bs−1

j+1 , if tj 6= tj+s,

0, otherwise,

(2.61)

for s = 2, . . . , q, where

B1
j (x) =





1, if tj ≤ x < tj+1,

0, otherwise.
(2.62)

This important recursion formula shows that a B-spline of order q > 0 is a linear blend of lower order
B-splines. It also provides a stable and efficient means of evaluating the parametric model.
With the B-spline basis Bq

0(x), . . . ,Bq
Nlow−1(x), the parametric model (2.21) becomes

Id(x) =
Nlow−1∑

`=0

α`Bq
` (x). (2.63)

The coefficients α0, . . . , αNlow−1 are determined by the linear system of equations (2.45) arising from the
interpolation conditions. Since the knot partition (2.60) satisfies the Schoenberg-Whitney conditions [13],
the coefficient matrix Φ̃ of the B-splines values is nonsingular and the interpolation problem (2.45) has a
unique solution α. The coefficient matrix Φ̃ is always a band diagonal matrix of bandwidth q. Moreover,
Φ̃ is usually smaller than a 64× 64 matrix. Hence, (2.45) can be solved efficiently.
Three different approaches to the solution of (2.45) are considered. In the first one, the linear system
(2.45) is solved by a direct method. Since the coefficient matrix Φ̃ is a small-size band diagonal matrix,
the solution α is efficiently computed by LU decomposition.
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In the second and third approaches, a regularization method is used for computing the solution of the
linear system (2.45). The rationale behind regularizing the model coefficients can be explained as follows.
The dynamic function Id(x) can be viewed as a parametric curve; in Computer Aided Geometric Design,
the coefficients α` of the B-splines are called control points and the polygon obtained by connecting the
adjacent control points is termed as control polygon. The B-splines serve the role of shape functions. The
B-spline curve Id(x) lies in the convex hull of its control polygon and its shape is defined and manipulated
by the set of control points. The local support property of the B-splines implies that a change in a control
point only affects a limited portion of the curve. These properties imply that the resulting curve Id(x)
is a smooth approximation of the control polygon and that the shape of the curve is determined by the
position of its control points. Conversely, the control polygon can be thought as an approximation of the
Nlow values of the curve. Therefore, by computing the model coefficients by a regularization method, the
entire curve Id(x) is regularized by requiring that its control points α` take on a regular structure.
In the second approach, Tikhonov regularization method is used to solve (2.45): the coefficients vector
α is estimated by solving the unconstrained optimization problem

min
α

1
2
‖Φ̃α− Id(x̃)‖22 +

λ

2
‖Lα‖22, λ > 0 (2.64)

where the positive regularization parameter λ is given. The objective function of (2.64) is made by two
terms: the first one is a data fidelity term that measures the discrepancy between the values Id(x̃j)
and Id(x) at the grid points x̃j and ensures that the model accurately represents the available samples.
The second term is the regularization term that penalizes the presence of noise and artifacts in the
reconstructed signal. Since MR signals are characterized by edges in connection of the tissue boundaries,
the matrix L is the first order differential operator because it better preserves such discontinuities in the
reconstructed signal. The regularization parameter λ controls the tradeoff between the fit of the data and
the amount of regularization. The objective function is convex and attains its minimum at the solution
of the Euler-Lagrange equations: (

Φ̃tΦ̃ + λLtL
)
α = Φ̃tId(x̃). (2.65)

In order to determine the model parameters α0, . . . , αNlow−1, equation (2.65) has to be solved. The
coefficient matrix Φ̃tΦ̃ + λLtL is symmetric and positive definite; therefore, (2.65) is efficiently solved
by Cholesky factorization. When the model coefficients are computed by solving (2.65), the resulting
function Id(x) is an approximate representation of the data because Id(x) does not precisely interpolates
the sample values Id(x̃j).
The third approach to the coefficients estimation consists in applying the truncated Conjugate Gradient
(CG) method to the normal equations of (2.45):

Φ̃tΦ̃α = Φ̃tId(x̃) (2.66)

as an iterative regularization method by stopping it after few iterations before noise and artifacts dominate
in the solution. For easier notation we refer to this regularization strategy as CG regularization. Usually,
the low resolution dynamic factor Id(x̃) is contaminated by reconstruction and measurement errors and
by artifacts. Let Iexact

d (x̃) be the noise-free dynamic factor and assume that an estimate σ of the error
norm

σ ' ‖Id(x̃)− Iexact
d (x̃)‖2 (2.67)
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is known. Following the terminology conventionally used in the regularization framework, the error norm
σ is referred to as discrepancy. The CG iterations are terminated as soon as the residual r(p) at the p-th
iteration is less or equal to the discrepancy σ, i.e, when

r(p) ≤ σ. (2.68)

The CGLS implementation [1] of the CG method when applied to the normal equations can be used
for solving (2.66). This implementation is stable and does not require the matrix Φ̃tΦ̃ to be explicitly
formed. In practical dynamic MRI applications the discrepancy σ is unknown; numerical experiments
have shown that good results are found after actually few iterations and that a high discrepancy value
usually works well.
The computation of the coefficients vector α with one of the aforesaid approaches leads to the computation
of the high resolution dynamic factor

Id(x) = Φα (2.69)

where Φ is the B-splines matrix at the grid points xj . The high resolution dynamic signal I(x) is then
estimated:

I(x) = I+(x) + I∗(x). ∗ Id(x). (2.70)

The discussion of this section can be formalized in the following algorithm.
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Algorithm 2.3. Unifying model-based algorithm for dynamic MRI with B-spline basis.

Input: dynamic data D(k)
additive factor I+(x)
multiplicative factor I∗(x)
B-spline basis Bq

0(x), . . . ,Bq
Nlow−1(x)

discrepancy σ
regularization parameter λ

Output: dynamic signal I(x)

Step 1: Compute the spectra D+(k) and D∗(k) and the matrix H(D∗).

Step 2: Compute Dd(k) by solving the linear system

H(D∗)Dd(k) = D(k)−D+(k).

Step 3: Compute the low resolution dynamic factor Id(x̃):

Id(x̃) = DIFT
(
Dd(k)

)
.

Step 4: Compute the B-splines matrix Φ̃ and compute the model coefficients vector α with
one of the following method:

1. Direct method: solve by LU decomposition the linear system:

Φ̃α = Id(x̃).

2. Tikhonov regularization: solve by Cholesky decomposition the Tikhonov sys-
tem: (

Φ̃tΦ̃ + λLtL
)
α = Φ̃tId(x̃).

3. CG regularization: solve by truncated CG iterations the normal equations:

Φ̃tΦ̃α = Φ̃tId(x̃).

