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Abstract

We prove some Schauder type estimates and an invariant Harnack inequality
for a class of degenerate evolution operators of Kolmogorov type. We also prove a
Gaussian lower bound for the fundamental solution of the operator and a uniqueness
result for the Cauchy problem. The proof of the lower bound is obtained by solving
a suitable optimal control problem and using the invariant Harnack inequality.

1 Introduction

We consider second order operators of the non-divergence form

Po Po N
Lu = Z ;,j(2) 0,2, u + Z a;(2)0z,u + Z bi,j2i0z;u — Osu, (1.1)
ij=1 i=1 ij=1

where z = (z,t) € RN x R, 1 < po < N and the coeflicients a; ; and a; are bounded continuous functions.
The matrix B = (b; j)i j=1,..,n has real, constant entries, Ag(z) = (@i ;(2))i j=1,...,po i5 & symmetric and
positive, for every z € RV*1. In order to state our assumptions on the operator L, it is convenient to
introduce the analogous constant coefficients operator

Po N
Ku := Z aiyjaziz].u + Z bl-,jmiﬁg:ju — 8tu, (12)

ij=1 ij=1
with the constant matrix Ag = (ai,j)i,jzl,...,po symmetric and positive. Qur assumptions are:

H1 the operator K is hypoelliptic i.e. every distributional solution to Ku = f is a smooth classical
solution, whenever f is smooth,
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H2 There exists a positive constant A such that

ATHCP < {Ao(2)¢, €) < Al¢l?, V(ERP,Vz e RV (1.3)

H3 The coefficients a; ; and a; are bounded and Hélder continuous of exponent o < 1 (in the sense of
the Definition 1.1 below).

Some comments about our assumptions are in order. We first note that, in the case py = N and
B =0, conditions [H1]-[H2]-[H3] are verified by every uniformly parabolic operator in non-divergence
form, with Holder continuous coefficients (in that case, K is the heat operator). On the other hand,
several examples of degenerate operators (i.e. with pg < N) appear in kinetic theory and in finance.
Consider for instance the linear Fokker-Planck equation

atf - <’U, va:f) = divv<vvf + ’Uf),

where f is the density of particles at point € R™ with velocity v € R™ at time ¢ (see [9] and [29]). It
can be written in the form (1.1) by choosing py =n, N = 2n and

I, I,
B=(% %)

where I, is the identity n x n matrix. We also recall that in the Boltzmann-Landau equation

Ouf — (0, Vaf) = > Oy, (aij( )0, f)

ij=1

the coefficients a; ; depend on the unknown function through some integral expression (see, [19], [7] and
[20]). Equations of the form (1.1) arise in mathematical finance as well. More specifically, the following
linear equation

52055V + f(S)OuV — 0V =0, S,t>0,McR

with either f(S) = log(S) or f(S) = S, arises in the Black & Scholes theory when considering the
problem of the pricing Asian option (see [3]). Moreover, in the stochastic volatility model by Hobson &
Rogers, the price of an European option is given by a solution of the equation

1
50'2(5 — M)(0ssV — 0sV) + (S — M)ouV — 0,V =0,
for some positive continuous function o (see [15] and [10]). We refer to the paper by Di Francesco and

Pascucci [11] for an extensive survey of the financial motivations to the study of operators as above.

With the aim to discuss our assumptions and the regularity properties of the operators K, we intro-
1

duce some notations. Here and in the sequel, we will denote by A§ = (as;); =10 the unique positive

PR
Do X po matrix such that Aj - A5 = Ao, and by A and A the N x N matrices

(A O 1 AZ 0
(40) (4 e) ¥

Note that the operator K can be written as

Ppo

j=1



where
Po
Xi :Zaijaz_j, ’i:l,...7p07 Y = (x,BV)—Bt. (16)
j=1
V = (Ouy,---,0zy) and (-, ) are, respectively, the gradient and the inner product in RV.
The following statements are equivalent to hypothesis [H1]:

H; Ker(A2) does not contain non-trivial subspaces which are invariant for B;

H, there exists a basis of RV such that B has the form

% ok * B,
x k% *
where Bj is a matrix p;_1 X p; of rank p;, with
po=pr=...2pr =1, pot+pit...+p- =N,
while * are constant and arbitrary blocks;
Hjy if we set .
E(s) = exp(—sBT), C(t) = / E(s)AET (s)ds, (1.8)
0
then C(t) is positive, for every ¢ > 0;
H, the Hormarder condition is satisfied:
rank Lie (Xq,...,X,,,Y) =N +1, at every point of RN+, (1.9)

For the equivalence of the above conditions we refer to [17]. In the sequel, we assume that the basis of
RY is as in Hy, so that B has the form (1.7). Under the assumption [H1], Hérmarder constructed in
[16] the fundamental solution of K:

—7(47T)_% ex _ L —7)(z— —71)§),x — —71)§) — (t—7)tr
Tle,h67) = = p( 107 =)@ = Bt = 7)§).x — Bt = 7)) — (t =)t B),
(1.10)

ift>r7,and I'(z,t,&,7) =01if t < 7.

Since the works by Folland [13], Rotschild and Stein [30], Nagel, Stein and Wainger [25] concerning
operators satisfying the Hérmarder condition, it is known that the natural framework for the regularity
of that operators is the analysis on Lie groups. The first study of the group related to the operator
(1.2) has been done by Lanconelli and Polidoro in [17]. The group law is defined as follows: for every
(z,t), (£, 7) € RN we set

(,t)o (& 7) = (£ + E(r)z,t + 7), (1.11)
where E(7), is the matrix in (1.8). Let f € C(f), for some open set 2 € RN *1. We say that a function
u: ) — Ris a classical solution to Lu = f with if 0,,u, 0z, «,u(i,j = 1,...,po) and the Lie derivative

are continuous functions, and the equation Lu = f is satisfied at any point of 2.

3



We recall that T is invariant with respect to the translations defined in (1.11):

D(z,,&7) =T((€7) " o (2,8)) =T((€,7) 7" 0 (,1),0,0). (1.12)

Moreover, if (and only if) all the %-block in (1.7) are null, then K is homogeneous of degree two with
respect the family of following dilatations,

§(A) := (D), A?) = diag (Mpo, A2, ..., AT, NP (1.13)
(I, denotes the p; x p; identity matrix), i.e.
Kod(\) =M\ (6()\) oK), YA >0 (1.14)
(see Proposition 2.2 in [17]), and T is a §(A)-homogeneous function:
L(5(N\)z) = A79I(2), Vz e RVTI\ {0}, A >0,
where
Q:P0+3P1+a(27”+1)pr
Since

det(5(N)) = det (diag(Apy, N Ipg, - .., AT, L A2)) = AQF2) (1.15)

the number Q+2 is said homogeneous dimension of RN+ with respect to the dilation group (6(\))aso and
Q is said spatial homogeneous dimension of R with respect to (§(A\))xso. For every z = (z,t) € RVF!
we set

N
L 1
l2ll =l + 12, (1.16)
j=1
where ¢; are positive integers such that §(A\) = diag(A?,...,A%). It is easy to check that | - || is a

homogeneous function of degree 1 with respect the dilation §()\), i.e.
l6(N)z]] = Allz]]s for every A >0, and z € RVt (1.17)

Definition 1.1. Let o €]0,1]. We say that a function f : RN+l — R is Hélder continuous of exponent
a, in short f € C%, if there exists a positive constant ¢ such that

1£(2) = F(Ol < el oz, for every z,( € RVFL

The first main result of this paper is an uniform Harnack inequality for non-negative solution u of
Lu = 0. We consider a suitable bounded open subset S of RY, that will be specified at the beginning of
Section 5, and we define the unit cylinder as H(T) = Sx]0, T, for any positive T. Moreover, we set for
every (£,7) e RNTL R >0, § €]0,1], and a, 3,7 such that 0 < a < B < v < 1,

HR(§7 7, R2T) = (ga T) o 6(R) (H(T))a
H™={(z,t) € Hsr(&,7,TR?) : 7+ aR?T <t < 7 + BR?T},

H* ={(z,t) € Hsp(&,7,TR?) : T+ yR?*T <t <1+ R?>T}.
We have

Theorem 1.2. Assume that L satisfies conditions [H1]-[H2]-[H3]. Let «, 3,7 be such that 0 < o <
and 3+ % < < 1. Then there exist three positive constants M,d and T, with § < 1, depending only on
a, B,y and on the operator L, such that

supu < M inf u.
H- H+

for every positive solution u of Lu =0 in Hr(¢,7,TR?) and for any R €]0,1].
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The proof of Theorem 1.2 is based on a suitable adaptation of the method introduced by Krylov and
Safanov, also used by Fabes and Strook [12] in the study of uniformly parabolic operators. We recall
that a Harnack inequality for the positive solutions to Lu = 0 has been proved by Polidoro in [26], in the
case of homogeneous Kolmogorov operators, and by Morbidelli in [24] for non-homogeneous Kolmogorov
operators, by using mean value formulas. In [26] and [24] divergence form operators are considered,
under the assumption that the coefficients a; ; and the derivatives 0y, a;; are Holder continuous for
i,7 = 1,...,po. Moreover in [26] and [24] the coefficients a; do not appear in the operator L. We
acknowledge that the fact that the Krylov-Safanov-Fabes-Strook approach, combined with the parametrix
method, improves the Harnack inequality for operators with Hélder continuous coefficients was pointed
out by Bonfiglioli and Uguzzoni in [4].

In order to use the Krylov-Safanov-Fabes-Strook method, we prove a Schauder type estimate that
extends the analogous result proved by Manfredini in [23] for homogeneous operators (we refer to Section
3 for the definition of the function spaces and the norms appearing in the following statement).

Theorem 1.3. Let Q be a bounded open set, f € C3(2), and let u be a bounded function belonging to
C2r(Q) such that Lu = f in Q. Then u € C3T*(Q) and there exist a positive constant c, depending

loc

only on the constant A, on the Holder-norm of the coefficients of L and on the diameter of 2, such that

[t]24a,d,0 < c(sgp [ul + [fl2+a,d4,0)- (1.18)

We recall that optimal Schauder estimates for the Cauchy problem

Lu =0 in RV x]0, 77,
u(z,0) =¢@(r) zeRVN.

have been obtained by many authors in the framework of the semigroup theory. In Theorems 1.2 and
8.2 of [22] Lunardi proves an optimal Hoélder regularity result for the solution w to (1.19), under the
assumption that the initial data ¢ has Holder continuous derivatives d.,¢ and Oy, ¢, 4,7 = 1...po
It is also assumed that the matrix (a; ;) satisfies our Hypothesis [H2] and that the coefficients a; ; are
Holder continuous function of the space variable x that converge as |z| goes to +o0o. Lorenzi in [21]
improves the results by Lunardi in that the coefficients a; ; are not assumed to be bounded functions.
On the other hand, in [21] the coefficients a; ; have Hélder continuous derivatives up to third order and
the Lie Algebra related to the constant coefficient operator has step 2. Priola in [28] considers operator
with unbounded coefficients a;,7 = 1,...,po. We finally recall that in in [22] Lunardi states an interior
estimate for the Cauchy problem (1.19) with bounded continuous initial data ¢:

(1.19)

wt

[
||u(',t)||C§+°‘(RN) < tlT%H@Hcg(JRN), 0<a<l

Here C and w are suitable positive constants and the space C§ (R™) is defined in terms of a homogeneous
norm analogous to the norm used in our Definition 1.1 (see formula (1.16) in [22] for the details). In
order to compare the above estimate with our Theorem 1.3 we give a simple consequence of it.

Corollary 1.4. Let ¢ : RN — R be a bounded continuous function, and let u be the (unique) bounded
solution to the Cauchy problem (1.19). Then, for every positive T, there exists a constant cr, only
depending on T' and on the operator L, such that

Po
sup |u(zx,t) |+Z\/f sup |0y, u(z,t)| + Z t sup |0z, o;u(w,t)|+
zERN i1 zERN ij=1 zERN
a |u(z,t) |0z, u(x,t) — O, u(y, t)]
+t12 [ sup —+ su : :
ey @ =, 0)[J° Z ey @ =, 0)[° (1.20)
zF#Y zFY
Po
o |0z, o, u(2,t) — On, 2, uly, t)]
2 su ) ) <er su )|,
NP2 S e <er sup li(@)
7 Y



for every t €]0,T].

