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Abstract — Key issues in predistortion and feedforward 
linearisation solutions for future complex PA systems 
destined for a wide range of evolving advanced wireless 
systems are reviewed in this paper. In particular, digital 
techniques and adaptive schemes are discussed. 

I. INTRODUCTION

Signal integrity, together with low cost and low power 
consumption, is the bottleneck of wireless systems. In 
future, from a European perspective, the goal is to be 
‘always best connected and served’ (ABC & S) in a 
world populated by multiple overlapping heterogeneous
wireless access networks [1]. Wireless equipment will be 
supported by network and terminal dynamic 
reconfigurability capabilities (e.g. auto-installation of a 
new air interface based on software defined radio, SDR, 
platform) and application adaptability. Much of this 
functionality will be supported by a greatly increased 
intelligence at the network edge, especially in the mobile 
terminals.

The main focus on linearisation research is on the most 
intuitive techniques: predistortion and feedforward. Both 
approaches have the advantage of large bandwidth 
operation but, because they are open loop techniques, are 
sensitive to changes on the device behaviour over time, 
temperature drifts or, in general, change in any operating 
condition or even on the signal to be processed. Different 
digital and analogue solutions can be employed to control 
gain and phase, through specific feedback mechanisms, 
in order to improve distortion cancellation, in such a way 
that most of the solutions are, in fact, a hybrid 
combination of different techniques. The possibility of 
developing wideband advanced digital linearising 
structures, with feedback and adaptability attributes has 
become quite real. 

II. DEVELOPMENTS ON PREDISTORTION LINEARISERS

RF predistortion techniques potentially offer 
broadband linearisation. Nevertheless, the achieved 
linearity results depend on a large number of different 
issues. The successful application of predistortion 
techniques relies on the accuracy of the PA 
characterisation and the generation of an equivalent 
cancelling characteristic. Techniques include RF, 
intermediate frequency (IF), baseband (BB) digital (in 
both signal and data predistortion approaches) and 
analogue predistortion, e.g. [2-3]. Some interesting 
MMIC oriented RF predistortion have been discussed in 
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n regard to digital predistorters, most techniques 
ed in recent years are based on memoryless 
s for both the PA and the distorter. In many 
es, e.g. for narrowband signals, these can be 

ently good approximations. However PAs do 
st memory effects, PA-memory. In fact as the PA 
teristics will be dynamic in various ways (memory, 
l effects, aging, bias point), the use of fixed 

ryless predistortion will show reduced and 
cient cancellation performance under various 
ions. This PA-memory problem is growing in 
ence as power requirements and capability grow 

, as operating bandwidth requirements grow ever 
and bandwidth efficiency higher – the latter 

g to large instantaneous signal envelope crest 
  (i.e. wide dynamic power ranges, or peak to 
e power ratios, PAPR). This bandwidth efficiency, 
rough use of complex non-constant envelope 

ation schemes (NoCEM) which require highly 
transmission paths, competes with power 

ncy.
roaches to building memory into predistortion 
s are based on Volterra series, Wiener-
erstein models, memory polynomials or neural 
rks [e.g. 4-7]. Some of these PA-memory models 
omputationally efficient complex inverse functions 
rrently are mainly of academic interest. The model 
ed in [6], consisting in a relatively simple 
nd behavioural model that accommodates memory 
ll as nonlinear behaviour is regarded as quite 
ve. A memory polynomial model, e.g. presented in 
 a Nonlinear Tapped Delay Line (NTDL) digital 
torter, has proven to be effective for predistortion 
 PA under typical operating conditions [8].
ital signal predistortion the coefficients of the 

torter polynomial, which are related to the PA 
ion curves, are allocated in a look-up-table (LUT). 
mputed coefficients are used in the non-adaptive 
ch; their values are continuously adjusted in the 

ve case. There are current research activities aimed 
ducing computational time and memory 
ments for effective derivation of the LUT’s 
ients. Signal predistortion at IF or BB is preferred 

RF it being independent of the final transmit 
ncy band. Also robustness of circuits and systems 
pect of environmental parameters is inversely 
tional to frequency.  A drawback is the increasing 
ty requirements since the up-conversion process 
troduce additional distortion. The number of up- 
own- converters (or I&Q modulators) may be 



reduced for predistortion at IF; software radio techniques 
may be used (i.e., the so called “IF sampling”), this 
benefit being offset by the increasing bandwidth 
requirements of new standards.  For instance, the symbol 
rate specified in local multipoint distribution systems, 
LMDS, (IEEE 802.16) made questionable use of DSPs, 
as already some manufacturers are producing alternatives 
based on FPGAs.

Figure 1 shows the basic structure of BB adaptive 
signal predistorter. Based on the LUT approach three 
classifications are identified so far: mapping 
predistorters, polar predistorters and complex-gain based 
predistorters. 

In Mapping Predistortion (Fig.2) the complex input 
signal is decomposed into its real-valued components iin
+ jqin so as to consider both amplitude (AM-AM 
distortion) and phase (AM-PM distortion) aspects. These 
signal components are mapped to other complex 
predistorted signal components, iout and qout, i.e. iout +
jqout, where iout = iin + fi(iin, qin) and qout = qin + fq(iin, qin).
Consequently, two bidimensional tables are used. These 
will be large tables related to the product of the 
quantisation range in each dimension. Because the values 
of both bidimensional tables must to be adjusted, the 
convergence time may be considerably high. 