Step 5: Compute the B-splines matrix Φ and compute the high resolution dynamic factor
Id(x):

Id(x) = Φα.

Step 6: Compute the high resolution dynamic signal I(x):

I(x) = I+(x) + I∗(x). ∗ Id(x).
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2.4 Methods not using a priori information: zero padding-like
methods

In this section we describe the methods deriving from equation (2.23) when no a priori information is
included into the model. In this case the additive and the multiplicative factors are chosen to be the
vectors whose components are 0 and 1, respectively:

I+(x) = 0 and I∗(x) = 1. (2.71)

With this choice of the constraint factors, the model equation (2.23) becomes:

I(x) = Id(x), (2.72)

namely, the dynamic signal I(x) corresponds to the dynamic factor Id(x) and it is expressed by the
parametric model

I(x) =
Nlow−1∑

`=0

α`φ`(x). (2.73)

Notice that the high resolution dynamic factor Id(x) is always reconstructed by methods for dynamic
MRI not using a priori information. Hence, the analysis of the methods of this section is useful also to
deeper understand the characteristics of all the methods described by the general equation (2.23).
Several methods not using a priori information are obtained with different choices of the basis functions
φ`(x) and with different approaches for determining the parameters α`. If the Fourier basis is used,
equation (2.73) describes the Zero Padding (ZP) method [2]: the lacking dynamic high frequencies are
assumed to be zero and the dynamic signal is reconstructed by applying a DIFT to the zero-filled data
vector:

I(x) = DIFT
(
ZP

(
D(k)

))
. (2.74)

The algorithm of the zero padding method can be stated as follows.

Algorithm 2.4. Zero padding method.

Input: dynamic data D(k)
Output: dynamic signal I(x)

Step 1: Compute the high resolution dynamic signal I(x):

I(x) = DIFT
(
ZP

(
D(k)

))
.

When the B-spline basis is employed, different methods are obtained by using one of the three ap-
proaches described in section 2.3.2 for computing the basis coefficients α`. These methods are still called
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zero padding methods to stress out that, as the traditional Fourier-based zero padding method, they
are obtained from equation (2.23) without the use of the prior information provided by the constraint
factors. The methods with B-spline basis are the following: B-spline Zero Padding (BZP) method with
direct solution of the linear system (2.45), B-spline Zero Padding method with Tikhonov regularization
(BZP Tik), and B-spline Zero Padding method with CG regularization (BZP CG).
The algorithm of the B-spline zero padding methods can be formally described as follows.

Algorithm 2.5. B-spline zero padding methods.

Input: dynamic data D(k)
B-spline basis Bq

0(x), . . . ,Bq
Nlow−1(x)

discrepancy σ
regularization parameter λ

Output: dynamic signal I(x)

Step 1: Compute the low resolution dynamic signal

I(x̃) = DIFT
(
D(k)

)
.

Step 2: Compute the B-splines matrix Φ̃ and compute the model coefficients vector α with
one of the following method:

1. Direct method: solve by LU decomposition the linear system:

Φ̃α = I(x̃).

2. Tikhonov regularization: solve by Cholesky decomposition the Tikhonov sys-
tem: (

Φ̃tΦ̃ + λLtL
)
α = Φ̃tI(x̃).

3. CG regularization: solve by truncated CG iterations the normal equations:

Φ̃tΦ̃α = Φ̃tI(x̃).

Step 3: Compute the B-splines matrix Φ and compute the high resolution dynamic signal
I:

I(x) = Φα.

The methods not using a priori information are summarized in the following table 2.1.
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Method Basis I+(x) I∗(x)
Approach to the
model coefficients
estimation problem

ZP Fourier 0 1 DIFT
BZP B-spline 0 1 Direct method

BZP Tik B-spline 0 1 Tikhonov regularization
BZP CG B-spline 0 1 CG regularization

Table 2.1: Summary of zero padding-like methods.

2.5 Methods using a priori information: Keyhole-like methods

The methods discussed in this section are termed Keyhole-like methods from the Keyhole method [6,
15, 4, 8], the technique commonly implemented on commercial systems for dynamic MRI. The so called
Keyhole-like methods are described by the common equation (2.23) when the a priori information is
provided by the additive factor I+(x) and not by the multiplicative factor I∗(x), i.e. when

I+(x) 6= 0 and I∗(x) = 1. (2.75)

In this case, equation (2.23) becomes

I(x) = I+(x) + Id(x) (2.76)

where the dynamic factor Id(x) is expressed by the parametric model (2.27). Namely, the prior knowledge
given by the baseline and/or the active reference signals is built into equation (2.23) only as an additive
constraint. In this case, the dynamic factor represents the differences in the dynamic signal with respect
to the additive factor:

Id(x) = I(x)− I+(x). (2.77)

The linear system (2.42) has not to be solved in order to determine the dynamic factor data Dd(k); in
fact, from (2.77) it immediately follows

Dd(k) = D(k)−D+(k). (2.78)

Different Keyhole-like methods are obtained from the general equation (2.76) according to the selected
basis functions, the method used for computing the coefficients α` and the chosen additive factor I+(x).
As far as the choice of the basis is concerned, when the Fourier basis is employed (as in the traditional
Keyhole method) the dynamic signal I(x) is merely obtained by a DIFT of the completed N ×1 dynamic
data vector Dcompl

d (k) obtained by extrapolating from D+(k) the missing dynamic high frequencies:

(
Dcompl

d (k)
)
n

:=





D+(n∆k), −N

2
≤ n <

Nlow

2
,

Nlow

2
− 1 < n ≤ N

2
− 1,

D(n∆k), −Nlow

2
≤ n ≤ Nlow

2
− 1.

(2.79)
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In fact:

I(x) = I+(x) + DIFT
(
ZP

(
Dd(k)

))
(2.80)

= DIFT
(
D+(k) + ZP

(
Dd(k)

))
(2.81)

= DIFT
(
D+(k) + ZP

(
D(k)−D+(k)

))
(2.82)

and since
Dcompl

d (k) = D+(k) + ZP
(
D(k)−D+(k)

)
(2.83)

we have
I(x) = DIFT

(
Dcompl

d (k),
)
. (2.84)

When the B-spline basis is chosen, the interpolation problem (2.45) has to be solved to compute the
model coefficients α`. Possible choices of the additive factor are the following.