Our next main result is a pointwise lower bound of the fundamental solution of L satisfying conditions
[H1]-[H2]-[H3]. We recall that Morbidelli in [24], and Di Francesco and Pascucci in [11], prove the
existence of a fundamental solution I' of L by the Levi parametrix method and that I' satisfies the
pointwise estimate

[(2,¢) < ciT7(2,0), V2= (x,t),= (7)€ RN suchthat 0 <t —7 < T, (1.21)

where I'" is the fundamental solution of the operator
Po
K,=pY 0+ (z,BV) -0, (1.22)
i=1

w and T are any positive constants, u > A in [H2], c} is a positive constant only depending on u, T and
on the constants appearing in [H1]-[H2]-[H3]. Here we prove an analogous lower bound.

Theorem 1.5. Assume that L satisfies condition [H1]-[H2]-[H3]. Then there exist a positive constant
w such that, for every positive T, it holds

[(z,t) > cp I (w,t), VeeRY 0<t<T.

Here T'~ is the fundamental solution of the operator K, in (1.22), p and ¢ are two positive constants
depending on L, n < A™" and c; also depends on T.

In order to state our last result, we recall that Di Francesco and Pascucci prove in [11] a Tychonoff-
type uniqueness result: the Cauchy problem (1.19) has a unique solution u satisfying the growth condition

T
// lu(z, t)|e" 1 dz dt < +o0, (1.23)
0 RN

for some positive C' (see Theorem 1.6 in [11]). Here we prove a Widder-type uniqueness theorem

Theorem 1.6. Assume that L satisfied condition [H1]-[H2]-[H3], and let u,v be two solution of the
Cauchy problem (1.19). If both u and v are non negative, then u = v in RN x [0,T].

This paper is organized as follows. In Section 2 we recall some known facts about Kolmogorov
operators and we give some preliminary results. Specifically, we prove some accurate bounds of the
fundamental solution of K and of its derivatives, then we prove a representation formula for the derivatives
of the solutions to Lu = f, in terms of the function f. In Section 3 we prove the Schauder type estimates
stated in Theorem 1.3. In Section 4 we consider the Dirichlet problem related to the cylinder Hg (€, 7, R?),
and we give some pointwise lower bound of the relevant Green function. That lower bound is the key
point of the Krylov-Safanov-Fabes-Strook method for the Harnack inequality and is a direct consequence
of some pointwise estimates provided by the parametrix method (see Remark 2.3 in Section 2). Then,
in Section 5 we give the proof of Theorem 1.2. In Section 6 we prove a non-local Harnack inequality by
using repeatedly the invariant (local) Harnack inequality stated in Theorem 1.2 and a method introduced
in a recent work by Boscain and Polidoro [6], that is based on the optimal control theory (see Theorem
6.1). We finally give the proof of Theorem 1.5 and Theorem 1.6.



2 Some known and preliminary results

We first discuss some geometric features of the Lie group (RV*1 o), and the related dilations §(\). Then
we recall some know results about the constant coefficients Kolmogorov-Fokker-Planck operators K.

Remark 2.1. Decompose the matriz E defined in (1.8) according to (1.7):

Eo,o(s) onl(s) PPN EO”«(S)
E.o(s) Epi(s) ... E,.(s)

From condition Hy it follows that Eyo(s) = Ip, + $00,0(s),

—s)J .
E;o(s) :(j')(lpj +50;;(s))B] ...Bf,  j=1,....r

_S ]_k . .
Ej x(s) :((j_)k)!(lpj +st,j(s))B§-F...B,{, j=1...r k=1,...,j

and E; ,(s) = sO0;x(s), for k > j. Here O, denotes a p; X py matriz whose coefficients continuously
depend on s.

Remark 2.2. From the above remark it follows that, for every positive T there exists a C > 1 such that
l=7H < Crllzll,  lICo2ll < Cr(llzl + €I, (2.2)

for every z € RN x[~T,T] and ¢ € RNt As a consequence, for any M €]0, C;2[ and z,{ € RN x[-T, T,
we have

1-MC3
1Kl < Mlzl| = TTHZH < |lzo¢ll < Cr(1 + M)]|z]]. (2.3)
We finally note that
1€, )7 o ()]l < Cr(ll(z, Ol + 1€, ) (2.4)

for every (§,7), (x,t) such that |t — 7| < T and that the constant Cr can be chosen arbitrarily close to 1
provided that T is sufficiently small.

For every operator K of the form (1.2), we define the homogeneous operator Ky by setting

Po
Kou = Z ;,j0z,;u + You, Yo = (Bo, V) — 0 (2.5)
ij=1
where
0 By 0 0
0 0 By 0
By=|: & i (2:6)
0 0 o --- B,
0 0 o --- 0

It is known that the corresponding matrices Ey, Cy and C ! satisfy

Fal¥%s) = DVE9D3). o) =D (5 ) Ga0n (§)+ 6100 = D (000 21)
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for any s,t € R and A > 0 (see Remark 2.1 and Proposition 2.3 in [17]). Moreover, for every given T' > 0,
there exists a positive constant c¢r such that

HD (2) (C(t) — Colt)) D Q;) H < ert [ICo(D)] .
[P (e - 5 ) DA < et e )

for every t €]0,T], and

(Co(t)x, ) (1 — ert)
(Cy ' (ty,y) (1 — ert)

() (Co(t)z, z) (1 + crt),

x,x)
(€ W)y,y) < (Co ' By, y) (1 + ert);

= (2.9)
> |

<
<

for every z,y € R t €]0,T] (see Lemma 3.3 in [17]). As a direct consequence, there exist two positive
constants ¢/, ¢/ such that
ptQ(1 — ept) < det C(t) < (1 + ert), (2.10)

for every (z,t) € RY x]0,T] such that t < é (see formula (3.14) in [17]).

In order to give a preliminary estimate useful in the proof of the Harnack inequality, we next recall
the parametrix method, used in [24] and [11]. For any given zy we consider the frozen operator

Po
K= ) ai;(20)0i + (&, BV) = &, (2.11)

i,j=1
we denote by I',, its fundamental solution and we define the parametriz as

Z(z,¢) = T'¢(2,0). (2.12)
We also recall (1.10), so that the fundamental solution of (1.22) with singularity at the origin, is

(4mp)~ % L5 5 ! I, O T
Fu(z,t) = ——=exp| — —(C " (t)z,z) —ttrB ), Ct)y=[ E(s)| r° E* (s)ds.
detC~(t) < dp ) /0 < 0 0 >
(2.13)

We look for the fundamental solution I" of L as a function in the form

['(z,¢) = Z(2,¢) + J(z), (2.14)

where J is an unknown function which is determined by the requirement that LT'(z,{) = 0, for z # .
Let I', and FX denote, respectively, the fundamental solution of the operators K 1 and K defined in
(1.22) (A is the constant in hypothesis [H2]). Then the following inequalities hold:

AT (2,0) < 2(2,0) < ANTE(2,0) V2, e RNTL (2.15)

Moreover, consider any u > A and denote by I't the fundamental solution of the operator defined in
(1.22). Then, for any positive T, there exists a positive constant C, depending on T, 4 and on the matrix
B, such that

[J(2,Q)l < C(t—7)2T*(z,0), (2.16)

for every x,& € RN and ¢, 7 with 0 <t — 7 < T (see [11], Corollary 4.4). Thus, from (2.13), (2.15) and
(2.16), it follows that the fundamental solution I' satisfies the estimate (1.21). We point out that (2.15)
and (2.16) also give a lower bound that will be used in the proof of the Harnack inequality.



Remark 2.3. From (2.15) and (2.16), it follows that
D(2,0) 2 A"V TR (2,¢) = C(t=7) 5T (2,0)
for every z = (x,t),( = (£,7) € RNt such that 0 <t —7 < T.

We finally recall the usual property of the fundamental solution
I(x,t) = / D(x,t,y,s)T(y,s)dy, for every s €]0,¢], (2.17)
RN

and some pointwise bounds of I' and of its derivatives that have been proved by Di Francesco and Pascucci
(see Proposition 3.5 in [11]). For every T' > 0 and for any k € N, there exists a positive ¢, depending on

T,A, )\ k, and B, such that, if we set n = D (\/%) (x — E(t — 7)&), then we have

k
(1+ ) ° T(2,t,€,7) < e, TF (2, t, &, 1),

(1+|n\2)§|3wiF(x,t,§,T)\ <c w fori=1,...,po
(1+ |,7|2)g 100, 2,0 (w,8,6,7)| < cx W, fori,j=1,...,p0 219
(14 ) 1,6, 7)) < b 8et)
We consider the operator K defined as
Ky =\? (5@) oK o 5(1)) , A €)0,1], (2.19)

and we prove some uniform-in-\ estimates of its fundamental solution, and of its derivatives. Then we
prove a representation formula for u € C§° solution of Ku = g.

We first remark that, K is homogeneous (i.e. K satisfy condition (1.14)) if, and only if, K = K, for
every A > 0. In order to explicitly write K and its fundamental solution, we note that, if

Bo,o B, 0 s 0
B By By 0
B=| : AR
Brfl,O B'r‘fl,l Br71,2 e B'r
B’I‘,O Br,l Br,2 T Br,r
Po
where B; ; are the p; x p; blocks denoted by “«” in (1.7), then Ky = Z ;jOz,z; + Y, where Yy =
i,j=1
(x, B\V) — 0;, and
A By o B; 0 e 0
MNBi o A Bi 4 Bs e 0
By = : : : : (2.20)
)\QTB’rfl,O >\2T_2Br71,1 )\27“_437‘71,2 Br
)\2T+QBT)0 )\QTBT,I /\27"—2BT)2 .. )\2Br,r



The fundamental solution I'y of K reads

L B (“ e —ttr(B if ¢
F)\ (x,t,0,0) = \/det Cx(t) xp ( 4<CA ( )%x) r( )\)) ! o 07 (221)
0 ift <0,
with
/ Ao O
E\(s) = exp(—sB]), Cx(t) = /E)\(s) ( 00 0> E¥(s)ds. (2.22)
0
The translation group “o,” related to K is
(z,t) ox (&,7) = (€ + Ex(T)a,t +7),  (x,1),(£,7) € RV (2.23)
We remark that
S(N)(Coxz) = (6(N)¢) o (6(N)2), Vz,¢ € RV and A > 0. (2.24)

The above identity is a direct consequence of the following result, which relates the matrices E\, C) and
C;l with the dilations.

Lemma 2.4. For every t,R > 0, A €]0,1], we have

Ex(Xt) = DER(t)D (A7) (2.25)
DNCr(t)D(N) = Cx (A*1), (2.26)
D (AT CRH D (A7) =i (N*1) (2.27)

Proof. We use the Taylor expansion of Er(t) and the fact that D(A)BED (1) = A2B%. We have
A

- =D e
DD (1) = 00y (X SR ) () -
k=0
= Gl T —1\\k - (=t)* (1o pr\F 2
Z k! (D()‘>BRD(/\ )) :Z ] ()\ B%) ZE%()\ t)
k=0 k=0

This proves (2.25). We next consider (2.26). We have
D(\)Cr(t)D(N) :D(A)</O ER(s)AEﬁ(s)ds)D(A) =
22 /t D(N)EgR(s)D (A\™') AD (\™') Eg(s)" D(N)ds =
0

(by (2.25))

A%t

t
/ Eg(\s)AEL (\29)\2ds = [ By (r)AEL(r)dr = Cp (\2).
0 A A

0

The proof of (2.27) is an immediate consequence of (2.26). O
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The following inequalities analogous to (2.8) and (2.9) hold: for every T' > 0, there exists a positive

constant ¢y such that
1 (5:) @0 - p ()] <ernt leatu o
|/ (€57 (1) - €57 (0) PV < erat iz )| |
for every ¢ €]0,T]. Moreover

(Co(t)x,x) (1 — e At)
(Co ' (1)y.y) (1= erht)
for every x,y € RVt €]0, T]. We omit the proof since it follows the same lines of the proof of (2.8) and

(2.9), respectively, and relies on the application of the identities stated in Lemma 2.4. In the sequel we
shall need the following result, that is an improvement of the estimate (2.10).

