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Abstract— A fully integrated 4.8 - 6 GHz Wireless LAN SiGe-
bipolar power amplifier chip requiring no external components
was realized using the small die size of only 1 x 0.9 mm2. At 1 V
to 2.4 V, the maximum output power level is 19 dBm (22 % PAE)
to 26.3 dBm (28.5 % PAE) at 5.25 GHz with a maximum small
signal gain of 33 dB. The maximum average output power for a
maximum 3 % Error Vector Magnitude (EVM) is 16 dBm. The
PA survives a VSWR of 50.

I. INTRODUCTION

Wireless LAN is one of the increasing high-volume pro-

duction markets. First found as network adapter only, the

next step will be the integration in mobile phones and other

handheld applications, also with reduced power supply voltage

levels. Furthermore more data throughput at low price is

desired, so that additional IEEE 802.11a functions in the

5 GHz band for WLAN chipsets have become available [1].

Today, wireless LAN for 5 GHz IEEE 802.11a is dominated

by III/V-HBT based power amplifier (PA) solutions with a

single-ended topology such as [2]. Linear Power Si and SiGe

Amplifiers for the 5 GHz Wireless LAN band have been

reported so far in [3], [4], using a single-ended topology

and external output matching network. However, a single-

ended structure requires a good ground connection, realized

by flip-chip or on-chip ground connection [5]. Furthermore the

high impedance transformation ratio between the output stage

transistor and the 50 Ω load makes it difficult to achieve a

low loss match on-chip. Therefore all on-chip output matched

efforts such as [6], [7] are differential circuits. There appears

a 4:1 load-line impedance benefit for a push-pull combining

scheme. Unfortunately all these realized approaches suffered

from low linearity [6] or relatively high quiescent currents

[7]. This paper presents the first fully on-chip in- and output

matched power amplifier for the 5 GHz Wireless LAN band,

including broadband balun function. Thus, a high bandwidth is

demonstrated, so that the chip can be applied also to cordless

phone applications in the 5.8 GHz range.

II. SIGE-BIPOLAR TECHNOLOGY

The SiGe bipolar technology used in this work is a 0.35 µm,

72 GHz/ 75 GHz (ft/fmax) volume production process [8]

with a three layer, 2.8µm thick upper layer Al-metalization.

The worst-case collector-base breakdown voltage for the

npn HBT is BVCB0 = 8 V (typical: 10 V) and the worst-

case collector-emitter breakdown voltage is BVCE0 = 2.3 V

(typical: 2.8 V). Fig. 1 shows the fully integrated PA die (chip

size: 1 × 0.9 mm2).
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Die micrograph of the power amplifier (chip size: 1× 0.9 mm2).
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ig. 2. Simplified circuit diagram of the power amplifier.

III. CIRCUIT DESIGN

shows the circuit diagram of the power amplifier.

input, an input transformer X1 is used as BALUN,

g network and low-ohmic bias interconnection. The

mer implies an integrated DC blocking function and

llent ESD protection for the PA input. It further gives

ign freedom of applying differential or single-ended

ignals. Functionally, X1 is connected as a parallel

t device with the input capacitors C1 and C2. Hence,

nance frequency is tuned to the center frequency.

differential circuit offers a virtual ground, the center

the secondary winding is used to supply the driver

ansistors T1 and T2 with the necessary bias currents.

ed to otherwise necessary bias coils or bias resistors,



the base has a low-ohmic DC connection improving the

transistor ruggedness [9] and the noise performance. The turn

ratio of X1 is N=2:1. The size is 140 × 140 µm2. The primary

winding consists of two turns with a width of 10 µm on the

top metal layer. The lower two metal layers are used only for

crossing purpose to reduce parasitic substrate coupling. The

total coupling coefficient is k = 0.55 at 5.3 GHz. In this circuit,

the primary center tap was not connected, and the chip is

bonded to have a single-ended input. The input transformer X1

feeds the driver stage transistors T1 and T2 with an effective

emitter area of 63 µm2 each. The transistors are designed in

a double emitter, double collector, triple base configuration

to reduce the base resistance required for a high current

transformation ratio of X1. In the interstage section, X2 is

connected as a parallel resonant device with two capacitors C3

and C4 and the transistors T1 and T2, tuned to a resonance

frequency of 5.8 GHz. C3 and C4 are connected in antiseries

to short the parasitic substrate capacities to the VCC-node

of the driver stage. X2 has a turn ratio of N=2:1 and with

two secondary windings connected in parallel to improve the

coupling coefficient. The total coupling coefficient is k= 0.65

at 5.3 GHz. The size of the transformer is 175× 175 µm2. All

windings are realised using the thick top metal layer. Modeling

issues of monolithic transformers are presented in [10]. The

output stage of the PA uses an emitter area of 155 µm2 for

T3, T4 each, matched by a LC-BALUN to the 50 Ω load. The

method of designing this balun structure can be found in [7].