1. I+(x) = IB(x).
The a priori information are provided by the high resolution baseline signal acquired before the
dynamic process. If the Fourier basis is selected with this choice of I+(x), equation (2.76) reduces
to the classic KEYhole (KEY) method : the missing dynamic high frequencies are extrapolated from
the spectrum DB(k) of the baseline signal and I(x) is reconstructed with a DIFT of the completed
data vector. When the B-spline basis is employed, according to the method used for computing the
model coefficients α`, we obtain the B-spline KEYhole (BKEY) method with direct solution of the
linear system (2.45), the B-spline KEYhole method with Tikhonov regularization (BKEY Tik), and
the B-spline KEYhole method with CG regularization (BKEY CG).

2. I+(x) = IW (t, x) where IW (t,x) :=
(
1− 1

T+1 t
)
IB(x) +

(
1

T+1 t
)
IA(x), t = 1, . . . , T .

The additive factor I+(x) of the t-th signal I(x) := It(x), t = 1, . . . , T , of the temporal sequence is
a weighted combination of the baseline and active reference signals. In this case, I+(x) depends on
the time instant t and, for the first signal of the sequence I+(x) is closer to IB(x), while, for the
T -th signal, it is closer to IA(x). In this way, I+(x) is expected to better approximate the temporal
evolution of the “true” additive factor of the t-th unknown exact dynamic signal. According to the
chosen basis we obtain the Weighted KEYhole method (WKEY), the Weighted B-spline KEYhole
method (WBKEY) with direct solution of the linear system (2.45), the Weighted B-spline KEYhole
method with Tikhonov regularization (WBKEY Tik), and the Weighted B-spline KEYhole method
with CG regularization (WBKEY CG) .

The algorithm of the Keyhole-like methods with Fourier basis can be stated as follows.
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Algorithm 2.6. Keyhole-like methods with Fourier basis.

Input: dynamic data D(k)
additive factor I+(x) = IB(x) or I+(x) = IW (t,x)

Output: dynamic signal I(x)

Step 1: Compute the spectrum D+(k).

Step 2: Compute the completed spectrum Dcompl
d (k) defined in (2.79).

Step 3: Compute the high resolution dynamic signal I(x):

I(x) = DIFT
(
Dcompl

d (k)
)
.

The algorithm of the Keyhole-like methods with B-spline basis is formally expressed as follows.
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Algorithm 2.7. Keyhole-like methods with B-spline basis.

Input: dynamic data D(k)
additive factor I+(x) = IB(x) or I+(x) = IW (t,x)
B-spline basis Bq

1(x), . . . ,Bq
Nlow

(x)
discrepancy σ
regularization parameter λ

Output: dynamic signal I(x)

Step 1: Compute the spectrum D+(k).

Step 2: Compute Dd(k)
Dd(k) = D(k)−D+(k).

Step 3: Compute the low resolution dynamic factor Id(x̃):

Id(x̃) = DIFT
(
Dd(k)

)
.

Step 4: Compute the B-splines matrix Φ̃ and compute the model coefficients vector α with
one of the following method:

1. Direct method: solve by LU decomposition the linear system:

Φ̃α = Id(x̃).

2. Tikhonov regularization: solve by Cholesky decomposition the Tikhonov sys-
tem: (

Φ̃tΦ̃ + λLtL
)
α = Φ̃tId(x̃).

3. CG regularization: solve by truncated CG iterations the normal equations:

Φ̃tΦ̃α = Φ̃tId(x̃).

Step 5: Compute the B-splines matrix Φ and compute the high resolution dynamic factor
Id(x):

Id(x) = Φα.

Step 6: Compute the high resolution dynamic signal I(x):

I(x) = I+(x) + Id(x).
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The Keyhole-like methods of this section are summarized in the following table 2.2.

Method Basis I+(x) I∗(x)
Approach to the
model coefficients
estimation problem

KEY Fourier IB(x) 1 DIFT
BKEY B-spline IB(x) 1 Direct method

BKEY Tik B-spline IB(x) 1 Tikhonov regularization
BKEY CG B-spline IB(x) 1 CG regularization

WKEY Fourier IW (t, x) 1 DIFT
WBKEY B-spline IW (t, x) 1 Direct method

WBKEY Tik B-spline IW (t, x) 1 Tikhonov regularization
WBKEY CG B-spline IW (t, x) 1 CG regularization

Table 2.2: Summary of the Keyhole-like methods.

2.6 Methods using a priori information: RIGR-like methods

The methods discussed in this section are classified as Reduced-encoded Imaging by Generalized-series
Reconstruction (RIGR)-like methods because of their strong similarities with the RIGR method originally
proposed by Liang and Lauterbur in [8] as an efficient technique for fast MRI. Successive developments
of the RIGR method are the Two-references RIGR (TRIGR) [3] and the fast RIGR [10] methods. As
the Keyhole technique, the original RIGR method is a Fourier imaging modality exploiting a priori
information from the baseline signal. The difference between these methods lies in how the a priori
information is used: as an additive constraint in the Keyhole method, and as a multiplicative constraint
in the RIGR method. For this reason the RIGR method is more efficient and computationally more
expensive than the Keyhole method. The use of the B-spline basis in the RIGR method has been
introduced in [12] to improve the quality of the RIGR images.
The RIGR-like methods are obtained from the common equation (2.23) when the a priori information is
encoded in the multiplicative factor and, eventually, in the additive factor; namely, when

I∗(x) 6= 1 and eventually I+(x) 6= 0. (2.85)

The model equation for this class of methods is therefore given by the general equation (2.23):

I(x) = I+(x) + I∗(x). ∗ Id(x) (2.86)

where

Id(x) =
Nlow−1∑

`=0

α`φ`(x). (2.87)

29



Since I∗(x) 6= 1, the linear system (2.42) has to be solved in order to compute Dd(k) and consequently
Id(x̃). By choosing the Fourier basis or the B-spline basis and by selecting different factors I+(x) and
I∗(x), the various RIGR-like methods are obtained.
Possible choices of the additive factor are the following.

1. I+(x) = 0 and I∗(x) = |IB(x)|.
If the Fourier basis is chosen with this choice of the factors, the classic RIGR method is obtained
[9]. If the B-spline basis is used, by using different approaches for determining the basis coefficients,
we obtain the B-spline RIGR (BRIGR) method with direct solution of the linear system (2.45)
[12], the B-spline RIGR method with Tikhonov regularization (BRIGR Tik), and the B-spline RIGR
method with CG regularization (BRIGR CG) .

2. I+(x) = IB(x) and I∗(x) = |IA(x)− IB(x)|.
The dynamic factor represents the changes of the dynamic signal with respect to the baseline one
and the multiplicative factor encodes “difference” information into the model for I(x). The TRIGR
method [3] is obtained when the Fourier basis is employed; with the B-spline basis we obtain the
Two references B-spline RIGR (TBRIGR) method with direct solution of the linear system (2.45)
[12], the Two references B-spline RIGR (TBRIGR Tik) method with Tikhonov regularization, and
the Two references B-spline RIGR method with CG regularization (TBRIGR CG).