Az, z) < () >(1+CTM)

(¢
(Cx M 0y, y) < (Co ' (DY, y) (1 + erAt); (2.29)

<
<

Lemma 2.5. For every positive T, there exists a constant cp > 0 such that

\det Cy(£) — det Co (t))|
det CO (t)

< CT/\t7

for every t €]0,T] and for any A €]0,1].
Proof. We first note that, from (2.7) and (1.13) it follows that
det Co(t) = det D(V/t) det Co(1) det D(v/t), and det D(s) = s,

then we have

det Cx(t) — det Co(t) det Cx(t) — det Co(t)

det Co(t)  1QdetCo(1)
det D ( ) (det C(t) — det Co(t)) det D (%)
det Co(1) N
det (D (ﬁ) Ca(t)D (%)) — det Co(1)
det Co(1)

We recall that, if A and B are two n x n matrix with ||A|| < M and ||B|| < M, then |det A—det B| <
C(n,M)||A — Bj||, for some positive constant C(n, M) only depending on n and M. The first inequality

in (2.28) implies that
o (3)e0n ()

for some positive constant M only depending on 71" and on the matrix B, as a consequence we have

<M

det (D (&) (0D (%)) = detco(1)| _ OV, M) HD( 1 )(cm ( )H

detCO(l) - detCo(l) \/E

The thesis then follows from the first inequality in (2.28).
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Proposition 2.6. For every R €]0,1], and any z € RN 2 £ 0, we have

Th (5(}1%)(:3@) — ROT(z,1) (2.30)
0:,Tr <5(11%)(x,t)> = R9T19, I'(x,t), Yi=1,...,po. (2.31)
Proof. The explicit expression of I'g is
T (DR (1)) = (4m) % exp <<D(R1)C;(m2)D(RI)x,x>> exp (—tR~*trBp).
detCr(3)

From (2.27) we get

moreover, from (2.26) it follows that
det (Cr(tR™%)) = det (D(R™")) det (D(R)Cr(tR™?)D(R)) det (D(R™")) = R™?det(C(t)).
The thesis then follows from the fact that trBr = R?*trB. The proof of (2.31) is analogous. O

Proposition 2.7. Let I be a fundamental solution of Ku = 0. For every T > 0 there exists a positive
constant Cl. such that:

cr
I'(z,w) < m, (2.32)
|02, T (2, w)| < IvfliillQ“’ j=1,...po, (2.33)
|0z,2,T(z,w)| < Iw_liincm, i,j=1,...p0, (2.34)
YT (z,w) < Cr (2.35)

T lwmt o z]|9F2

for every z,w € RN x [T, T]. Moreover, if M is as in Remark 2.2, then there exists a positive constant
C. such that

Iz o 2|

IU(z,w) —T'(z,w)] <C7 o To 2@’ (2.36)
_ [ :
‘@cjr(zaw) - awjr(zaw” <C7 m, J=1,...po, (2.37)
—1 -

. O Tz w)| <cp o2l i=1,... 2.38
|02,2, T (2, w) = 0,0, T(2,w)| <CF fwTo[@5 i,j=1,...p0, (2.38)
—1 —

YT(z.w) — YT(z,w)| <t —1Z 27l 2.39
T

lw=1 o 2|9+

for every z, zZ,w € RN x [T, T] such that ||z~ o 2| < M|lw™! o 2.
The proof is postponed at the end of this section.

In the sequel we will consider the analogous of the operators K with non-constant coeflicients a;;:
9 1
Ly=X[6(AN)oLod 3 (2.40)
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If (a;;) is the matrix of the coefficients of the second order part of L, then the coefficients of Ly are
(@x)ij(2) = a;j(6(X)(2)). As a direct consequence of (2.24), it is possible to relate the module of continuity
of the (ax);;’s with the module of continuity of the a;;’s, as the following remark states

Remark 2.8. If the coefficients a;; of L are Hélder continuous in the sense of Definition 1.1, then the

coefficients (ay)q; of Lx are Hélder continuous with respect to the translation group oy. Indeed, we have

[(@x)ij(2) = (ax)i;(Q)] = lai; (6(N)(2)) = as; (SN )] < c[6N(C) T 0 8N ()| = e A*[[C™F ox 2|

Proposition 2.9. For every T' > 0 there exist two positive constants p and ¢, with p > A depending
only on T, on the matrix B and on A, such that

[T (z,t) — Do(x,t)| < Al (w, 1), Vo e RN tclo,T] (2.41)

A
|05, Ta(z,t) — 0y, To(z, )| < cﬁf‘g(a@t), Ve eRN t€)0,T,i=1,...,po (2.42)

In (2.41) and in (2.42), To denotes the fundamental solution of Ko defined in (2.5), and T'¢ is the
fundamental solution of

Po
K§ =p> 07+ (x,ByV) — 0.
=1

Proof. From the explicit expression of I'y and Iy, and from the second inequality (2.29), we get

1
’ \/detC (t) \/det(,’o (t)

ITx(z,t) = To(z,t)] < en e~ #(Co " Mmm)(1—edt)

CN
4+
detCo (t)

As a direct consequence of Lemma 2.5 we have that there exist a constant ¢ such that

67%< (t)a: z)(1—ceAt) e %(C&l(t)z,z)

’ 1 B 1 ‘ < cT
VdetCy(t)  +/detCo(t) detCo(t)

We next fix a positive Ty such that Toer < 1. We recall (2.13), and note that it is possible to choose
p such that the function T'd satisfies

(2.43)

1

1 ety (1—crt) N
e 1 <c F z,t for every (z,t) € R™ x]0,Tp|,
dotCo (D) oI'g (2,1), y (z,1) 10, To|

for some positive constant ¢y depending on Tj, u, and on the matrix B. On the other hand we have

2
‘1 _emerdi(Cyt (e | <

1
Colt)e, z) < )\T’D () x
(Co (D), ) < e i
by the mean value theorem and (2.7). Thus, from (2.18), it follows that

|1 - e emtoert| ___omHE 0 < AT (a,1),
detCO(t)

for some positive constant ¢;. Summarizing the above inequalities we finally find that there exists a
positive constant co such that
ITx(z,t) — To(z,t)| < coATF (2,t)
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for any € RN and 0 < t < Ty. This concludes the proof in the case that Tep < 1. If Tep > 1, we use
repeatedly the identity (2.17) and we conclude the proof after a finite number of iteration.
In order to prove (2.42), we claim that:

~1 —1 A 1
(€0 -G oyl < e D () o (2.44)
for every i = 1,...,pg. We first observe that
(C5(0) = €5 )] = | (DWVAES (1) =G5 (LD D))
Thanks to (2.28) and (2.7), we have
IDWVDIET (1) = G IDWVA = Sup (DWVHICY () = € (DID(VE)v, )| =
= sup (671 = C3 01D WA, DY) <
<ther ‘S?:pl (Cy (1) D(Vt)v, D(Vt)v)| =
= ther sup [(C5 (1, )] < TAerlGg (D)
This implies (2.44). The thesis follows from the same argument as above. We omit the details. O

Lemma 2.10. Let T' and Ty be the fundamental solution of K and K, respectively. Then for every
i,7=1,...,p9, we have

/ 0, I(2)vjdo(z) — / 02, To($)v;do(C), ase— 0" (2.45)
llzll=e licli=1

where v; is the j-th component of the outer normal to the surface {¢ € RNt ||¢|| = 1}.

Proof. By the change of variable { = ¢ (%) z, we have

[ aremdt) = [ 0.r(E0= vdo(c)
lIzll=¢ Icl=1

(by (231)) = / 00T () (C).

i<l=1

Then,

[ remdn) = [ 0 ToOniae(c)

z||=¢ ¢l|=1
< /| o Te(Q) = Lol ()
=1
F+
(by (2.42)) < cs/ 0 (6:7) vido(§,7) < cie
lEeni=1 VT

for some positive constant ¢; only depending on the operator K. This concludes the proof. O
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In order to prove a representation formula for the second order derivatives of a solution u to Ku =
we consider a function n € C®°(R¥*1) such that 0 <n < 1, n(z) = 1if ||z > 1 and n(z) = 0 if ||2|| <
For every € > 0 we set

g,
1
5

ne(z) =n(6(1/e)2), (2.46)

and we note that there exists a positive constant ¢, only depending on 7, such that

_ _ & _
|0z, (w ! oz)| < -, |6wiwj77€(w ! oz)| < 22’ 1Y (w ! oz)| < (2.47)

¢
g2’

[N

for every z,w € RN*1 4, j =1,... py and € €]0,1]. Besides 0,,n-(w™ 02) = 0,05,4,m(w ' 02) = 0 and
Yn.(w™! o z) =0 whenever |w™'oz|| <.

Proposition 2.11. Let u € Co(RNT) be such that u, 0y, u,0p,z,u and Yu belong to C*(RN*L) for
i,j=1,...,p0, and let denote g = Ku. Then, for every z € RNt for every i,j =1,...,po, we have

Og,z;u(z) = — lim Oz, T (2, w)g(w)dw — g(z)/ 02, T0(¢)v;do(C) (2.48)

€20 w10z 2e li¢l=1

where I' and I'y denote respectively the fundamental solution of K and Ky, and v; is the j-th component
of the outer normal to the surface {¢ € RN*L ||| = 1}.

Proof. For convenience, we set z = (x,t), w = (y,s), ( = (£, 7). From the very definition of fundamental
solution, we have that

u) = [ T wgw)de, L e RNH
RN+1

for every u € C§°(RN*1). By our assumptions on u we have g € C*(RN*1), then a standard den-
sity argument extends the above identity to any function u such that u, 0y, u, 0z,+;u and Yu belong to
Co(RN*1). We next prove that

Op,u(z) = — /RN+1 0z, T'(z, w)g(w)dw, i=1,...,p0. (2.49)

If 7. is the function defined in (2.46), we set

ue(z) = — /RN+1 ne(w™t o 2)T(w™t 0 2)g(w)dw.

By using (2.32), we get

1
I'(w™t o 2)dw < Chl|gl| / ——dw
4 e Jlw—loz||<e ”wil o zHQ

ue(2) — u(2)] < llglloo /

lw=toz||<e
(by the change of variable ¢ = §(1)(w™! o z), note that det E.(7) = e TirB)

Q+2,—<2rtrB dC
13 e

=Chllg / —————d( < C%E?||g| / —.

T < €9lCle 7 < liCl@

Then u. uniformly converges to u, as ¢ — 0. Note that, for every ¢ = 1,...,pg, we have

nuee) = [ (Gunetw ol 02) 4 (w0200, 02) gl
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so that, by using (2.47) and (2.33), we find

()= [ 0@ o hgtwydn| <ol [ o o)t

wloz||<e

C _
Hlgllo / T o 2)dw < ¢ gllocc
€ Je<|lwtoz|<e

for a positive constant ¢; only depending on K. This proves that 0,,u. uniformly converges to the right
hand side of (2.49), then (2.49) holds.
In order to conclude the proof, we set

ve(2) = —/ Ne(w™t 0 2)0,,T(w™" o 2)g(w)dw.
RN+1
Since n.(w=! o z) =1 in the set {w € R¥*1: |w™ o 2| > €}, we have

Oz,v:(2) = —/ Oy, T(w ™" 0 2)g(w)dw
lw=toz||>e

/” e 3mj [T]s(w71 I z)amir(w*I 0 2)|g(w)dw = —I (e, 2) — Ix(¢, 2)

for every j =1,...,po. We next show that I; (e, 2) uniformly converges on any compact subset of RV+1
as ¢ — 0%, For every 0 < &’ < ¢”, we have

L 2)— (" 2) = / Brie, T(w ™ 0 2)(g(w) — g(2))duw
e’ <|lwtoz||<e”

—|—g(z)/ awizjf(ufl oz)dw = I1(e',€",2) + g(2) I (¢',€")
e/<Jlwtoz||[<e”
Since g € C*(RN*1), and (2.34) holds, we find

dw / 1 /
o To @z = crle” — €%,

(" 2| < cc/T/

&' <lw=Toz||<e”

For some positive constant ¢/ that does not depend on z. This proves the uniform convergence of I (e, -)
as e — 0.

Aiming to prove the uniform convergence of 7, we first recall the following identity, that has been
used in [10]:

N
0z, T(w,t,y,5) = — > _ 0y, T(w,t,y,5)E¥ (s —t). (2.50)
k=1
We have
N .
/ 3zjij(w71 oz)dw = — Z/ Opiy D(w ™t 0 2) EM (s — t)dw
e/ <[lw=toz||<e” k=1 & Sllw=toz||<e”

(by the divergence Theorem)

N N
= Oy, T(w™t 0 2)EM (s — t)vjdo(w) — Op, T(w™t 0 2) EM (s — t)vjdo(w
D[y P 0B = o) =3 (w1 0 2) M (s  tdou)

i1 lw=toz|=e”
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(by the change of variable ¢ = §(%)(w™! o 2) in the first integral and ¢ = 6(57)(w™" o 2) in the second
one, and then by using (2.31))

—Z 0e, T (C) BN (—(¢/)2r)e™ VT By, do(w) — Oe, T () EM (—(")27)e™ V™ B o (¢)
llcli=1 llgli=1

N
=3 [ BT (B @ e e o)
k— 1

+Z/<| X ( (€) — O, 5"<<)>Ekj(_(81/)27')6_(E”)ZTtrBl/de'(C) = Ji(e, ") + Jo(e, 7).

