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Abstract  — Sequential tunneling behavior of p-n 
resonant tunneling diode with four-period InP/InGaAs 
superlattice is demonstrated. Theoretical calculation shows 
three split quantized energies in the four-period InP (50
Å)/InGaAs (25Å) superlattice structure. For the increase of 
more negative differential resistance (NDR) routes, high-
field domain is formed in the superlattice under sufficiently 
large operation biases. Experimentally, an interesting six-
route NDR characteristic, resulting from the form of split 
miniband structures and the extension of high-field domain 
in the InP/InGaAs superlattice, is observed at room 
temperature. 

I. INTRODUCTION

Over the past years, due to the rapid progress in 
exitaxial growth technologies, many novel negative 
differential resistance (NDR) devices exhibiting either N-
shaped or S-shaped switching characteristics have been 
successfully fabricated and demonstrated [1-4]. Among 
the switching devices, resonant tunneling diodes (RTDs) 
have attracted considerable attention for practical circuit 
applications, such as oscillators, analog-to-digital 
converters, multiplexers, and logic circuits, attributed to 
the NDR and high-speed properties, [5-8]. However, 
some of the reported NDR devices generally only 
provide two-operation region, i.e., an initial off state and 
a final on state. Recently, in order to obtain multiple 
stable states for multiple-valued logic circuit applications, 
the resonant tunneling devices with multiple NDRs 
characteristics have attracted extensive interests because 
of their feature of circuit simplicity [9, 10]. Usually, the 
numbers of quantized minibands in resonant tunneling 
devices determines the route numbers of NDRs. The 
multiple NDRs could be achieved in double-barrier or 
superlattice structures with multiple minibands. 
Furthermore, though two or more NDR devices in series 
can create multiple-peak NDRs in the combined current-
voltage (I-V) characteristics, it increases the complexity 
and element of circuits [9]. 

In general, as to the InP/InGaAs superlattice, only one-
route N-shaped NDR is observed [3]. In this letter, we 
report a novel multiple NDR device based on a p-n RTD 
with four-period InP/InGaAs superlattice. For the 
requirement of more NDR routes, the widths of InGaAs 
wells are extremely thin in order to form split miniband 
structures and increase the numbers of minibands in the 
superlattice. In addition, high-field domain is formed in 
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P/InGaAs superlattice under sufficiently large 
ion biases. Experimentally, interesting six-route 
 is observed at room temperature for the identical 
 without the use of multiple RTDs in series. 

III. DECVICE STRUCTURE AND EXPERIMENTS

 studied InP/InGaAs RTD was grown an (100) 
d semi-insulating InP substrate by low-pressure 
D. The device structure includes a 0.5 m p+ = 1 x 
-3 In0.53Ga0.47As layer, a 100 Å n = 5 x 1017 cm-3

a0.47As layer, a four-period InP/In0.53Ga0.47As (50Å
 superlattice, and a 0.3 m n+ = 1 x 1019 cm-3

a0.47As cap layer, respectively. In the superlattice, 
 barriers were undoped whereas the In0.53Ga0.47As
ere doped to n = 5 x 1017 cm-3. After the epitaxial 

, the conventional photolithograpgy, vacuum 
ation, and chemical wet etching process were used 
icate the device. The InGaAs and InP layers were 
vely etched by the solutions of 6 H3PO4: 3 H2O2:
2O and 1 HCl: 1 H2O, respectively. Ohmic contacts 
repared by alloying evaporated AuGaNi and AuZn 
 for n- and p-type layers, respectively. 

III. RESULTS AND DISCUSSION

 experimental forward I-V characteristic, measured 
 HP4155B semiconductor parameter analyzer, of 
udied InP/InGaAs RTD at room temperature is 
ted in Fig. 1. The turn-on voltage is about 0.38 V 

current level of 0.1 mA. Clearly, an interesting six-
DR characteristic is observed. The insert depicts 

larged view of the I-V characteristics of the 
le NDRs. The peaks of the NDRs are observed at 
.41, 1.44, 1.47, 1.50, 1.52, 1.54 V. The peak-to-
 current ratios (PVCRs) of the NDRs are 1.065, 
 1.029, 1.03, 1.028 and 1.012, respectively.  
order to investigate the miniband structures, 
GaAs superlattice with variable well widths are 
ed and compared. By the calculation of transfer 
, the dependence of transmission coefficient on the 
dinal incidence electron energy for the InP/InGaAs 

attices under ideal flat-band condition is depicted in 
 Here, the thickness of InP barrier is fixed at 50 Å. 
en from the figure, only one miniband, i.e., the 
 band E0, is obtained for the four-period 