3. I+(x) = 0 and I∗(x) = |IW (t,x)|, t = 1, . . . , T .
The multiplicative factor I∗(x) of the t-th signal I(x) := It(x), t = 1, . . . , T , of the temporal
sequence is the absolute value of a weighted combination of the baseline and active reference signals.
According to the selected basis we obtain the Weighted RIGR (WRIGR) method, the Weighted
B-spline (WBRIGR) RIGR method with direct solution of the linear system (2.45), the Weighted
B-spline RIGR method with Tikhonov regularization (RIGR Tik), and the Weighted B-spline RIGR
method with CG regularization (WRIGR CG).

The algorithm for the Fourier based RIGR-like methods is the same algorithm 2.2 of section 2.3.1 and it
is repeated here for the reader’s convenience.

30



Algorithm 2.8. RIGR-like methods with Fourier basis.

Input: dynamic data D(k)
additive factor I+(x) and multiplicative factor I∗(x) such that:(
I+(x) = 0 & I∗(x) = |IB(x)|

)
or

(
I+(x) = IB(x) & I∗(x) = |IA(x)− IB(x)|

)

or
(
I+(x) = 0 & I∗(x) = |IW (t,x)|

)

Output: dynamic signal I(x)

Step 1: Compute the spectra D+(k) and D∗(k) and the matrix H(D∗).

Step 2: Compute Dd(k) by solving the linear system

H(D∗)Dd(k) = D(k)−D+(k).

Step 3: Compute the high resolution dynamic factor Id(x):

Id(x) = DIFT
(
ZP

(
Dd(k)

))
.

Step 4: Compute the high resolution dynamic signal I(x):

I(x) = I+(x) + I∗(x). ∗ Id(x).

Analogously, algorithm 2.3 of section 2.3.2 is reviewed as follows for the B-splines based RIGR-like
methods.
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Algorithm 2.9. RIGR-like methods with B-spline basis.

Input: dynamic data D(k)
additive factor I+(x) and multiplicative factor I∗(x) such that:(
I+(x) = 0 & I∗(x) = |IB(x)|

)
or

(
I+(x) = IB(x) & I∗(x) = |IA(x)− IB(x)|

)

or
(
I+(x) = 0 & I∗(x) = |IW (t,x)|

)

B-spline basis Bq
1(x), . . . ,Bq

Nlow
(x)

discrepancy σ
regularization parameter λ

Output: dynamic signal I(x)

Step 1: Compute the spectra D+(k) and D∗(k) and the matrix H(D∗).

Step 2: Compute Dd(k) by solving the linear system

H(D∗)Dd(k) = D(k)−D+(k).

Step 3: Compute the low resolution dynamic factor Id(x̃):

Id(x̃) = DIFT
(
Dd(k)

)
.

Step 4: Compute the B-splines matrix Φ̃ and compute the model coefficients vector α with
one of the following method:

1. Direct method: solve by LU decomposition the linear system:

Φ̃α = Id(x̃).

2. Tikhonov regularization: solve by Cholesky decomposition the Tikhonov sys-
tem: (

Φ̃tΦ̃ + λLtL
)
α = Φ̃tId(x̃).

3. CG regularization: solve by truncated CG iterations the normal equations:

Φ̃tΦ̃α = Φ̃tId(x̃).

Step 5: Compute the B-splines matrix Φ and compute the high resolution dynamic factor
Id(x):

Id(x) = Φα.

Step 6: Compute the high resolution dynamic signal I(x):

I(x) = I+(x) + I∗(x). ∗ Id(x).
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The RIGR-like methods of this section are summarized in the following table 2.3.

Method Basis I+(x) I∗(x)
Approach to the
model coefficients
estimation problem

RIGR Fourier 0 |IB(x)| DIFT
BRIGR B-spline 0 |IB(x)| Direct method

BRIGR Tik B-spline 0 |IB(x)| Tikhonov regularization
BRIGR CG B-spline 0 |IB(x)| CG regularization

TRIGR Fourier IB(x) |IA(x)− IB(x)| DIFT
TBRIGR B-spline IB(x) |IA(x)− IB(x)| Direct method

TBRIGR Tik B-spline IB(x) |IA(x)− IB(x)| Tikhonov regularization
TBRIGR CG B-spline IB(x) |IA(x)− IB(x)| CG regularization

WRIGR Fourier 0 |IW (t,x)| DIFT
WBRIGR B-spline 0 |IW (t,x)| Direct method

WBRIGR Tik B-spline 0 |IW (t,x)| Tikhonov regularization
WBRIGR CG B-spline 0 |IW (t,x)| CG regularization

Table 2.3: Summary of RIGR-like methods.

The numerical methods for dynamic MRI described by the common equation (2.23) and introduced
in sections 2.4, 2.5 and 2.6 are further summarized in table 2.4.

2.7 Extension to the two dimensional case

In real MRI applications, a dynamic image I(x, y) has to be reconstructed from a dynamic data set
D(kx,kx) undersampled along the phase-encoding direction. Obviously, I(x, y) (D(kx,kx)) belongs to
a temporal sequence of images (data sets) but the temporal index is omitted here for easier presentation.
One and/or two reference images are acquired before and/or after the dynamic process. As explained in
section 2.1, the horizontal direction of I(x,y) is first reconstructed by a DIFT and a matrix D̂(kx, y) is
obtained such that

D̂(n∆kx, i∆y) =
1
M

M/2−1∑

m=−M/2

D(n∆kx,m∆ky)e2
√−1π

(
m i
M

)
, i = 0, . . . ,M − 1. (2.88)

Then each column I(x, i∆y),i = 0, . . . ,M−1, of each image I(x,y) of the succession is independently re-
constructed by applying a method described by equation (2.23) to the corresponding column D̂(kx, i∆y).
The algorithm for the reconstruction of a generic dynamic image I(x,y) of the temporal sequence is
formally defined as follows.
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Algorithm 2.10. Unifying model-based algorithm for dynamic MR image reconstruction.

Input: dynamic data set D(kx, ky)
additive factor I+(x,y)
multiplicative factor I∗(x,y)
basis functions φ0(x), . . . , φNlow−1(x)

Output: dynamic image I(x, y)

Step 1: Compute the spectra D̂+(kx,y) and D̂∗(kx, y).

Step 1: Compute the basis functions matrices Φ̃ and Φ.