Since F(s) smoothly depend on s, there exists a positive constant ¢ suc that

’Ekj(7(6//)27_)67(5")27"51"B _ Ekj(7(€/)27_)67(6')2‘rtr3 < CB|5H o 6/|

for every 7 €]0, 1], then (2.33) yields |J1(¢’,&"”)| < c|e” — £’|, for some positive constant ¢. On the other
hand, by using again (2.33), we find

Z/Cl -1 (afer ) 8&1_‘5’ (C)) Z/jdo'(c)7 as &’ — 0.

Hence (2.42) and the above argument implies that I; (e, - ) uniformly converges as ¢ — 0.
We next consider I3 (e, z).

Bz = [ Gl oI o) (g(w) gl

#E) [ Gl 02w 02w = L 2) +9(IA )

‘We have
I (, 2)] S/ ” | |0, me (w0 2)[|0, T (w ™" 0 2)[|g(w) — g(2)|dw
Elw—toz||<e

4 / D™ 0 )[04, D(w ™ 0 2)||g(w) — g(2)|dw.
[[w=1loz||<e

Using the fact that g € C*(RN+1), (2.33) and (2.34) as before, we easily find that |I,(e, 2)| < ce®, for
some positive constant ¢ only depending on K. Moreover, by using the divergence Theorem, we get

I (e) = / n-(w™ 0 2)0, T(w™" 0 2)vjdo(w) = / 0y, T(w™" 0 2)v; do(w),
lw=toz||=¢ lw=toz||=¢

thus, Lemma 2.10, gives

I, (e) — /<| ) 0, To(¢)v;do(Q), as e — 0.
This proves that
Gove2) =ty [ B T 0 g —g(2) /| L, T
This completes the proof, since v.(z) converges to d;,u(z) as € — 0. O
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Proof of Proposition 2.7. We first recall a result from [8]: for every T' > 0 there exists a positive constant

C'r such that:
Cr

D0 ferose

Inequality (2.32) is a plain consequence of the above bound (with A = 1).
In order to prove (2.33), (2.34) and (2.35) we set ¢ = (£,7) = w™ ! o z, so that I'(z,w) = T'(£, 7).
Then

Vz,¢ € RN x [T, T] and A €]0,1]. (2.51)

0, T(E7) =~ 5 (C'(7)E), T(Em) for j =1, N,
) . (2.52)
zzzJ (57 ) (4 (C_I(T)g)Z (C_l(T)g)j - ZC_l(T)i,j) P(fvT) for Za] = 11 ey N.
We next claim that
¢! <= Ip(tye forj=1,....N,
(08| < [P fors .

— Co L.
i 1(T)i,j‘§qu fori,j=1,...,N,
T 2

for every (£, 7) € RY x [0, T, where the g;’s are as in the definition of the norm (1.16), and the constant
co only depends on T and on the matrix B. Indeed,

(€ 06),] <|(e ) - @) &), |+ |(e ) | =
7| (PR e )~ ) DA |
ﬁ\(D(ﬁ)%l(ﬂD(ﬁ)D(%)g)jj <
=7 P (€710) =€) DA - [P(2)¢] + s 0D(G= )¢

by (2.7). From (2.8) it then follows that

(e )| < o e il [Poe]

This proves the first assertion in (2.53). The proof of the second one is analogous, it is sufficient to note
that
C71(7‘)i7j:<C71(T)6i,€j>7 i,jil,...,N,

where e; denotes the j—th vector of the canonical basis of RY. By the homogeneity of the norm, we also
have that

leni=|(pompen)|=vr (P per) | sava(lppd 1) e
for a constant ¢; only dependent on B. This inequality, together with the first one in (2.53), gives
el | e e, | < eaf|pig2e+1)" L a1 (255)

for some positive constant ¢y, then, by (2.18), we find

”(gaT)”qj |8I]F(£7T)’ < C3 F+(£7T)7 ]

1,...,N, (2.56)
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and inequality (2.33) directly follows from (2.51). The same argument leads to the following inequality
(& D199 |80, T(E,7)| < ca TT(E, 7), i,j=1,...,N, (2.57)

which gives (2.34). The bound (2.35) is a straightforward consequence of (2.34) and of the fact that I is
a solution to Ku = 0.

Before proceeding with the second set of inequalities, we state a further result that will needed in
the sequel

||(£ T)||qi+qj+qm T x]zm , i,j,m: ].,...,N,

)| <e
H 5 7-)||ql—‘qu—"_qm—i_qn |aa: a:JJ:m:vn } S F+ 57 ) 7;7j,man = 17 e 7N7

(2.58)

for some positive constants cg, cg. We omit the proof, since it is analogous to the previous one.

-1

We are now concerned with the proof of (2.36). As before, we set (£,7) =w toz, (n,0) =210z,

and we recall that M is as in Remark 2.2. We have

F(§>7—) - F((ﬁ,T) © (7770)) = F(&T) - F((&T) © (0’ U))+

N (2.59)
YI((§7) 0 (0,010)) + 3000, T (6, 7) © (021, ),

for some 61,02 €]0,1[. Note that [|(0,010)| < ||(n,0)]|, and that ||(f2n, )] < ||(n,0)|l, so that both the
inequalities [|(0,610)| < M||(&,7)||, and ||(62n, 0)|| < M||(§, )| hold true. Then, by (2.3),

1-MC? 1—-MC?
1€, 7) 0 (0,610)]] = —Z—=ME D, 1€ 7) 0 (Bams o)l = —F—I(E)]- (2.60)
T T
Thus, we obtain from (2.56) that
N
anﬁafgr((fv T) © (927)’ <c3 Z |77] 7 (02777 U)||7qu+ ((5’ T) © (9277’ U)) <
i=1
csz 102 0)1% - 1€, 7) o (Bam, o) |97 (€. 7) 0 (B, o)) < (261)
oo
Tlie, e+t
by (2.51) and (2.60). Analogously, we obtain from (2.35) and (2.60)
Crlo| y (o)l
oYT'((&, (0,6010))] < < , 2.62
L&) OO < Emye G amTee = 4 e nen 202

By substituting (2.61) and (2.62) in (2.59), we obtain (2.36).
The proof of (2.37) is analogous: for any j = 1,...,py we have

N
L& 7) =02, T((€,7) 0 (n,0)) = 0 Y0, T((§,7) 0 (0,610)) + Y 10, T((€,7) © (Bam, 0)),  (2.63)
=1

for some 61,65 €]0,1[. In order to estimate the first term in the right hand side we rely on the very
definition of the commutator of 9., and Y and on the fact that I' is a solution to Ku = 0: we find

Y0, T (x,t) Z W50z, (2, 1) ijkamkr(x t),  ¥(z,t) #(0,0). (2.64)

i,m=1 k=1
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Recall that B has the form (1.7), and j < pg, then b, = 0 for every k > py + p1. Hence, it follows from
the firs set of inequalities in (2.53) that

Po+p1

= > bjx0s,T(x,t)

k=1

Z bj kﬁtkl“(x t

k=1

<d) (t 1/2 4 4= 3/2) ‘D ‘Fxt

where the constant ¢, only depend on T and B. Thus, by (2.54) and (2.18), we obtain

C///
i k0, D ((€,7) © (0, 910))‘ < - It ((£,7)0(0,610)). (2.65)
= I6.7) 0 (0.610)]"
The above inequality, the first line in (2.58), and (2.60) then give
|o| " ()l

|oY0,,T((&,7) 0 (0,610))| < cf” (2.66)

<c
1(6,7) 0 0,60 = |l (€,7) 0 (0,107

for a positive constant ¢/// depending on T', B and A in [H2]. The last sum in (2.63) can be estimate as
(2.61), by using the first set of inequalities in (2.58). We find

- 1.0
an8$i$jr((£77)o(92n70)) — C{Z/“”( n’)HQ+27

which, together with (2.66), gives (2.37).
The same argument gives the proof of (2.38): in this case we have to use the second set of inequalities
in (2.58) and the analogous of (2.64):

N
YaaciT] Z Am.n 'r 'rjxmrn 1: t Z 7, k‘aTkT7 X t) + b1 kamk./] (:C,t)) )

m,n=1 k=1

For all (z,t) # (0,0). We omit the other details.
Finally, as in the proof of (2.35), we simply note that (2.39) is an immediate consequence of the fact
that I is a solution to Ku = 0. O

3 Schauder estimates
Let 2 be an open subset of R¥*1 and a €]0,1]. We will say that f € C%(Q) if

1/ (2) = F(O)]

fag—supf—ksup 3.1
floa =5l 508 T To e >y
2#C
is finite. Note that | - |4, is a norm and that
|fg|oz,Q S 2 |f|a,Q |g|a,Qa (32)
for every f,g € C%(Q)). We say that f € C?T(Q) if
|f‘2+a,ﬂ = TiT; f|a,Q + ‘Yf|a,ﬂ < Q. (33)
i=1 ij=1
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Moreover, we say that f is locally Holder-continuous function, and we write f € C2.(Q) if f € C*()
for every compact subset Q' of ). For every z,( € ), we set

dz ¢ = min{d:, dc}, d: = inf [t oz,

We say that a function f: Q — R belongs to C§(), if

[f(z) = f(Q)]
o,d,Q = bu + sup df S, 34
|f| d,Q = p|f| zgepg ¢ ||<—,10Z||a ( )
¢
is finite. We also consider the following norm:
[fl2ta.a.0 =supdZ| f(2)| + sup dQMM
z€Q z,Z€0Q HZ o ZHa
and we observe that, for every f,g € C7(€2), we have
[f9)2ta,a.0 < 2|9]a,d0lfl2+a,d0, (3.5)
We say that f € C2T*(Q) if
[f(z) = F(O)
a —bup + sup d2+“7 + > supd;|0s, f|+
|f|2+ d,Q |f| z;éecﬂ ||C 102Ha ;zeﬂ | f|
3.6
S 2+ 102, f(2) = 0. F(2)] | S >0
Z Su% d HZ o Z”O‘ + Z [8111] f]2+a,d,Q + [Yf]2+a,d,Q
i=1 %7 i,j=1
Z#Z 2]

is finite. In order to prove our Schauder-type estimate we recall some interpolation inequalities for
functions v in the space C§+O‘ (). For every € > 0 there exist a positive constant C. such that

sup d. |9,,u| < C.sup |u| + e sup d2|y,,u| (3.7)
Q Q Q

|6$iz,‘u(z) - 83:73?;11‘(2)‘

Supd 02,2,u| < C sup|u| +e sup dot” — (3.8)
2,260 271 0 2|
z;éz
Po _
Og,z,u(2) — Op,z, u(Z
bup|u| —|—Z bupd |0, ul —|—Z bupdz\ﬁhhm <C: bup|u| —l—az sup d2+0‘| Lits (77)1 I’z] () (3.9)
i=1 i,j=1 ij— 1 2 ZEQ HZ OZH
) Z2#Z
for every i,j = 1,...,po. The above inequalities have been proved by Manfredini (see the statement

“Interpolation inequalities” p. 846, in [23]).
We will prove our interior estimate of Schauder type by a classical argument, based on the represen-
tation formulas of the solution in terms of the fundamental solution of the frozen operator

Po Po

u= Z ai,j(20) LM]U—I—Zaz 20)0z,u + Y. (3.10)

j=1 =1

Remark 3.1. Denote a = (a1(20),- .-, ap,(20),0,...,0) € RYN. Then the fundamental solution ., of
K., is

I, (z,t) =T, (z — at,t)
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where I, is the fundamental solution of

Po
KZOU = Z aiJ(Zo)axixju +Y.

ij=1

As a consequence, the representation formula stated in Proposition 2.11 also holds for sz.
Besides, since the coefficients ai,...,ap, are bounded functions, the estimates of Proposition 2.7

extend to I,. Indeed, there exist two positive constants ¢ and ¢, depending on SUpP;_1 _p, |@i(2)], such
that
(@, Ol < (@ — at, )] < "|l(z, t)]l.

Then we have, for instance
C’ < C’
(x —at,)[|? = (N|(z,)[)°

., (z,t) =T, (z —at,t) < ||

The other bounds extend to fZO analogously.