Further details on output balun design structures are found in

[11], [12], [13].

IV. EXPERIMENTAL RESULTS

The PA was characterized using a simple PCB with two

50 Ω transmission lines. For the tests, the die was attached

glued and bonded directly to a PCB with two 50 Ω transmis-

sion lines (Fig. 1).

Fig. 3 shows the power transfer characteristic of the PA.

Measured at 2.4 V supply voltage, a maximum output power

of 26.3 dBm is obtained.
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Fig. 3. Measured power transfer characteristic.

More important for WLAN is the linearity characterized

by two major criterions: The Error Vector Magnitude (EVM)

and the spectral mask. Fig. 4 shows the results versus fre-

quency. The tuning to 5.8 GHz as resonance frequency of
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sformers can be found in the small-signal gain plot,

its maximum at the desired frequency. The main

for tuning up the resonances is the decreasing output

evel at higher frequencies of the RF transceiver output.

ore Fig. 4 shows the maximum average linear power

ximum EVM of 3 % (54 Mbit/s, 64-QAM input signal)

spectral mask limit. Due to the high bandwidth, it

all 5 GHz bands. The spectral mask for 5.25 GHz is

in Fig. 5, showing very high margins. Tab. I shows a
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ance summary.

V. RUGGEDNESS MEASUREMENT RESULTS

s are connected to an antenna representing a load-line

h, the PA has to be tested for for output impedance

h conditions, if degradation or destruction occurs. Es-

Si-based technologies have to be tested, as the usually

akdown voltages compared to III/V-HBT technologies

ir usage. Transistor modeling issues with the focus on

anche breakdown are found in [14], [15]. For rugged-

ting, the PA was connected to an automatic load-pull

nning on the VSWR-circles (100 points per VSWR

ith an output mismatch of VSWR = 3,5,7,10,15,20

In any operation mode (linear and saturated) the PA

the mismatch. For saturation mode at VSWR=10 and

urrent jumps indicating starting breakdown effects, but

age or degradation occurred as observed by further



characterization. Fig. 6 shows the measured output power for

a VSWR=10 and 50 mismatch.

17

18

19

20

21

22

23

24

25

26

27

Phase of the reflection coefficient [°]

O
u
tp

u
t
p
o
w

e
r

[d
B

m
]

P = 10dBm , Vcc = 2.4V , VSWR = 10IN

10

11

12

13

14

15

16

0 30 60 90 120 150 180 210 240 270 300 330 360

P = 10dBm , Vcc = 2.4V , VSWR = 50IN

Fig. 6. Measured output power with VSWR = 10 mismatch.

VI. CONCLUSION

A fully integrated power amplifier for 4.8-6 GHz is demon-

strated in a 0.35 µm-SiGe-bipolar technology. It is based on

a push-pull type circuit with on-chip transformer coupling

and on-chip output balun. Thus the amplifier does not require

any external components and shows high ruggedness and high

output power at low EVM over a large frequency range. At a

supply voltage of 2.4 V the average linear output power is

16 dBm for 3% EVM at 5.3 GHz and the saturated output

power is 26.3 dBm with a PAE of 28.5 % at 5.3 GHz.
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Operating frequency 4.8 GHz – 6 GHz

Small-signal gain (5.8 GHz) 33 dB

Maximum average linear output power (5.25 GHz) (54Mbit/s 64-QAM, max. 3% EVM) 16 dBm

Supply voltage 2.4 1.5 1 V

Maximum output power 26.3 22.4 19.1 dBm

Power-added efficiency (5.25 GHz, Pin=10 dBm) 28.5 24.4 21.2 %

Output stage collector current (RF on- Pin=10 dBm) 2 x 225 2 x 152 2 x 105 mA
Output stage collector current (RF off) 2 x 33 2 x 50 2 x 46 mA
Driver stage current (RF on - Pin=10 dBm) 2 x 67 2 x 77 2 x 76 mA
Driver stage current (RF off) 2 x 34 2 x 37 2 x 36 mA

TABLE I

PERFORMANCE SUMMARY (T=300 K, INPUT AND OUTPUT LOAD: 50 Ω)
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