In Polar Predistortion (Fig.3) the input signal 
amplitude, Rin, is used to point and read a table whose 
output is a real predistortion factor, Rout = FR (Rin). This 
factor is then used to modify the original input signal 
amplitude and for selecting the corresponding 
predistortion angle, out = F (Rout) which is applied to the 
signal after the amplitude predistortion is applied. Both 
tables are one-dimensional, so the access time and the 
memory requirements are reduced in respect to the 
previous Mapping Predistortion.  

Complex Gain Predistortion (Fig.4) uses the power xm
of the source signal vm (xm = |vm|2) as an address to point 
to a unique table entry containing the complex values of 
a corresponding predistortion function F(xm). The output 
of this table is used to predistort vm by computing vd = vm
·F(xm). The technique uses 7 or more bits quantisation, 
needing 128 or more complex digital words to be 
allocated in memory. This is a significantly reduced table 
memory resource as compared with  Mapping 
Predistortion. As a consequence, convergence times, at 
start-up and for each adaptive cycle, are correspondingly 
reduced.

III. DEVELOPMENTS ON FEEDFORWARD LINEARISERS

Feedforward linearisers e.g. [2-3, 9] have reduced 
mathematical complexity in the control law design, and 
being an open loop structure in principle are 
unconditionally stable. Having fast time response makes 
them attractive and suitable for broadband applications 
(e.g. multicarrier modulations). The open loop nature 
also has limitations such as high sensitivity to loop 
maladjustments and device imperfections, which 
influence both PAE and the degree of linearity. 
Efficiency of feedforward linearisers depends on three 
main factors: loop imbalances, device losses and the kind 
of auxiliary amplifier, which is often also a power 
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espective loops within the lineariser structure) the 
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pects for correct feedforward design, and they may 
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ve monitoring and control scheme of a feedforward 
ier. Two feedback paths have been added to the 
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s the development of the theoretical support, 
include the effects of imbalances and imperfect 
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hms, e.g. [10]. Analogue implementations of 
ve loop controllers have been also proposed [11], 
lly based on analogue versions of the LMS 
hm. Reported IMD reductions (two tone tests) in 
rward amplifiers vary from 70dBc to 40dBc in 
base-stations, and ACPR reductions over 30dBc 
been obtained in EDGE modulations. A DSP-
lled feedforward system [12], closely related to the 
ue version of Fig. 5, is shown in Fig. 6. 
cients  and  are now controlled (adapted) by an 
hm implemented on a DSP. To do so, the signals 
ve(t) and vo(t) are downconverted from the RF 
n into BB or IF and digitised. If ADCs available 
fficient for IF operation, this allows avoidance of  
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y degrading IM suppression. In contrast to the 
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correlation in the digital domain and thus, the mentioned 
problems are reduced. Secondly, analogue 
implementation of the correction loop results in long time 
constants and thus in slow convergence due to the 
presence of the strong signal at the input of the correction 
loop, which really acts as a disturbance. This problem 
can be solved by the use of a digital filter, which 
suppresses the strong signal component from the sampled 
output vo(t).

 Further improvements in feedforward amplifiers have 
been achieved by shifting several analogue components 
to the digital regime. Fig. 7 shows a feedforward 
transmitter setup as proposed in [13]. Here the error loop 
is composed of a behavioural model of the main 
amplifier and a subtracter. On the one hand, as the 
calculation of the auxiliary amplifier input signal is 
decoupled from the main amplifier output signal vMA(t),
it can be evaluated in advance. Thus the time delay 
located after the main amplifier can be avoided. This fact 
leads to a significant improvement of the efficiency of 
the whole setup. On the other hand, a control algorithm is 
needed to parameterise and track the main amplifier 
model. This model information can further be used to 
predistort the main amplifier input signal and to reduce 
the distortion generated by this amplifier. Other 
improvements come from enhanced control algorithms. 
In the classical concept two separate loop controllers are 
used to balance the loops of a feedforward amplifier. 
Larose and Gannouchi [14] showed that further linearity 
improvements can be achieved by a 4-dimensional 
control algorithm which simultaneously tunes both loops 
in order to maximise the correlation between the input 
and the feedforward output signal. 

IV. CONCLUSION

Linearisation techniques play a key role for modern 
evolving advanced wireless transmitters from embedded 
mobile and handheld terminals, to base stations, HAPs 
and satellites. A key driver is competing requirements of 
improved signal fidelity and PA system PAE in contexts 
of single and multicarrier NoCEM air-interface modes to 
simultaneous multimode transmitter systems. Especially 
the ever-widening signal bandwidth is causing a lot of 
PA linearisation research efforts to be focussed on 
predistortion and feedforward linearization solutions. At 
present, solutions –these two and others– offer finite 
though modest linearity behavioural improvements. The 
level of benefit available is a function not just of the 
degree of linearization achieved but also of the air-
interface mode(s). Their adequacy depends on the 
context but they can help achieve linearity goals when 
working together with other options. Nevertheless, 
different practical PA problems –many of which have yet 
to be fully understood and characterised such memory 
effects, self-heating effects, interaction between non-
linearities and stability issues– reduce the potential 
performance. Development of lineariser adaptivity is the 
response to such problems. Realising such adaptivity 
effectively, robustly efficiently in modern designs of 
feedforward and predistortion linearization schemes is a 
significant research challenge and is as important for the 
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Fig. 2. Mapping Predistortion       Fig. 3. Polar Predistortion  Fig. 4. Complex-Gain Predistortion 

Fig. 5. Adaptive monitoring and 
control of a feedforward 
amplifier 

Fig. 6. DSP controlled adaptive 
feedforward amplifier 
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