In order to avoid cumbersome notations, in the sequel we denote by I',, the fundamental solution of
K,,. We also recall that the function

FEO(C,Z) ZFZO(Z,C), VZvCGRNJrle?éC

is the fundamental solution of

Po Po
K;O = Z aij(Zo)amimj — Zal(zo)aml — Y — tI‘B
i,j=1 i=1

(see [11], Theorem 1.5). Note that the function I'% (z,t,&,7) = e~"BTE (x,t,€,7) is the fundamental
solution of

Po Po
> 45200002, — Y ai(20)00, = Y
i,7=1 =1

then the results proved in the pervious section apply to I'] .

Proof of Theorem 1.3. We first remark that it suffices to prove inequality (1.18) for compact subsets of
Q. Indeed, let (Q)ren be a sequence of open bounded subsets of €, such that Qf C Q4 for all &
and (J,cn % = Q. Assume that (1.18) holds on every €2, with the same constant ¢, then every norm
|tt|24a,d,0, is finite. We then fix z,{ € Q, with z # (. For sufficiently large k, we have

lu(z)| + d2+“(Qk)M +d ()0, u(2)| + 2T () + d2 () |0y, u(2)|

[¢—1 oz ¢ o 2]
ax-acv _69590 B
o) Pt e O iy + o TR

< c(supg, |ul + [fl2ta.d.) < c(supg |ul + [fl2ta.d.0)
for every i,7 = 1,...,po. Hence, by letting k£ to infinity, we obtain the inequality
O, u(z) — O, u(Q)]

¢t o 2]

ulz +d2+a|u(z) _U(C)| +dz (9$U P +d2+a|
| ( )‘ z,¢ ||C7102||0‘ | i ( )‘ z,¢

+d2+a iLj ij
S [

2+a|Yu(z) = Yu(Q)

+ d2|Yu(z)| +d?
[Yu(z) +dz¢ 1oz

< c(sgp lul + [fl2+a,a.9),
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so that (1.18) holds in the set .

We next split the proof into three steps. We first prove a bound of the derivatives of u in the space
C$ (), when u is compactly supported, then we extend the bounds to more general solutions u and,
finally we conclude the proof by using some interpolation inequalities.

First step We first prove that, if © has compact support, then there exist a positive constant cq such
that

dZ ; lu(z) — u(z)| < calg
150, u(2) = Or,u(2)] < calglaan |zt o 2] (3.11)
di,—;a |81L1Ju(z) - aﬂm%u('g)' < CQ|g

ad 270 2|

adallz7 o 2],

for every z,z € , and for any i,5 =1,...,pp.

Fix zg € Q and let K, be the frozen operator introduced in (3.10). Let u be compactly supported
and set g = K, u. Since Q is bounded, we have that R = sup,, .cq [|w™" o z|| is finite. To prove the first
inequality in (3.11), we observe that

u(e)—ula) = [ . (Patw09) - Do o)) g(uhd

Let M be the positive constant in the inequality (2.38), we split the above integral as follow:
u() —u(z) = / Lo 02) = T(w o) )gtw)do
Br(z0)N{llztoz||<[lw—toz]|}

" / Lo 02) = T o) )gtw)do

Br(z0)N{llz7toZ||2[lw=toz]|}

So, by (2.32) and (2.36), we get

lu(z) —u(2)] < Crllglleo / T (w™hoz) =To(w™h o 2)| dw
Br(z0){|lz71oz||<[lw~oz||}
+C7|l9loo / ‘FZO(w_loz) —FZO(w_loZ)’dw

Br(z0)N{|[z71oz||>||lwtoz||}
_ _ 1
SCT|9<><><||Z Yoz / mdw
Br(z0)N{|lz7toz||<[|lwtoz||}
1 1
+ / + dw)

T Tozl@ " uTozQ

Br(zo)N{llz~1oZ||<[lwtoz]|}

< Crllglloollz™ 0 2l + C7llgllocllz™" 0 2lI* < C”lgla,anlle™" o 2]

for some positive constant C*” that depends on 2 and L. The proof of the second inequality in (3.11) is
similar and will be omitted. We next prove the third one. By Proposition 2.11, we have

8mﬂju(z) - 8I1xiju(2) =

e—0
e<||lw—toz||<R e<|lw=toz||<R

— lim / Oy, Dag (W™ 0 2)[g(w) — g(2)]dw + ;l_r% / Ouya, Lo (W™ 0 2)[g(w) — g(2)]dw
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(0 9D [ 0uTeolOw (0

—g(z) lim / Oy, Dag (W™ 0 2)dw + g(2) il_% / Oy, Dag (W™ 0 2)dw

e—0
e<||lw—toz||<R e<flw=toz||<R

where I', o denotes the fundamental solution of

Po Po

Z @i,j(20) Oy + Z a;j(20)0z; + Yo

i,j=1 Jj=1

and Y} is defined in (2.5). Since g € C§, the first two integrals in the above formula converge as ¢ — 0.
Then, in the following, we shall omit the limit.

In order to give a bound for the last two integrals in the above formula, we recall (2.50) and use the
divergence Theorem. We find

N
lim / Oz, Tag(w™ 0 2)dw = Z lim / D2, Ty (W™t 0 2) EXI (s — t)vpdo(w)
Jloo]|=¢

e—0
e<w-toz||<R k=1

=

— Z/ 02, Ty (W™t 0 2) B (s — t)vpdo(w)
h—1 lw=loz||=R

N
(by Lemma 2.10) = ) /” - 02,12 0(Q)vida (Q)

k=1

N

- Z/ 02, Ty (w0 2) BN (s — t)ypdo(w) =€
=1 lw=toz||=R

and, analogously,

N
[ G Taen =Y [ T @nde()

€0 li¢ll=1
e<|lw—loz||<R k=1

N

- Z/ 02, T2y (Wt 0 2)EM (s — t)ypdo(w) = €.
b1/ lw=toz||=R

We summarize the above results in the following formula. Denoting by § = ||[z71 o Z|| > 0, we get

a:cl;c]u(z) - 8901,90,'“(2) -

- [ e enl) -~ [ 0w o2 o) — gl2)ldu
M|w=Loz||<6é §<M|lw-1toz||<MR
b [ e nlw) —g@ e [ o2 o)~ g(2)ldu
Mlw—1oz||<é S<M|lw—loz||<MR

—1(9(z)—9(2) =L+ L+ s+ 1, — & (9(z) — 9(2))
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We estimate separately I, I, I3 and Iy. Choose a positive T' such that Q C R¥x] — T, T[ and apply
Proposition 2.7. If ' denotes the support of u, then the inequality (2.34) yields

" o 2] L
L] < eilglag / Mo 0 2%y = elglaarllz o 2]
0 I wroz < [lwt o 2[|9+2 “

An analogous procedure can be used to estimate I3. It is sufficient to observe that, by Remark 2.2,

1
Jut o3l < Cr(lu osll + [+~ o) < Cr (14 57 ) I+~ o1,

for any w such that M|Jw=! o z|| < §. Concerning I and Iy, we have

L+1 = (02,0, T 20 (2, W) = Oy, T2y (2,0)) (9(w) — g(2)) dw

/|z—105|<M||w—1oz|<MR

+(g(2) - 9(2)) / Do, Ty (22w} = Ty + (9(2) — 9(2)) Jo
l2=Toz| <M |wTozl| <MR

We first consider J;. From (2.38), we get

1

w- Lo Z||Q+3—a

dw = c|g|O¢’Q/H2_1 o z||“.
lz=1oz||<M|w~toz| H

1| < erlglagrllz™" o 2

We now estimate Jy. Using the divergence Theorem, we obtain

N N
Jo=— / 0, T2 (2, w)vido(w) + Y / 0, T2, (2, w)vpdo(w)
F=L 210z =M w10z F=l2-10z)|=R
and therefore, by (2.33), we have
|Js] < C ;da(w) T ;da(w) ="
2= lw=To z][@+1 lw=To z[|@+1 ’
|2~ 1oz =M w—toz]| z==1ozl|=R

for a suitable positive constant C”', depending on the operator K and 2. Summarizing the above in-
equalities we conclude that

|+ 4+ L] < C"glaarllzt o 2||%, Vz,z€. (3.12)
This accomplishes the proof of (3.11).

Second step We next remove the assumption that u has a compact support in §2. Denote by B,.(Z) the
metric ball with center at z and radius 7:

B.(2) = {C e RV 1z o ¢ < v,

and suppose that B,.(2) C Q. If T is a positive constant such that @ C RV x] — T,T[ and Cr is the
constant appearing in Remark 2.2, then we choose any m > C%.. Note that, being Cr > 1, we have that
there exists a positive constant ¢ such that [[(~" o z|| > er, for every z € B (2), ¢ € B,(2). We claim
that there exists a positive constant Cq, only depending on the operator L and €2, such that
|u(z) — u(?)|
e e oge < Callolzvads, ) + sup ful),

(2

raldnu(z) — 0,u(2)
[5—1 o Z]a

|02, 2,1(2) — Oz, u(Z)]
— — < Callgl2+a.da,B,.(2) + sup |u]),
2=Lo 2| (olz+a.d.5. 2 BT(2)| D

< Callgl2+a,d,B,.(2) + sup |ul), (3.13)

(2

T2+a
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foranyzzandr>05uchthatB()CQandzEB (2).

We only prove the last inequality since the first two are simpler than that one. We consider a function
€ C§°(B,(2)) such that ¢(z )— lwheneverzeB - (2) and (= )—OWhenzeB (z )\B (2). We
also require that [9,,0(2)| < £, [0p,2,0(2)] < % (for i, ,J=1,...,p0), and [Yp(z)| < 5. A such function
can be defined as 7. in (2.46) (also recall (2. 47))

We integrate the function vg — uK7 v on B,(Z), where g = K. ,u and v(¢) = @({)I'; (¢, 2):

u(z) = — / P(Q)g(OT%, (¢, 2)dC + u(Q) K, (p(OT7, (¢, 2))dC, (3.14)
B.(2) B s (D\B_x_(2)

consequently, we have

Opru(z) = —Ora, / PO, (€, 2)C + By, / w(QOK?, (9T (¢, 2))de

B,.(2) B#(Z)\Bﬁg(i)

= —0Opa, / P(Q)g(Q)e” T, (2,0)dC +

Br(2)
Or;a; w(Q) K, (p(Q)e UL, (2, 0))dC = vij(2) + wiy(2),
B#(E)\B#(E)

(3.15)
for i,j = 1,...,pg, where z = (x,t) and ¢ = (£, 7). Consider the second term in (3.15). We first note
that,

w; j(z) = O, u(QO K (0(CQ)e =T BL, (2, ¢))dC, (3.16)
B#(f)\BﬁZ(Z)

for every z € B_»_(Z
2m3

o Wi (2) —w; (2)]

- < — sup |u
R FToale g
(sup |K:O| / 19012, Dy (2, ) — Do T (2, OldC
B,.(z)
(Z)\B r (Z)

+ Z sup |a§h90| / |8Iixja§k]‘—‘zo(z’<) Lwyaék Zo( )|dC)

B.(z
hok=t B_s (2\B_x_(2)
cr®
= T Toae S lul(IT + 13),
27t oz||* B, (3) b
(3.17)
for some positive constant c¢ only depending on the operator K. We first consider I7:
IT = sup |L.pl(J] +J3) (3.18)

Br((2))
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where

Jik = / ‘811967 on (Za C) - anthFZo (2, C) |dC7

B, (D\B_r, (D)N{l|z7 oz[[<M¢ oz}

J5 = ‘6$'ia7jFZO(Z’<) _awiwj 20 (Z,¢)|dC,
ry (\B_r (2)n{l|z7 oz [ 2 M]|¢~ oz}

m2

and M is the constant in (2.38). Aiming to estimate .J;, we note that,

1 Crr_ m—-0C3 r
1 -1 = >—1 >—1 T

JCt o sl = gl ol = Ol ol 2 gple T odl - Gy 2 Tgl s >0 (319
for every ¢ € B, (2) \ B_=, (%) and z € B_=_(Z). Then, by using (2.38) we obtain

. |27 o 2| & 127 o 2| 127102
since ||¢"toz|| > 3mzcy» for every C out of the ball B_r(2). On the other hand, by (2.34), we have

1 1
> <
s / (e * ferompom)
B_r, (I\B_r, (In{llz~20] 2 M|l 1oz}
thus, by using again (3.19), and the fact that ||[(~! o z|| > smic, for every ¢ out of the ball B_», (%), we
find
' ¢ ¢ o (17 o\

B_r (D\B_r ()n{l|lz7 ozl 2M|¢~ oz]|} {llz=tozl|ZM]||[¢~ oz}

m

From the above inequality and (3.20), recalling that |[z27! o z|| < 555, we finally get