Step 2: Compute the matrix D̂(kx, y) = DIFT
(
D(kx, ky)

)
.

Step 3: for i = 0, . . . , M − 1

3.1: Compute the matrix H(D∗) from the column vector D̂∗(kx, i∆y).

3.2: Compute D̂d(kx, i∆y) by solving the linear system

H(D∗)D̂d(kx, i∆y) = D̂(kx, i∆y)− D̂+(kx, i∆y).

3.3: Compute the column vector Id(x̃, i∆y) of the low resolution dynamic factor:

Id(x̃, i∆y) = DIFT
(
D̂d(kx, i∆y)

)
.

3.4: Compute the model coefficients vector α by solving the linear system:

Φ̃α = Id(x̃, i∆y).

3.5: Compute the column vector Id(x, i∆y) of the high resolution dynamic factor:

Id(x, i∆y) = Φα.

3.6: Compute column vector I(x, i∆y) of the high resolution dynamic image :

I(x, i∆y) = I+(x, i∆y) + I∗(x, i∆y). ∗ Id(x, i∆y).
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Class of the method Method Basis I+(x) I∗(x)
Approach to the
model coefficients
estimation problem

ZP Fourier 0 1 DIFT
Zero padding-like BZP B-spline 0 1 Direct method

BZP Tik B-spline 0 1 Tikhonov regularization
BZP CG B-spline 0 1 CG regularization

KEY Fourier IB(x) 1 DIFT
BKEY B-spline IB(x) 1 Direct method

BKEY Tik B-spline IB(x) 1 Tikhonov regularization
Keyhole-like BKEY CG B-spline IB(x) 1 CG regularization

WKEY Fourier IW (t,x) 1 DIFT
WBKEY B-spline IW (t,x) 1 Direct method

WBKEY Tik B-spline IW (t,x) 1 Tikhonov regularization
WBKEY CG B-spline IW (t,x) 1 CG regularization

RIGR Fourier 0 |IB(x)| DIFT
BRIGR B-spline 0 |IB(x)| Direct method

BRIGR Tik B-spline 0 |IB(x)| Tikhonov regularization
BRIGR CG B-spline 0 |IB(x)| CG regularization

TRIGR Fourier IB(x) |IA(x)− IB(x)| DIFT
RIGR-like TBRIGR B-spline IB(x) |IA(x)− IB(x)| Direct method

TBRIGR Tik B-spline IB(x) |IA(x)− IB(x)| Tikhonov regularization
TBRIGR CG B-spline IB(x) |IA(x)− IB(x)| CG regularization

WRIGR Fourier 0 |IW (t,x)| DIFT
WBRIGR B-spline 0 |IW (t,x)| Direct method

WBRIGR Tik B-spline 0 |IW (t,x)| Tikhonov regularization
WBRIGR CG B-spline 0 |IW (t,x)| CG regularization

Table 2.4: Summary of methods for dynamic MRI.
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Chapter 3

Tests and numerical experiments

In this chapter a wide experimentation of the methods described in chapter 2 is presented. The methods
are tested on both simulated and real data. In the first part of the chapter (section 3.1) we present
the results obtained with the methods that do not use a priori information (section 2.4), while in the
second part of the chapter (section 3.2), we show the results obtained with the methods that use a priori
information (sections 2.5 and 2.6). Usually, the second class of methods produce better images, because
the additional information greatly contribute to the reconstruction process.

3.1 Methods not using a-priori information

In this section we present the results obtained in the reconstruction of simulated low-sampled MR data
with the methods that do not use a priori information: the ZP method, the BZP method, the BZP Tik
method and the BZP CG method. We have considered both one dimensional and two dimensional test
problems. Aim of these tests is to show the effectiveness of the B-spline functions and of the regularization
in smoothing both the artifacts and the noise. All the considered test problems confirm that B-spline
functions are more suitable than the exponential functions for representing MR images and that the use
of the regularization gives good results especially on noisy data. In the following, if not specified, the
B-splines degree is 3.

One dimensional test problems
In this paragraph we present the results of two simulated one dimensional test problems. Given an exact
high resolution dynamic signal Iexact(x) of N = 256 components, the high resolution dynamic data set
Dexact(k) is obtained by a DFT of Iexact(x); the undersampling of the data is simulated by considering
only a subset D(k) of the Nlow lowest frequencies of the spectrum Dexact(k).

The reconstruction methods described in section 2.4 are applied to the set D(k) of Nlow data frequen-
cies in order to reconstruct the high resolution signal I(x).
The noisy test problems are obtained by simulating the noise on the raw data D(k), i.e. on the data
in the Fourier space: white noise has been added to the Nlow available frequencies before applying the
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reconstruction algorithms.

The reconstructed signal I(x) is compared to the true signal Iexact(x). The results are represented
by graphics; all the figures contain two graphics, the red dotted line representing the exact signal and
the blue continuous line representing the reconstructed signal. As numerical error measures we use the
Mean Square Error (MSE) and the Normalized Mean Average Error (NMAE) defined as:

MSE =
1
N

√√√√
N∑

i=1

(Iexact(xi)− I(xi))2,

NMAE =
∑N

i=1 |Iexact(xi)− I(xi)|∑N
i=1 |Iexact(xi)|

.

For each test problem, the low resolution dynamic signal I(x̃), obtained by a DIFT of D(k), is also
shown. The considered test problems are the following.

Test problem TP1
The exact signal Iexact(x) of the TP1 test problem is the box function plotted in figure 3.1(a); the low
resolution I(x̃) signal obtained with Nlow = 64 frequencies is represented in figure 3.1(b). Figures 3.2 and
3.3 show the reconstructions obtained with all the considered methods by B-splines of degree 3 and B-
splines of degree 1, respectively; the ringing artifacts present in the ZP reconstructions are reduced when
B-splines of degree 3 are used to represent the signal. The regularization introduces further smoothing
effects on the oscillations, but in some cases it doesn’t preserve the edges and peaks of the signal. In
particular, Tikhonov regularization usually performs better than CG regularization. The regularization
is more effective when low or medium noise is present on the data or when more frequencies are available.
Figure 3.4 represents the behavior of the MSE and NMAE parameters with Nlow varying from 8 to 128.

