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Abstract  — A general purpose LS model for GaN and
SiC FET devices was developed and evaluated with DC, S,
and Large Signal measurements (LS). The FET model is
generalized and extended with new feature in order to 
improve the management of harmonics, provide a more 
physical treatment of the dispersion as well as delay and 
model other specific effects in these devices. The model was
implemented in a commercial CAD tool and exhibit good
overall accuracy.

I. INTRODUCTION

Wide band gap materials, such as III-nitrides or SiC,
present remarkable electronic and physical properties
suitable for realization of devices operating at high
power- speed and high temperature. [1]-[3].

In this paper we propose a modified FET model in
order to account for the specifics of AlGaN/GaN HEMTs
and SiC MESFETs [1]-[4]. In specific, we introduce
modifications to consider the dispersion of gm and gds
[5]-[8] and better description of harmonics.

The model extraction and comparison with measured
data are performed on small devices (2x50 m SiC and 
AlGaN/GaN) and large AlGaN/GaN devices with 1 and 2 
mm total gate size. 

II. DEVICE FABRICATION

All wide band gap devices used in this paper were 
processed in-house, process details are described in [9]-
[10].

The AlGaN/GaN HEMT structure was grown by
MBE on SiC by SVT Associates, Inc. The modulation
doped structure consisted of a 300 Å undoped 
Al0.2Ga0.8N layer grown a 1 m GaN undoped GaN layer
resting on a 0.3 m AlGaN buffer. Hall measurements
showed a low field mobility of 1035 cm2/Vs and 2DEG 
sheet carrier density of 1.38·1013 cm-2. The gate length is
0.15 m. The saturation drain current, Idss, was 1250 
mA/mm and the DC-transconductance, gm, was 240
mS/mm. The extrinsic transit frequency, fT,ext, and the
maximum frequency of oscillation, fmax, are 51 GHz and 
93 GHz, respectively. Small devices demonstrated a CW
output power density above 3 W/mm under at 3 GHz
under Class A operation for Vds=40V.
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SiC MESFET epi-structure was grown on a semi-
ing 4H-SiC substrate by Cree Inc. The MESFET
re consists of a 0.30 m p-buffer with NA=5·1015

 0.35 m channel with ND=2.8·1017 cm-3, a 0.28
p ND=1.6·1019 cm-3. The gate length is 0.5 m. Idss
0 mA/mm and gm is 25 mS/mm. From S-parameter
rements a fT,ext, of 8.5 GHz and an fmax, of 32 GHz
s of 40 V were calculated. Class A output power of 
han 2 W/mm were measured at 3 GHz and Vds=50

III. TRANSISTOR MODEL

existing current model [11] was initially used.
er, better accuracy was obtained by adding three
rms, which give additional degrees of freedom to

 bias dependencies of harmonics and model the
sion in more physical way.
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 1. Measured and modelled Ids-Vds of the AlGaN/GaN 
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2. Measured and modelled Ids-Vds of the SiC MESFET.
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Fig. 3. Equivalent circuit of the transistor. 

Typically, the current sources for the Ids and Igs and 
capacitances are considered nonlinear. The generalized 
equivalent circuit (EQ) of the FET is presented in Fig. 3 

IV. IDS MODEL

The modified current equations are:
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where p is a power series function centered at Vpk.

Three new terms in comparison to [11] are introduced in
this model: Kbg which controls the dispersion via the
intrinsic gate voltage at RF; P2 and P3, Eq. 5 which 
account for the 2nd and 3rd harmonic dependence with
Vds. The temperature dependence is modelled as a 
temperature dependence of Pi(f(T)), which describes the 
temperature dependence of the carrier velocity whereas 
the temperature dependence of Ipk0 reflects the thermal
effect on the carrier’s concentration. 

This definition is more flexible then the single P1
dependence as it is in [11] and allows modelling of both
decrease and increase of the transconductance parameter
P1 with the drain voltage. Typically the three terms of the
gate power series p  produce a model accuracy of 2-5%.
Vpk and Ipk are the gate voltage and the drain current at
which the maximum transconductance occurs. ,  are 
the saturation parameters, and the -parameter accounts
for channel length modulation. The bias dependence of
some parameters, like V  and P , P , and P  is accounted
for in Eq. 4 and 5. The number of parameters for I  is 
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It is
typica
were p
1 in total) and most of them can be determined
y from measurements and used as good starting
 for optimizations. Our modelling approach thus

us to use a simple extraction procedure and 
ted parameters are trimmed directly using the CAD
timizers.