—_1 a
I <d, s IK;“OwI(HZTOZH) ; (3:21)

for some positive constant c;,. To prove an analogous estimate for I5 we state that the function 0, ;0¢, Iz,
satisfies the following estimates analogous to Proposition 2.7:

171 o 2|

|az7xj 9, L'z (2,¢) — aﬂﬁﬂ”] O6.T'= (2, 0)] < CW,

for 4,75,k = 1,...,po provided that ||z=% o z|| < M||¢~! o z||, for some positive constant M. We omit the
proof since it the same as that of Proposition 2.7. The argument used in the estimate of I7 gives in this

case

su 2y | Oz z—1 «
L<d max D3, (z) |02, ¥l <||z o z||> (3.22)
r

=1,....p0 r

If we use (3.21), and (3.22) in (3.17), and we recall that |9,, ¢(2)] < &, for h =1,...,po and |L.,p(2)| <

5, we then find
@ |wi7j(_z) — wlﬂ(z)' S Cai Sup |u|) (323)
|21 o 2 2 B,(2)
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for some positive constant ¢, only depending on L, ) and a.
Since ¢g is Holder continuous and compactly supported in €, the estimate (3.12) holds for the first
term in (3.15), then

[03,(2) = v ()] < clglap . @ lIZ7" 02|

m

Since ra|<pg|a,3%(g) < cl¢gla,a,B. () for a constant c that does not depend on r, we have

% vi j(2) —vij(Z)] < C|</?9|a,d,B#(z)||»71 oz[|* < 2¢lpladB = (2)l9 ‘;z,d,z\;%(z)||571 o z[|%,

Since [¢]a,4,B. (5) < Cp, and r2|g\a7d7BL(2) < [9)24a,4,B,(z), for some constant ¢, ¢, that do not depend
on 7, we finally get /

o+a |01 (2) =i () _ i
r Hz_l o ZHa =c [g]2+o¢,d,BT(z)'

Combining the above estimate, (3.23), and (3.11), we thus find

p2ra O UZ) = Oria B o [0ig(2) = 0ig ()] | aga JWi(2) = wiy (Z)]
[ - [k 1271 o z[|*

< cll9l2+a,a,B,(z) + sup |ul).
B, (z)

This accomplishes the proof of (3.13).

Third step We prove (1.18). Let zy and (o be any two distinct points of €, such that d,, < d¢,. We
define the function F' as

F() = )+ D (@i (20) = 015(2)niay ) + D (a0 = as()0s,u(2)

1
202>

n (2.2)). We observe that, by our choice of u, we have d, > ﬁd% for every z € By (z0), with r = pd,, .
Indeed,

so that K, ,u = F, and we consider a constant y < that will be specified later (C7 is the constant

_ 1 _ _ 1 1
602l 2 goI¢ osall = I o0l 2 (g = Crn ) day 2 5y
for every ¢ € 092. As a direct consequence B,.(zp) C €.
Let m be the positive constant fixed in the previous step. If (o € B_r_(zp), then (3.13) yields

2m

24« |awlu(20) — 8%”((‘3)'

( d, )2+a |U(ZO) - u(CO)l + (,udz ) + (Mdz )24_@ |ax7acju(20) - 3x1x_7U(Co)|

16" 0 2o [ EN S [ ENS
<c ([F]2+o¢,d,Br(zo) + sup |u|> .
BT(ZO)
(3.24)
On the other hand, if (o & B_= (z0) we have
24 ‘u(ZO) - U(CO)‘ + d2+a |8xlu(20) - a@”(CO)' + d2+(, |azlz7u(20) - axzxju(goﬂ
*lG el T G el G el (3.25)

c
< —ta <sup |u(2)] + sup d, |0y, u(2)| + sup dﬁ@xixju(zﬂ) .
1% 2€Q z€Q 2€Q
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Hence, by combining (3.24) and (3.25), we obtain

2+ |0rt(20) = Oz, u(Co)|

+ dzo Iao:iwju(ZO) - 8119%-“((0)‘

2+a |u(20) — u(Co)|

+d2te

2 —1 a —1 « —1 «
c c 5
< e (Flarasn o +splul ) + o (supuCo)| + 5up 10,0+ 5up 2000, 0(2)] ).
We next provide an estimate of [Fa14.4,8,(z) in terms of [0z,z,U|a.4,B, (z)- We have
Po
(Flotad s o) < D 1aij(20) = 0ij)0,2; 24 0,4,B, (20) + [Fl24a.d, B, (20)
ij=1
Po
+ Z[(ai(zo) — a;(2))0z,u)240,d,B, (z0)
i=1
By (3.5), we have
[(as,5(20) = @i 3) 00,0, U2 40,8, (20) < 210i5(20) = @ijla,a,B,(20) [Oniz; Ul24a,d,B, (20)> (3.27)
for all i,7 = 1,...,pg. Then, since d, > ﬁdm for any z € B,(zp), we have d:ﬁ < 2C7rp, for every

2,z € B,(z0), thus

lai j(2) — ai ;(2)]
271 o z]|@

|aij(20) = ijladB. () < SUp |aij(20) —a; ()| +r* sup
B, (zo z,ZEiT_(zO)
ZFEZ

¢ laig(z) —aij(2)]

=5 7T oz

< 7%aijlaae+ sup o5 < ca p* @i jla,d.0,
z,2€Br(z0) V2,2

2#Z

(3.28)
for a positive constant ¢, only depending on L and 2. Analogously,

O () — Do u(2)]
8 T — gq d2 8 . o d?-‘[Oél Tilj i L5
Ortltotin o = 00 Bt S B e

Op.w.u(2) — 0. 2. u(Z
r?2 sup ‘arq:mju|+r2+a sup | ;T (7_)1 wi” (2)]
B,-(20) B,(z0) ||z o Z||

IN

2 2ta Op, . U(2) — Op. 0. u(Z
sup %dﬁ\amizju|+ sup r 240 Oriz; U2) = vy ul(2)]
z

B (z0) By(z0) d25" ©F 271 o 2|

IN

IA

Op. . U(2) — Op. . U(Z
(2Cr)*te (/ﬁ sup d2 |0y, ul + supd§§a| Tits (_ )1 iy U )|).
Q a 7 271 o z]|

(3.29)
Then, by using the above inequality and (3.28) in (3.27), we obtain

[(aij(20) = i) 0,2, U2 4a,a,B, (z0) < Ci |G jlaa.n® <Sug 2[00z, ul
zEe

Lo sup @2 dme(?) - 6mju(z)|) (3.30)
z,;{ﬂ 2,z ”2—1 o z||04 5
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for a positive constant ¢, only depending on L and €.
We next provide an analogous estimate for the term (a;(z0) — a;)9z,u. By (3.5), we have

)[amu]QJra,d,Br(zU)a (331)

[(@i(20) — @i)0z,u]240,d,B, () < lai(20) — ai

for every i = 1,...,po. The same arguments used in the proof of (3.28), and (3.29) give

O, u Op,u(Z
[(ai(ZO) - ai)aziu]2+a,d,BT(z0) S ka ai|o¢,d,QN2+a<Sup dz|az7u| + ,LL sup d2+a| = (_)1 Ila ( )|>
o x5 271 o 2|
2#Z

where k, is a positive constant only depending on L and Q. Note that the norms |a; j|a,a.0 and |a;|a,qd.0
are bounded by a constant depending on £ and on the quantities involved in hypothesis [H3], hence the
above inequality and (3.30) give the following estimate for F":

Oz, U(2) — Ogyo, u(Z
[F]2+adBT(20) <CaM +a(supd ‘az z]U|+/$ sup d2-|;1| T (_ )1 T ( )|
" So 271 o 2
ZFZ

(3.32)

O, u(2) — O, u(Z
+supd |0z, u| + p® sup d2+0‘| i (_)1 i ul )|> + [fl2+ad.
- x50 271 o 2|
ZFZ

where the constant C, only depends on «, on 2 and on the operator L.
We next remove the terms d. |0, u| and d2|0y,,,u| from the right hand side of (3.32) by using first
the inequality (3.7) with € = 1 and then the inequality (3.8) with ¢ = pu®. We obtain

d2ta ‘893193111’(2) B awLwJU’(EH

F dpPt2e g s
Flzta.d.3. ) o z;epsz ' 271 o z||@ O lslzpw
Op.u(2) — O0p.u(z
+C//J'2+2a sup d2+0¢| Ti () Zj ()| +[f]2+u,d,ﬂa

z,Z€Q HEOZHQ

where ¢’ and C[’L are suitable positive constants. Hence, by using the above estimate together with (3.9)
with € = 272 in (3.26), we find

dz;ra\u(zg)l U(Cg)\ +d§:a|8hu(zg)1 611:(C0)| +d3:—a| ; Ju(zg)l su(Co)l
1¢o  © 2ol 1¢o " © 20l 1o

Op,z.U(2) — O,z u(Z
< O (suplul + [lasoan ) + e sup a2 P =l (333)

2,2€Q ||§—102Ha

Op.u(2) — 0. u(Z
v sup i) = 20, 05)
2,2€Q [z 02|

for every zg, (o € €2, where the constant ¢ does not depend on p. Thus, if p is sufficiently small, we have

— Oy Op.u(Z Op.z — Op.z.u(Z
dzja|U(zo_)l u(Co)] + sup d2+a| lu——>1 au( zZ)| + sup dj*f“| LJugz_)l laju(z)|
6o 0 20ll®  zze0 271 o 2] szeQ 271 oz (3.34)

C(Slslzp lu| + [fl2ta,d.0)-
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We next recall that d,, < d¢, and use again (3.9), with ¢ = 1. We find

Po Po _
|u(z) — u(2)|
sup |u| + sup d, |0y, u| + sup d?|0,,.,u| + sup d*t”
wpful + Yo supd o ul + 3 sup (o, u ,

=1 i,j=1 2,26Q [zt o z||«
Po _ Po B
+ Z sup dg-ga |8xlu(_2j1— 81*1“(«2)' + Z sup di—ga ‘azizju(_zi)lf 81%27Ju(z)|
i=1 2,Z€Q ’ HZ QZ”Ot = 2760 s ||Z OZ”D‘

< c(sgp lu] + [fl2+a,d.0)-

As a final step, we observe that Yu(z) = f(z) — fo}:l i, j(2)0n,0,u(z) — D00 ai(2)8,,u(z), so that
we get from (3.5) the following inequality

Po Po
Yulorado < ¢ | [flarado+ D [0iiladol0e worade + Y [0ilaao@t2ta.de
ij=1 i=1
The thesis follows from the last two estimates. O

Corollary 3.2. If f € C3(Q) and I, is the fundamental solution of the operator K, , then the function

v(z):/ﬂl"zﬂ(@w)f(w)dw

is a classical solution of K, v = —f in Q and belongs to C§+O‘(Q),
Proof. By Theorem 1.4 in [11], v is solution of K, v = —f in Q. The conclusion directly follows by
Theorem 1.3. O

Proof of Corollary 1.4. Let u be the unique solution of the Cauchy problem (1.19) on the strip RY x]0, 277].
By the uniqueness result stated in Theorem 1.4 in [11], we have

u(z,t) = /]RN L(z,t,y,0)o(y)dy, (z,t) € ]RNX]O,QT[,

then, from the first estimate in (2.18) it follows that

e8] < allpllc [T t,,0)d
R

so that
sup lu(z,1)] < col|@lloo (3.35)
(z,t)ERN x]0,2T
We next prove the L bound for u and for its derivatives. Consider any point x € R. By using the
invariance with respect to the translation, it is not restrictive to assume that @ = 0. We set r = CpT?
and = Bs,.(0)x]0, 2T, where Cr is the constant appearing in Remark 2.2 and

B,(0) = {y € RN : (5,0l < o}
is the metric ball with center at the origin and radius p. We explicitly note that d, ) = Vt, for every

(y,t) € B-(0)x]0,T[. Then, by applying Theorem 1.3 to the set B,.(0)x]0,T[, and by (3.35), there exist
a positive constant cr, depending on 7', such that

Po Po
VEY  sup [Opu(@, )+t D sup [Op,ul, )] < ool (3.36)

i=1 ,€RY i,j=12€RY
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In order to conclude the proof, we consider the second order derivatives 0., u of u for i, =1...,po.
If y € B,.(0),y # 0, then from Theorem 1.3 we get

t1+% |az7zju(07 t) - arixju(ya t)‘

< er)¢]e. (3.37)
[[(y,0)|[*
On the other hand, if y € B,(0)x]0, T[, we have
o |02,0,u(0,t) — Oy 0 u(y, t T%
t1+5 | i Ju( ) i Ju(y )l < 27: sup t|5yﬂju(x,t)| S CT||()0H00, (338)

Iy, )]~ T T gern

thanks to (3.36). We then obtain the desired bound of the last term in the left hand side of (1.20).
The bound of u and of its first order derivatives can be obtained in the same manner, then the proof is
accomplished. O

4 Dirichlet Problem and Green function

In this section, we construct the Green function G related to the Dirichlet problem for L, for a suitable
family of cylindrical sets Hg(zo,T), then we prove an uniformly lower bound for G.