attice with 50 Å-InGaAs wells. Though three 



quantized energies that the transmission coefficients are 
close to unity are expectable, they are nearly near each 
other and generally established as the same miniband at 
room temperature. Then, only one-route NDR is observed 
as to the previous report [3]. However, as the widths of 
InGaAs wells are reduced to 25 Å, the miniband structures 
trend to split. The second and third minibands, i.e., the 
first excited band E1 and the second excited band E2,
substantially appears. That is to say, the quantized 
energies separate each other and the numbers of 
“effectively” minibands increase, as the widths of InGaAs 
wells are decreased in the four-period superlattice. In the 
experimental device, the energy difference (~ 22 meV) 
between two minibands is nearly identical. On the other 
hand, further increasing the periods of the InP/InGaAs 
superlattice, though the numbers of minibands are 
increased, they strongly couple (wide energy range of E0)
each other and can be also established as one miniband. 
Thus, the short-period InP/InGaAs superlattice with the 
relatively thin InGaAs wells could achieve the split 
miniband structures. 
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Fig.1. (a) Experimental current-voltage characteristic of the 
InP/InGaAs RTD at room temperature. (b) Enlarged view of the 
multiple NDRs. 
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(b)
. The dependence of transmission coefficient on 
dinal incidence electron energy under ideal flat-band 
on for the InP/InGaAs RTD with variable well widths. 
he thickness of InP barrier is fixed at 50 Å. 

re 3 shows the corresponding conduction band 
m of the studied RTD. Because the inserted n-
s layer between superlattice and base layer is not 
ck, the superlattice is depleted completely and the 

ion region extends into n+-InGaAs cap layer at 
rium. At low voltage level, the applied voltage is 

ially across the p-n junction and the device acts as 
nal diodes. Once the applied voltage is enough
the InP/InGaAs superlattice will go into flat-band 
ion, as illustrated in Fig. 3(a). However, six-route 
ed NDRs are observed though only three split 
nds are indicated in the superlattice, as clearly seen 

. 1. Furthermore, the applied voltage of the studied 
 must be enough large to enable the superlattice to 
the flat-band condition. Thus, we suggest that the 
ing mechanism of the MNDR behavior should be 
ated by high-effect domain [11]. It is worthy to note 
e high-field region may initially occur on the left 
f the superlattice because the doping concentration 
inserted n-InGaAs layer is lower when compared to 
InGaAs cap layer.  
n the applied voltages are greater than the flat-band 

e, i.e., after the high-field domain is formed, the 
sonant tunneling behavior will occur as the Fermi 
F of n+-InGaAs cap layer aligns to the E0 within the 

attice, as seen in Fig. 3(b). Similarly, if the EF aligns 
E1 and E2, the second and third resonant tunneling 
ors will occur, as shown in Figs. 3(c) and 3(d), 
tively. After the above process, further increasing 
as will make the high-field region extend to the 
nt superlattice period and cause another quantum 
o break off from the above resonant tunneling. 
er resonant tunneling will occur through the high-
region in the first and second periods of the 
attice and the low-field region in the other periods 
superlattice, as seen in Fig. 3(e). Then, the fourth-
NDR phenomenon will appear. Identically, as the 
ield region extends to the third and fourth periods of 
perlattice, the fifth and sixth oscillatory behaviors 
occur, as illustrated in Figs. 3(f) and 3(g), 



respectively. This exhibits the interesting multiple NDR 
characteristic of the studied InP/InGaAs RTD.

Fig.3. The corresponding conduction band diagram of the 
InP/InGaAs RTD (a) under flat-band condition, (b) at the onset 
of EF aligning to E0, (c) at the onset of high-field region 
extending to the second period of the superlattice, (d) at the 
onset of high-field region extending to the third period of the 
superlattice, (e) at the onset of the high-field region extending 
to the fourth period of the superlattice. 

Significantly, the experimental I-V characteristic 
demonstrates that the voltage difference of 30 mV 
between two NDRs for the first- to third-route NDRs is 
nearly identical, which means that the energy differences 
of E1-E0 and E2-E1 are nearly equal. Also, the voltage 
difference is of 20 mV is identical for the fourth- to 
sixth-route NDRs, which indicates that the strength 
difference of high-field voltage is also the same. Thus, 
the interesting MNDR characteristic is achieved 
attributed to the sequential tunneling behaviors.  
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VI. CONCLUSION

ummary, a novel InP/InGaAs RTD with short-
 superlattice has been successfully fabricated and 
strated. The relatively thin InGaAs wells are 
yed to form split minibands. The interesting six-
NDRs are achieved attributed from the split 
nd structures and the extension of high-field 
ation in the superlattice. Consequently, the studied 
 shows good potential for circuit applications. 
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