V. CAPACITANCE MODELS

the implementation in ADS, a capacitance
ation was used directly. The small- and large-
models are consistent and no transcapacitances are
d, since the time derivatives of the charge depend
n their own terminal voltage. The resulting small-
equivalent circuit consists of these capacitances

ted at the corresponding DC voltage. It is
ant that Cgs, Cgd are continuous functions of 
es with well defined derivatives in order to
ge well in harmonic balance simulations (HB). In
o account for the specifics of the large device, the
tance equations from [11] are appropriately
ed [12] keeping the number of parameters as small
sible (15 in total).

VI. DISPERSION AND DELAY MODELLING

ventional modelling of the frequency dispersion of 
 gm is not appropriate for these types of devices,

he frequency dependence of S21 and the maximum
 power for these transistors are rather complicated.
odel the dispersion in a more physical way using a 
ate approach [5]-[8]. In this case the RF feedback 
e, Vbg, is directly controlling the RF voltage at the
nd provides an adequate small- signal and large
description.
 delay network (Cdel1, Cdel2, Rdel), connected at the
(Fig. 3) provides a good description of high
ncy delay effects. At high frequency, the capacitor
shunts the input and directly decreases the
tude of the control voltage Vgsc and introduces the
ed delay. The value of the delay capacitance was
by fitting the S-parameters and is very low (2-3 
could thus be the capacitance of the gate footprint.

e constant Cdel·Rdel1 will determine the frequency
ch the high frequency and high power limitations
. The frequency dependence of the output power
e tuned using the capacitance Cdel2. Both delay
tors Cdel1 and Cdel2 are quite similar, which is why,
plicity, they were considered equal.
SiC devices exhibit effects which can be found in
aAs FET, like an increase of magnitude of S21 vs. 

ncy. These effects are due to the influence of the
l on the spreading resistance Rs which partly

 Rs (Fig. 2). I. e Rs is defined as:

Rs =Rs1+Rs2=A·Rs+ (1-A)Rs (7) 

VII. EXPERIMENTAL EVALUATION

 important to evaluate the device at biases along the
l load line. Multi-bias S-parameter measurements
erformed splitting the measurements in two ranges



of voltages; low Vds with high currents and high Vds with
small currents.

Some results for measured and modelled S-parameters
for 100 m gates GaN and SiC are shown in Fig. 4-7. 
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Fig. 4. Measured and modelled S11 and S21 of the 
AlGaN/GaN HEMT.
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Fig. 6. Measured and modelled S11 and S21 of the SiC 
MESFET.
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Fig. 7. Measured and modelled S12 and S22 of the SiC 
MESFET.
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8. Measured and modelled power sweep of the
/GaN HEMT model at 3 GHz, Vgs=-4 V and Vds=40V.
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9. Measured and modelled power sweep of SiC FET 
at 3 GHz, Vgs=-8 V and Vds=40V.

 8 and 9 show results from power sweep
rements performed after load and source pull for 
um output power. 
interesting to compare some parameters that are 

on for all models. The current Ipk0 at which is the
f the transconductance depends on the saturated

t respectively the device size in mm. Typically 
3-0.6 A·mm.
ratio between the transconductance gm and Ipk0

Ipk0 is an invariant measure of the sensitivity of the
tor current to the gate voltage.
 capacitance gate and drain nonlinear parameters
1 are connected with the current parameter P1. I. e 
milar way the capacitances are much more linear 
e nonlinear capacitance parameters are much

r in comparison with ordinary GaAs MESFET and 
s. This, together with the high breakdown voltage,
 these devices to be used in high voltage or high
ty amplifiers and mixers.

VII. CONCLUSIONS

eneral purpose large-signal modelling approach for
nd SiC was proposed, implemented in ADS and 

mentally evaluated. The model exhibits good 
cy, agreement and stable behaviour in HB 
tions.
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