Denote by e; = (1,0,...,0) the first vector of the canonical basis of R and by B,.(x() the Euclidean
ball in RY, centered in x¢ with radius r. We fix any ¢ €]0, 1], we set

S = Bi(eer1) N Bi(—ceq),
and we define for every T > 0 the unit cylinder and its parabolic boundary as
H(T) =5x]0,T], O-H(T) = (S x{0})U(9S x [0,T).
Moreover, we set for every zg = (zg,t9) € RN+ and R > 0,
Hp(20,T) = 200 6(R)(H(T R™?)), Oy Hp(z0,T) = z 0 6(R) (8, H(T R™?)). (4.1)
Note that T is the true height of the set Hr(zo,T), by the definition (1.13) of §(R). Besides
meas(Hg(z0,T)) = TRQmeaS(S) (4.2)

(since Hr(zo,T) C RN and S € RN, meas(Hg(20,T)) denotes the Lebesgue measure in RV +! while
meas (S) is the Lebesgue measure in RY). Indeed, it is sufficient to use the change of variable related to
the translation (1.11) ®(y,s) = (y + E(s)xo,s + to) and note that detJs = 1. Then we use the dilation
defined in (1.13), and we find

meas(Hg(z0,T)) = meas(Hg(0,T)) = RQ+2meas(H(T R?) = TRQmeas(H(l)).
Analogously, if we set
Sr(z0,8) =200 0(R)(S x {s R™?}), (4.3)
with s € [0,T], we find
meas(Sg (20, )) = RQmeas(S). (4.4)

In the sequel we will denote Sg(z9) = Sr(20,0).
We say that a function u : Hg(z0,T) U 0, Hg(z0,T) — R is a classical solution to the Dirichlet
problem

(4.5)

Lu =—f in Hg(z,T),
u =g in 0.Hg(2,T),
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where f € C(Hg(2,T) and g € C(0,Hg(z0,T)) if it is a classical solution to Lu = —f in Hg(z9,T)
and the boundary datum is attained by continuity. We next prove that the Dirichlet problem (4.5)
has a unique classical solution. The uniqueness is an immediate consequence of the following Picone’s
maximum principle: if u € C(Hg(20,T)) is such that Oy u, 0y, »;u and Yu belong to C(Hg(z0,T)), for
i,j=1,...,p0 and satisfy

Lu >0 in Hp(z,T)
limsup, . u(z) <0 for every ¢ € 0,HRg(z,T),

then u < 0 on Hg(z0,T).

In order to prove the existence of the solution of the Cauchy-Dirichlet problem (4.5), we construct
a barrier function at any points of 9, Hg(zo,T). Consider an open set 2 C RV*1 a point 2o € 952, and
denote by A(z) the (N +1) x (N + 1) matrix

g _ Ao(Z) 0
Az) = < 0 0 )
We say that a vector v € RN+ is a L-non-characteristic outer normal to Q at z if B(z + v, |[v]) N Q=0

and (A(z)v,v) > 0 (here B(C, p) is the Buclidean ball of RV with center at ¢ and radius p).

Lemma 4.1. For every point z = (x,t) € 0. H(T), with t # 0 there ezist a vector v € RN+ such that v
is an L-non-characteristic outer normal to H(T) at z.

Proof. For every (y,t) € 0,H(T), with ¢t > 0, we set y = ¢/ + ¢/, where ¥’ = (y1,...,Ypy,0,...,0) and
y"’ =y —1y'. We distinguish two cases: if y; > 0, we set v = y + ee1. Clearly, v is an outer normal at
(y,t). Besides, we have

(Aly, )y, v) = (Ao(y, )/, V) 2 A V1P = A e+ 31)° > 0
since € > 0 and y; > 0. If otherwise y; < 0, we set v = y — e e1, and we conclude the proof as above. [

Summarizing, we are able to construct a barrier function w to every point of the parabolic boundary
of H(T) as follow:

o if 2= (x,t) € 0. H(T), with t > 0, we set
wy(y, s) = e M — e A ws)—(@n—vI® (4.6)
where v is an outer normal at (z,t) and X is a positive constant only depending on the matrix B,
on the constant A and on the L°° norm of the coeflicients a; of L.
o if 2= (z,0) € 0,H(T), we set
w,(y,s) = s. (4.7

Note that it is possible to choose the constant A such that w, in (4.6) is a barrier for every operator Lg,
with R €]0,1]. As a consequence the function w(y,s) = we ((8(1/R) (25" o (y,s))) is a barrier at any
point z € 8, Hg(z0,T) (wc is the function defined in (4.6) or (4.7), with ¢ = §(1/R) (25 ' 0 2)).

Theorem 4.2. Let f € C$(HRr(20,T)) and g € C(0,HRr(20,T)). There exist a unique classical solution
u € C3*(Hg(20,T)) N C(Hr(20,T)) of the Dirichlet problem

Lu =—f
ulo, Hp(z0m) =9

o) {
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Proof. The uniqueness of the solution is an immediate consequence of the Picone’s maximum principle.
To prove the existence, we use the continuity method, as in the classical study of uniformly parabolic
equations (see, for instance [14]).
As a first step, we consider the problem (PD) with homogeneous boundary condition (¢ = 0). Let
K., be the frozen operator defined in (2.11). For every A € [0, 1], we define the operator £ by
Lx=AL+(1-)NK,,.
In the sequel, we shall indicate by (P f) the Dirichlet problem
Liu =—f
) | P
o, tp(z0.1) =
and by A the set

A :{/\ € [0,1] : the problem (P s) has a solution
w € C3° (Hp(20,T)) N C(Hp(2,T) for every f € C§(Hn(20,T)) }.

We clam that A contains A = 0, and that A is at once an open and closed subset of [0, 1]. It will follow
that A = [0, 1], hence, the problem (PD) with g = 0 has a solution.

In order to prove that 0 € A, we consider a function f € C3(Hg(20,T)) and we denote by I',, the
fundamental solution of the frozen operator K, defined in (3.10). If we set

o(z) = /H Tl

then v € C§+Q(HR(20,T)) and K, v = —fin Hg(z0,T), by Corollary 3.2. Since f is bounded, we also
have v € C(Hg(z9,T)). On the other hand, a result by Bony (Theorem 5.2 [5]) states that there exist a
unique solution w € C*°(HRg(z9,T)) N C(Hr(20,T)) to the Dirichlet problem

{ K, w =0
wlo, Hp(z0,1) =~V

Hence u = w +v € C2T*(Hg(20,T)) N C(Hg(20,T)) and it is the solution of (P f).

The proof of the fact that A is open and closed is analogous to the case of homogeneous Kolmogorov
equations, i.e. in the case that all x-blocks of the matrix B are null. We refer to [23] for the details of
the proof.

We next study the problem (PD) with f = 0. Let (gn)nen be a sequence of functions belonging
to C*°(Hpg(20,T)) N C(Hgr(20,T)), uniformly convergent to g in Hr(z9,T). Denote f, = Lg, and let
u, € C3T*(HR(20,T)) N C(Hg(20,T)) be the solution of the problem

ulo, Hp(zom) =0

(the existence of w,, has been proved before). If we define v, = u,, — gn, then

{ Lv, =0
"UnlarHR(zo,T) = —0gn
and from the maximum principle it follows that

sup  |vp —vm| < sup  |gn — gl Vn,meN
HR(ZO,T) 8T‘HR(Z07T)

Then (v,,) uniformly converges to some function v, and by the estimate (1.18), we deduce that v belongs
to C3T*(Hp(20,T)) N C(Hp(z,T)), it satisfies Lv = 0 in Hg(20,T) and v = g on 9,Hg(20,T). This
concludes the proof. O
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We next construct a Green function for the cylinder Hr(zo,T) by setting

where T is the fundamental solution of (1.1), and, for any ¢ € Hg(z0,T), h(-,() is the solution to the
follow Dirichlet problem
Lh =0
4.9
{ h 8T»HR(20,T) = F(? C) ( )

From the properties of T and from the maximum principle it follows that, for every f € C(Hg(z0,T)),
u) = [ GEOAO. 2 € Hp(z0.T) U, Hp(z0.T),
Hpg(z0,T)

is the solution of the Dirichlet problem

{ Lu =—f
ulg, Hp(zo1) =0
We next list some basic properties of G.

i) G(z,¢) > 0 for every z,{ € Hgr(z,T) with z # (.

) G O)lo, Ha(eo.r) = 0, for every ¢ € Hp(z0,T).

iii) if the derivatives 0;,.,a;; and Op,a; are Holder continuous of exponent «, for 4,5 = 1,...,pg, then
the adjoint operator L* satisfies hypotheses [H1]-[H2]-[H3]. Then G*(z,() = G(¢, z) (G* denotes
Green function of L*).

For every T > 0, 6 €]0,1], (¢,7) € RN+ we set
T
i en D) = me )0 @ e RV o> TELL

Theorem 4.3. Consider the Green function G related to any cylinder Hg(¢, 7, R?T), with R €]0,1].
There exist three constants &, T €]0,1], and k > 0, only depending on the operator L, such that

G(‘Ta ta Y, T) fOT’ Every (I‘, t) € H;;R(Ea T, RzT)7 RS SéoR(S’ T)' (410)

K
Z Ea
Proof. We can set, without loss of generality, (£,7) = (0,0). Let G be the Green function related to
Hg(0, R*T), defined by (4.8)-(4.9). The function hgr(z,¢) = R?h(5(R)z,5(R)(C) is the solution of the
problem
{ LRU =0

ulo,rery =Tr(-0(R)C)

in the unit cylinder H(T). Let o € ]0, 1] be a fixed constant. Since S,(0,0) is a compact subset of the
lower basis of H(T), and T'g continuously depends on R € [0, 1], we have

max hr(z,(&0)) < max T'r(z,(&,0)) = &,
(2,(£,0),R)€0, H(T')x 54 (0,0) x[0,1] (2,(£,0),R)EM(T) xS (0,0) X [0,1]

where M(T) = 0,H(T) N {0 <t < T}. We stress that the above inequity is uniform in R € [0,1]. Thus,
by the maximum principle,

hR(zv ga O) < K,
for every z € H(T), (£,0) € S,(0,0) and R €]0, 1]. On the other hand, by (2.15) and (2.16) we get

I'r(2,¢) = Zr(2,¢) + Jr(2,¢) = Fr(z,(),
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for any z,¢ € R¥*! where
Fp(z,¢) = AVT'y 5(2,0) = O(t = 7) ¥ T (2,0)

and I'y , and I‘E are the fundamental solution to

1 Po Po
KzaiQ‘FYR, py 07+ Vg,
i=1 i=1

respectively, with u > A. By the explicit expression (2.13) of the functions I'y 5 and I'L, we find

e—tR*tr(B)

(4m)N/2\/det Cr(2)

N

Fr(0,,0,0) = (A’%NfCt%;f7> — 0

as t — 0+, uniformly with respect to R € [0,1]. Thus, there exists T €]0, 1] such that Fr(0,¢,0,0) > 3x
for any t €]0,T] and R € [0, 1]. Since Fg is a continuous function, there exists 8 > 0 such that

I'r(2,t,y,0) > Fr(z,t,y,0) > 2k

for every (z,t,y) € H;(O,T) x S3(0,0) and R € [0,1]. Hence, if we set §y = min {a, 8}, we have

2:“6 K
T(x,t,y,O) 2 E’ and h(l’,t,y,O) < m
for every (z,t,y) € Hci (0,T) x S5,(0,0) and R € [0,1]. The thesis then follows from the fact that

5 Harnack inequality

Fix a positive T as in Theorem 4.3. For every (¢,7) € RN*1 R €]0,1] we set (¢*,7%) = (E(-R*T)¢, 7 —
TR?), H*(¢,7,R) = Hr(¢*, 7%, TR?), and we define

Osc(u,&,7,R)= sup wu— inf u 5.1
(u.€ ) H~*(¢,7,R) H=*(&m,R) (5:1)

Lemma 5.1. There exist two constants p, 91 €]0,1[, only depending on the operator L, such that
Osc(u, &, 7,0R) < pOsc(u, &, 7, R),
for every positive solution u to Lu = 0 in H*(, 7, R) and for every § €]0,41].
Proof. Denote
miR) = H*(l?,gﬁR)u M(R) = H*??,I:,R) !

and, analogously, m(6R) and M (§R) be respectively the infimum and the supremum of u in H*(¢, 7, 6R).