Table 3.1 reports the numerical values of the MSE and NMAE errors for the TP1 test problem. Test

problem TP2.
The exact and low resolution signals Iexact(x) and I(x̃) of the TP2 test problem are shown in figure
3.5(a) and 3.5(b) (Nlow = 64), together with the low resolution noisy signals obtained when low noise
and medium noise are added on the data (figure 3.5(c) and figure 3.5(d)). Figures 3.6 and 3.7 show
the signals reconstructed with all the considered methods by using B-splines of degree 3 and degree 1
(Nlow = 64), respectively. Figures 3.8 and 3.9 report the results obtained when Nlow = 128 frequencies
are considered. Finally, the MSE and NMAE parameters are plotted in figures 3.10 when Nlow varies from
8 to 128; in figure 3.11, the MSE and NMAE parameters are computed for an increasing level of noise.
These plots confirm the considerations of test problem TP1. The use of B-splines and regularization
improves the quality of the reconstruction when Nlow increases and when the data are affected by noise.

Two dimensional test problems
In this paragraph we present the results obtained when the previously discussed methods are applied to
the images. In particular, we simulate MR images acquired by spin-echo technique, where each image
row is acquired independently. Hence, the reconstruction methods are applied as described in section 2.7.
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The noisy problems are obtained by simulating the presence of noise on the raw data. For each image row,
white noise has been added on the Nlow available frequencies before applying the reconstruction algorithm.

We consider two test images Iexact(x, y), the phantom and the brain images, each of size 256 × 256,
showing different features. In order to simulate the k -space undersampling, a 2DFT has been applied
to the test images to obtain the complete dynamic data sets Dexact(kx, ky) of 256 × 256 samples; then
the low sampled data sets D(kx, ky) have been simulated by considering only a Nlow × 256 subset of the
central lowest frequencies of Dexact(kx, ky).

In the following, for each test problem, we show the reconstructed image I(x, y) and the difference
image Idiff(x,y):

Idiff(x, y) = abs(Iexact(x, y)− I(x,y))

where Iexact(x,y) is the exact image. Phantom test problem

The exact image is shown in figure 3.12. We tested the methods by using Nlow = 128, Nlow = 64 and
Nlow = 32 frequencies.
The case Nlow = 64 has been extensively treated. The ZP reconstruction (figure 3.13(a)) presents Gibbs
artifacts, especially near the edges of the white circle and near the borders of the small black circles. The
BZP reconstruction (figure 3.13(b)) smoothes the artifacts, and the use of regularization (figure 3.13(c),
3.13(d)) further reduces them. In particular, the reconstruction obtained with Tikhonov regularization
is the best, while the reconstruction obtained with the CG method is blurred near the borders. The
difference images represented in figure 3.14 confirm the previous considerations. When the data are noisy
(figures 3.15- 3.18) the images reconstructed by the ZP method are affected by Gibbs artifacts and by
noise, as it is evident in figures 3.16(a) and 3.18(a). Hence, the B-splines and the regularization act both
on the Gibbs artifacts and on the noise.
When we consider Nlow = 128 frequencies, the Gibbs artifacts are greatly reduced (figures 3.19, 3.20) in
the absence of noise, while the noise is still present in the ZP reconstruction (figures 3.21, 3.22).
When Nlow = 32, the reconstructions are low-quality images (figure 3.23, 3.24). Anyway, the difference
between the methods behavior is enhanced: the use of B-splines smoothes the oscillations of the ZP
reconstruction and Tikhonov regularization produces the best image.

Brain test problem
The exact image is obtained from real MR data and is shown in figure 3.25. In contrast with the phantom
image, this image is characterized by many gray levels creating small objects with rather undefined edges.
Figures 3.26 and 3.28 show the reconstructions obtained with Nlow = 64 frequencies from no noisy and
noisy data. Figures 3.27 and 3.29 show the difference images. The methods act as in the phantom test
problem. We underline that the use of B-splines with Tikhonov regularization preserves the details even
in this image and produces the best reconstructions again.

3.2 Methods using a-priori information

In this section we present the results obtained with the methods that use a priori information: the
Keyhole-like methods (sec. 2.5) and the RIGR-like methods (sec. 2.6). Usually, the RIGR-like methods
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produce better images , because the use of the a priori information as a multiplicative constraint gives
an important contribution in the reconstruction process. We have considered one dimensional and two
dimensional test problems with both simulated and real data.

One dimensional test problems
The one dimensional test problems are test problems on simulated data; we have considered two signals
of 256 samples, representing the reference IB(x) and the exact dynamic signal Iexact(x), respectively.
The DFT of the signals gives the reference data DB(k) and the dynamic high resolution data Dexact(k);
the low sampling of the dynamic data set is simulated by considering, in the reconstruction process, only
the Nlow, (Nlow < 256) dynamic lowest frequencies.
The considered simulated one dimensional test problems are the following.

Test problem TP3
In figure 3.30 the reference signal and the dynamic signal of the test problem TP3 are shown. The
dynamic signal is reconstructed by only using Nlow (Nlow = 16, 32, 64) frequencies and the results are
reported in figure 3.31 and 3.32. From the figure 3.31 it is evident that the use of B-splines of degree 3 and
degree 1 reduces the oscillations of the Keyhole method. Furthermore, the use of regularization smoothes
the peaks at the edges of the signal. Figure 3.32 shows the reconstructions obtained with the RIGR-like
methods. The use of B-spline basis functions and regularization leads to the best reconstruction (figures
3.32(b), 3.32(e), 3.32(h), 3.32(k)) for the different values of Nlow.

Test problem TP4
The reference and the dynamic signal of the TP4 test problem are plotted in figure 3.33. Figure 3.34 and
3.35 show the reconstructions. The considerations made for the test problem TP3 are still true in this
case, and the BRIGR Tik method shows the best performance.

Test problem TP5
Figure 3.36 shows the reference and exact dynamic signal of test problem TP5; in this case we have tested
the methods on the noisy data of the signal plotted in 3.36(c). The noise has been added on dynamic
frequencies, because in the real applications the acquired dynamic data generally suffer from the effects
of the object moving during the data acquisition.
The smoothing effects of the regularization are more evident in this case than in the test problems TP3
and TP4 and the BRIGR Tik method is still the best performing method (figures 3.38(b), 3.38(e),
3.38(h), 3.38(k)).

Two dimensional test problems
The methods have been tested on the following two test problems.

Circle test problem
The circle test problem is a test problem on simulated data. Two images of size 256 × 256 represent
the reference image IB(x, y) and the exact dynamic image Iexact(x, y), respectively. After Fourier trans-
forming Iexact(x, y), a reduced scan spin-echo acquisition is simulated by considering the Nlow × 256
(Nlow = 64) dynamic lowest frequencies. The reconstructed dynamic image I(x, y) is compared with the
exact one and we can represent the difference image Idiff(x,y).
Figure 3.39 shows the reference IB(x, y) and the exact dynamic image Iexact(x,y) of the circle test
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problem. This problem is used in literature to represent, through the variations of gray levels in the
dynamic image, the action of a contrast agent in the organ examined by the MR exam. The problem
has been extensively examined and both the reconstructed dynamic images and the difference images are
represented in all the performed tests. Figures 3.40 and 3.41 show the reconstructions obtained with the
Keyhole-like methods (Nlow = 64) and with the RIGR-like methods (Nlow = 64), respectively, while the
difference images are plotted in figures 3.42 and 3.43. The Gibbs artifacts in the Keyhole reconstruction
(figure 3.40(a)) are reduced by the use of B-splines (figure 3.40(b)) and of regularization (figure 3.40(c)),
even if an error is evident near the borders of the big circle (figures 3.42(a),3.42(b),3.42(c)). The BRIGR
method with regularization (figures 3.41(c) and 3.43(c)) performs better and considerably reduces the
errors near the border. When the methods are applied to noisy data (figures 3.44-3.47), the regularization
is necessary to reduce not only the Gibbs artifacts but also the noise in the reconstructed images.

Mouse test problem: real MR data
The data for this test problem have been downloaded from the site:http://mri.ifp.uiuc.edu/V/. They
are constituted of 6 data sets from a mouse breast with a big tumor: a baseline reference data set
IB(x, y) and an active reference data set IA(x, y) of 256 × 256 samples (figure 3.48) and four low-
sampled data sets of 64 × 256 samples, one for each dynamic section, acquired by a MR spin-echo
technique after injecting a contrast agent. In figures 3.3-3.56 the reconstructions (and difference images)
of the section 3 of the sequence are reported, when only the IB(x,y) reference image is used. In this
case, the reconstructions obtained with the Keyhole-like methods (KEY, BKEY, BKEY Tik) are quite
different from those obtained with the RIGR-like methods (RIGR, RIGR Tik, BRIGR, BRIGR Tik).
The reason is that the reference image is used in a different way in the two classes of methods and some
imperfections of the reference image, such as small black holes, are amplified in the images reconstructed
by the RIGR-like methods (figures 3.50(a)-3.50(c) and 3.54(a)-3.54(c)). On the other side, the KEY
images present artifacts as horizontal stripes along the low-sampled direction; the use of B-splines and
especially the use of regularization greatly reduces the artifacts and the BKEY Tik image is quite good
(Nlow = 64 or Nlow = 32, figures 3.49(c) and 3.53(c)). Finally, the two references images IB(x, y) and
IA(x, y), have been used and the reconstruction methods have been tested on three dynamic images of
the sequence (sections 1, 3, 4). Figures 3.3, 3.58 and 3.59 show the images obtained by the TBRIGR Tik,
WBKEY Tik and WBRIGR Tik, respectively. In all cases it is evident that the reconstructed images
are better than those obtained with only one reference image; moreover, the quality of the WBKEY Tik
images is very good.
We can conclude that even in this test problem with real MR data, the use of B-splines and regularization
gives very good results in terms of image quality. Moreover, the WBKEY Tik method is computationally
much more convenient than the RIGR-like methods as it is evident from the description reported in
sections 2.5 and 2.6.

3.3 Considerations

We conclude this section with some global considerations on the performed numerical tests. In this report
we propose the use of B-spline functions for the representation of MR signals and images and the use of
regularization in the reconstruction of images from MR raw data.
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In the first phase of the tests we have only considered the methods that do not use a priori information
in the reconstruction of simulated low-sampled MR data. Aim of this phase was to show the effectiveness
of B-spline functions and regularization in smoothing the artifacts and the noise in the MR signals and
images. All the considered test problems confirmed that the B-spline functions are more suitable than the
exponential functions for representing MR images and that the regularization gives good results especially
on noisy data.
In the second phase of the tests we have considered methods that use a priori information encoded in
the reference images acquired at the beginning and/or at the end of the dynamic sequence. The methods
can be split into two classes: the Keyhole-like methods and the RIGR-like methods. Each class contains
methods with Fourier and B-spline basis functions for the images representation and with regularization
methods for the solution of the linear systems involved (see the methods description in chapter 2).
The methods are tested both on simulated and real MR data. The use of B-spline basis functions and of
regularization enhances the Keyhole-like methods performance at a low computational cost. This seems
the best solution for fast reconstruction of a high resolution MR sequence. The RIGR-like methods
performs well when the reference images are of very high quality; anyway they are computationally more
expensive than the Keyhole-like methods.
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Figure 3.1: Test problem TP1 (Nlow = 64).
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Figure 3.2: Test problem TP1, B-splines of degree 3 (Nlow = 64).
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Figure 3.3: Test problem TP1, B-splines of degree 1 (Nlow = 64).
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Figure 3.4: Error parameters with NL varying for test problem TP1.

No Noise Noise
Method MSE NMAE MSE NMAE
ZP 3.407e-3 3.362e-2 3.580e-3 4.768e-2
BZP (deg. 3) 3.306e-3 2.447e-2 3.452e-3 4.037e-2
BZP CG (deg. 3) 4.750e-3 3.917e-2 4.795e-3 4.754e-2
BZP Tik (deg. 3) 3.870e-3 2.450e-2 6.162e-3 6.627e-2
BZP (deg. 1) 3.463e-3 2.222e-2 3.564e-3 3.642e-2
BZP Tik (deg. 1) 3.641e-3 2.383e-2 4.869e-3 5.076e-2

Table 3.1: Error parameters for test problem TP1.

45



0

0.2

0.4

0.6

0.8

1

(a) Exact signal

0

0.2

0.4

0.6

0.8

1

(b) Low resolution signal

0

0.2

0.4

0.6

0.8

1

(c) Low resolution low noise signal

0

0.2

0.4

0.6

0.8

1

(d) Low resolution medium noise
signal

Figure 3.5: Test problem TP2 (Nlow = 64).
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Figure 3.6: Test problem TP2, B-splines of degree 3 (Nlow = 64).
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Figure 3.7: Test problem TP2, B-splines of degree 1 (Nlow = 64).
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Figure 3.8: Test problem TP2 (Nlow = 128).
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Figure 3.9: Test problem TP2, B-splines of degree 3 (Nlow = 128).
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Figure 3.10: Error parameters with Nlow varying for test problem TP2.51
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Figure 3.11: Error parameters with noise varying (Nlow = 64) for test problem TP2.
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Figure 3.12: Test problem: phantom.
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Figure 3.13: Test problem phantom (reconstructions with Nlow = 64).
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Figure 3.14: Test problem phantom (difference images with Nlow = 64).
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Figure 3.15: Test problem phantom, low noise (snr = 65 db) (reconstructions with Nlow = 64).
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Figure 3.16: Test problem phantom, low noise (snr = 65 db) (difference images with Nlow = 64).
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Figure 3.17: Test problem phantom, medium noise (snr = 58 db) (reconstructions with Nlow = 64).
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Figure 3.18: Test problem phantom, medium noise (snr = 58 db) (difference images with Nlow = 64).
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Figure 3.19: Test problem phantom (reconstructions with Nlow = 128).
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Figure 3.20: Test problem phantom (difference images with Nlow = 128).
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Figure 3.21: Test problem phantom, medium noise (snr = 58 db) (reconstructions with Nlow = 128).
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Figure 3.22: Test problem phantom, medium noise (snr = 58 db) (difference images with Nlow = 128).
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Figure 3.23: Test problem phantom, medium noise (snr = 58 db) (reconstructions with Nlow = 32).
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Figure 3.24: Test problem phantom, medium noise (snr = 58 db) (difference images with Nlow = 32).
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Figure 3.25: Test problem: brain.
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Figure 3.26: Test problem brain (reconstructions with Nlow = 64).
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Figure 3.27: Test problem brain (difference images with Nlow = 64).
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Figure 3.28: Test problem brain with noise (snr=49 db) (reconstructions with Nlow = 64).
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Figure 3.29: Test problem brain with noise (snr=49 db) (difference images with Nlow = 64).
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Figure 3.30: Test problem TP3
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Figure 3.31: Test problem TP3, Keyhole-like methods, reconstructions with Nlow varying.
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Figure 3.32: Test problem TP3, RIGR-like methods, reconstructions with Nlow varying.
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Figure 3.33: Test problem TP4
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Figure 3.34: Test problem TP4, Keyhole-like methods, reconstructions with Nlow varying.
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Figure 3.35: Test problem TP4, RIGR-like methods, reconstructions with Nlow varying.
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Figure 3.36: Test problem TP5.
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Figure 3.37: Test problem TP5, Keyhole-like methods, reconstructions with Nlow varying.
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(l) RIGR, Nlow = 16

Figure 3.38: Test problem TP5, RIGR-like methods, reconstructions with Nlow varying.
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(a) Reference image (b) Dynamic image

Figure 3.39: Test problem: circle.
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(a) KEY, Nlow = 64 (b) BKEY, Nlow = 64

(c) BKEY Tik, Nlow = 64

Figure 3.40: Test problem circle, Keyhole-like methods (reconstructions with Nlow = 64).
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(a) RIGR, Nlow = 64 (b) BRIGR,Nlow = 64

(c) BRIGR Tik, Nlow = 64

Figure 3.41: Test problem circle, RIGR-like methods (reconstructions with Nlow = 64).
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(a) KEY, Nlow = 64 (b) BKEY, Nlow = 64

(c) BKEY Tik, Nlow = 64

Figure 3.42: Test problem circle, Keyhole-like methods (difference images with Nlow = 64).
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(a) RIGR, Nlow = 64 (b) BRIGR, Nlow = 64

(c) BRIGR Tik, Nlow = 64

Figure 3.43: Test problem circle, RIGR-like methods (difference images with Nlow = 64).
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(a) KEY, Nlow = 64 (b) BKEY, Nlow = 64

(c) BKREY Tik, Nlow = 64

Figure 3.44: Test problem circle with noise, Keyhole-like methods (reconstructions with Nlow = 64).
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(a) RIGR, Nlow = 64 (b) BRIGR, Nlow = 64

(c) BRIGR Tik, Nlow = 64

Figure 3.45: Test problem circle with noise, RIGR-like methods (reconstructions with Nlow = 64).
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(a) KEY, Nlow = 64 (b) BKEY, Nlow = 64

(c) BKEY Tik, Nl = 64

Figure 3.46: Test problem circle with noise, Keyhole-like methods (difference images with Nlow = 64).
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(a) RIGR, Nlow = 64 (b) BRIGR, Nlow = 64

(c) BRIGR Tik, Nlow = 64

Figure 3.47: Test problem circle with noise, RIGR-like methods (difference images with Nlow = 64).
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(a) Baseline reference image IB(x, y) (b) Active reference image IA(x, y)

Figure 3.48: Test problem: mouse (real data)
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(a) KEY, Nlow = 64 (b) BKEY, Nlow = 64

(c) BKEY Tik, Nlow = 64

Figure 3.49: Test problem mouse, Keyhole-like methods (reconstructions with Nlow = 64).
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(a) RIGR, Nlow = 64 (b) BRIGR,Nlow = 64

(c) BRIGR Tik, Nlow = 64

Figure 3.50: Test problem mouse, RIGR-like methods (reconstructions with Nlow = 64).
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(a) KEY, Nlow = 64 (b) BKEY, Nlow = 64

(c) BKEY Tik, Nlow = 64

Figure 3.51: Test problem mouse, Keyhole-like methods (difference images with Nlow = 64).
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(a) RIGR, Nlow = 64 (b) BRIGR,Nlow = 64

(c) BRIGR Tik, Nlow = 64

Figure 3.52: Test problem mouse, RIGR-like methods (difference images with Nlow = 64).
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(a) KEY, Nlow = 32 (b) BKEY, Nlow = 32

(c) BKEY Tik, Nlow = 32

Figure 3.53: Test problem mouse, Keyhole-like methods (reconstructions with Nlow = 32).
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(a) RIGR, Nlow = 32 (b) BRIGR,Nlow = 32

(c) BRIGR Tik, Nlow = 32

Figure 3.54: Test problem mouse, RIGR-like methods (reconstructions with Nlow = 32).
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(a) KEY, Nlow = 32 (b) BKEY, Nlow = 32

(c) BKEY Tik, Nlow = 32

Figure 3.55: Test problem mouse, Keyhole-like methods (difference images with Nlow = 32).
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(a) RIGR, Nlow = 32 (b) BRIGR,Nlow = 32

(c) BRIGR Tik, Nlow = 32

Figure 3.56: Test problem mouse, RIGR-like methods (difference images with Nlow = 32).
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(a) section 1 (b) section 3 Nlow = 32

(c) section 4, Nlow = 32

Figure 3.57: Test problem mouse, TBRIGR Tik method (reconstructions with Nlow = 64).
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(a) section 1 (b) section 3

(c) section 4

Figure 3.58: Test problem mouse, WBKEY Tik method (reconstructions with Nlow = 64).
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(a) section 1 (b) section 3

(c) section 4

Figure 3.59: Test problem mouse, WBRIGR Tik method (reconstructions with Nlow = 64).
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