We set
M(R) 4+ m(R) } .
2

S = {(1‘,7*) € Ssr(&",7) tu(x, 7%) >

We examine the following two cases.
meas(Sg(&*, 7))
2

Case 1 Suppose that meas(S) > . We consider the function u — m(R). We obviously
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have v — m(R) > 0 and L(u — m(R)) = 0 in H*(£,7, R). As a consequence of the comparison principle
we find

W =mB)z [ Gl r) Ry

for every z € H*(¢, 7, R). On the other hand, by Theorem 4.3, there exist a positive x such that

/ Gz — R)(uly,7*) — m(R))dy > / G2,y 7) (uly,7*) — m(R))dy
Sr(&*,7) S

> M) [ 6o yyryay > U [ 8o S0S) ar() — (),

for every z € H*(¢,7,0R). Thus,

rkmeas(Sgr(£*, 7))

m(dR) — m(R) > 1 R0

(M(R) —m(R)).

Since it is not restrictive to assume that x < ﬁs(sy by (4.4), we have

k meas(.S)

M(SR) — m(6R) < M(R) — m(6R) < (1 - 4) (M(R) — m(R)).

S
This proves the claim, with p =1 — r meas(S)

1 .
Case 2 Suppose that meas(g) < meas(SRQ(g . 7"))

. We set

gl

{(0:77) € San(e) s a7y < HELED

2
and we note that meas(S’) > % We now consider the function M(R) — u, which is non-
negative and satisfies L(M(R) — u) = 0. As in the previous case, we find

M(R) — u(z) > kmeas(Sg(&*, %))

(M(R) —m(R))

4 R@
for every z € H*(¢,7,0R). Hence
M@R) < nmezs(S)m(R) - nmczs(S))M(R)’
and g
M(3R) — m(5R) < M(SR) — m(R) < (1 _ mejS( )) (M(R) — m(R))
This completes the proof. O

Proof of Theorem 1.2. We follow the line of the proof of Theorem 5.4 in [12]. We fix any ¢ €]0, do], (o
is the constant in Proposition 4.3) and three positive constants «, 3,7 such that o < 8 < v < 1 and that

v > B+1/2. There exists (z,#) € HT such that u(Z,#) = minu. It is not restrictive to assume u(z,) = 1.
H+
We consider, for every r € [0, 3R?T], the function

v(x,t) :/S . )G(m,t,y,r)u(y,r)dy, V(z,t) € Hr(&, T, R?T)
R ZT,T
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(recall the definition (4.3) of Sg(&,7,7)). Since u > 0, by the comparison principle, we obtain u(x,t) >
v(z,t), for every (x,t) € Hr(€, 7, R?T), then

(@, ?) > / G(@,F,y, r)uly, r)dy. (5.2)
Sr(&,T,r)

Let ¢’ = % and consider, for any A > 0, the set
S(T7 /\) = {y € S&lR(f,T, 7‘) : u(y,r) > /\}

Then inequality (5.2) and Proposition 4.3 imply that

1=u(z,t) > / G(z, t,y,r)u(y,r)dy > MLS(T’)\)). (5.3)
S(r) R

We set .

1 1 R @
K=>(1+- - 4
(05) =5 () (54)

where p is the constant in Lemma 5.1. Note that, by (4.2), r(X) is such that
(i, 6. 07 0 Sa(e. ) = e 59
meas (Hg, (& 7, (67 r(&,T,7)) = Bl .

for every r € [t — (67()))?, 1.

We next prove the following statement. Let A > 0 and (z,t) € Hy (&, 7, R?T) with t < 7 + BR?T
be such that u(z,tf) > A and that H:(A)(x,tm()\)zT) C Hsr(€,7,R*T). Then there exists (z/,t') €
HY o (@, t,7(A\)2T) such that u(a’, ') > K\. Indeed, from (5.3) it follows that

so that, by (5.5), there is a (¢/,7') € HE, (&, 7,(67(N))?T) such that u(¢’,7') < 5(1 — p). The claim
then follows from Lemma 5.1.

We next show that there exists a positive constant My such that u(x,t) < M, for every (z,t) € H™.
The thesis then follows, since u(z,t) = mingzru = 1. Fix a positive M and suppose that there is a
20 € H™ such that u(zo) > M. Then, by the preceding paragraph, there exists a (possibly infinite)
sequence (z;) such that

u(zj) > M K7, zZj+1 € HY (zJ,Tr ), where r; = r(M K7),
provided that
H; (25, Tr3) C Hsr(§, 7, TR?). (5.6)

If we prove that (5.6) holds for every j € N, we find a sequence u(z;) which is unbounded and we get
a contradiction with the continuity of u. In order to show that (5.6) holds for any j € N we denote
zj = (x;,t;) and we remark that

Jj—1 2
TR 4
2
tj>t0_;Tri 2 to = 52 <Mm(1— Jmeas(S >

Qlw
0\“

S KH,
=0

for any j € N. Hence, if we set

Qe
o\w

Ty =

TR? 4 =
02 (Mﬁ(lp)meas ) ;K
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we can choose a sufficiently big constant M such that t; > to — Ty > 7 for every j € N. We next note
that
d(zj11,25) = |27t o zjall < cory, ViEN,

where ¢y = |27 0, (0,0)]. Besides,

max
2€H7;(0,0,1),7€[0,1]

J
d(zj,20) < Z Cr,d(zi, zi—1),

i=1

where Cr, is the constant in (2.4). Hence

" : T ;
. < co— K
d(z;,20) < co 3 (mM(l _ p)meas(5)> ;CTU ’

Since the constant Cr, in (2.4) goes to 1 as Ty — 0, it is possible to choose M so big that Cr, < K@ and,

then, the series Z;); C’%OK 7 s convergent. We finally remark that ¢y belongs to H~ and that H— is
a compact subset of int(Hgs r(¢, 7, TR?)), we can then choose a positive My, that depends on «, d, dp but
does not depend on R, such that (5.6) holds for any j € N. This accomplishes the proof. (]

In order to prove a non-local Harnack inequality we consider the cone K, defined as
Ky ={6(\)(z,—1): A >0,|z| <n}, Kn(20) = 20 0 Iy, (5.7)

and we state the following

Proposition 5.2. There exist three positive constants n, M and Ty, such that, if u : RN x]to, t1[— R is
a positive solution to Lu = 0, then
u(§,7) < Mu(z,t),

for every (z,t) € RN x]tg, t1] and (&, 7) € K,y (2,t) such that T > max {¢t — Tp, e }.

Proof. Tt is a simple corollary of Theorem 1.2, with « < 1/2 < § and Ty = T'/2. Tt is sufficient to consider
a cylinder Hy(z,t, R*T) C RN x]to, t1] such that (¢,7) € Hg (z,t, R*T). O

6 Non-local results

In this section we prove a non local Harnack inequality for positive solutions to Lu = 0 defined in a strip
RY x J, where J is an interval of R. The method was introduced by Aronson [1] and used by Aronson and
Serrin [2] in the study of uniformly parabolic operators, then it has been extended by Polidoro [27] to the
non-Euclidean setting of homogeneous Kolmogorov operators. The idea is to use repeatedly the (local)
Harnack inequality stated in Proposition 5.2. Here we set the problem in the theory of the optimal control
for linear systems with quadratic cost, and we generalize the result in [27], since we drop the homogeneity
property of the translation group.
Consider (z,t), (y,s) € RVN*! with ¢ > s, and let 7 : [0,¢ — 5] — R¥*! be a curve such that

Po

(1) = Y NX;+Y(F()

F(0) = (z,1), At —s5) = (),

(6.1)
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where X71,...,X,, and Y are defined in (1.6) and the controls A1, ...\, belong to L*([0,¢ — s]). If we
denote ¥(7) = (y(7),t — 7), with v : [0, — s] — RY, then (6.1) can be state in the equivalent form

Y(r) = BTy(r) + AT\(T)
{ 7(0)= =z, A(t—s)=y, (6.2)

where A(7) = (A1(7), ..., Apy (7),0,...,0)T € R¥. Tt is known that the condition H; implies the existence
of a path 7 that solves (6.2) (see [18], Theorem 5, p. 81). Among the paths ~ satisfying (6.2), we look
for the one minimizing the total cost

) = /0 7 IA(s) s, (6.3)

The general control theory provides the optimal control and gives the explicit expression of the optimal
cost. Our main result is the following

Theorem 6.1. Let Ty, M be the constants in Proposition 5.2 and let u : RNX]S —To,s+To[— R bea
positive solution to Lu = 0. Then

u(y, s) < MUFECT (1=9)@=B=)).a=B=9)) (1 1),

for every (x,t) € RN x|s, s + To[ (h is a positive constant depending only on Ty, A and B).
The first step in the proof of Theorem 6.1 is the following

Lemma 6.2. There exists a positive constant h such that, if v : [0,0] — RY is a solution to (6.2), and

/ IN(7T)|dr < h
0
then (y(7),t — 1) € KC,)(2,t) for every T € [0,0].
Proof. The explicit solution to (6.2) is
WD) = B+ [ B - AR o). (6.4)
0

If we decompose
. T
¥(7) = (1)), ()

with y0)(s) € RP, for j = 0,...,r, then a direct computation shows that (y(7),t —7) € K,y (2, t) if, and
only if, ' o
((v(r) = B(=7)2)P| <pritz, (6.5)

for j =0,...,r. By Remark 2.1, we find

1
. T . 1 T 2
(60 = B < [ o= ldo < ¢ ([ NP
for j =0,...,r, for some positive constants cj,...,c. only depending on o, A and B. Hence
(4(r) = B(-1)2)D| < VR it =0, 0

for every 7 € [0, 0], and (6.5) follows by choosing h is sufficiently small. This accomplishes the proof. O
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Lemma 6.3. Let Ty, M be the constants in Proposition 5.2, let h be the constant in Lemma 6.2 and let
(z,1), (y,8) € RVNTY be such that s <t < s+ Ty. Suppose that u : RN x|s — Ty, s + To[— R is a positive
solution to Lu = 0, and that v : [0,t — s] — RY is a solution to (6.2). Then

)
uly, s) < MU u(a, 1),
where C(\) is the total cost of the control corresponding to 7.

Proof. 1f f(fﬂ IA(T)|2dT < h, then the result is an immediate consequence of Lemma 6.2. If the above
inequality is not satisfied, we set

t—s
kmax{jEN:jh</ |>\(7)|2d7}. (6.6)
0
and define

(e
Uj:inf/ IN(T)|?dr > j h, j=1,...,k
a>0 Jo

Note that 0 < 01 < --- < o <t —s, so that

+ (s —1To)

t
t—0j>s>max{t—T0, 5 }, forj=1,...k. (6.7)

By Lemma 6.2 (y(01),t — 01) € K, (z,t), then u(y(o1),t — 01) < M u(z,t).

We next repeat the above argument: Lemma 6.2 ensures that (y(o2),t — 02) € Ky(vy(01),t — 01).
Moreover (6.7) holds, then Proposition 5.2 gives u(y(02),t — 02) < Mu(y(o1),t — o1) < M2 u(x,t). We
repeat the above argument until, at the (k + 1)-th step, we find

u(y, s) < Mu(y(on),t — o) < M u(z,t).
The thesis then follows from (6.6). O

Proof of Theorem 6.1. Consider the Hamiltonian function H related to the control problem (6.2) in the
interval [0,¢ — s]:

H(z,p) = pBTz, p=(p1,....pn), z=(x1,...,25)". (6.8)
The classical control theory for autonomous linear systems states that the optimal control is given by

1

A(T) = <A5>Tp(T)T, for some solution to p = —p BT (6.9)
(see [18], Theorem 3, p. 180). We use the above identity in (6.2), and we compute the explicit solution:
(1) = E(=7) (z + C(1)p(0)")
for some constant vector p(0) that is determined by the condition y(t — s) = y. We find
p(0)" =C7H(t — $)(E(t - s)y — x),

hence the optimal control is

and the optimal cost is

C(\) = /0 B INT)|2dr = (CHt — s)(x — E(t — s)y),x — E(t — 5)y).

The conclusion follows from Lemma 6.3. O
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Proof of Theorem 1.5. By Theorem 6.1 we have
t —1(¢
[(z,t) >T <O, 2> MR () for every (z,t) € RY x RY. (6.10)
We next claim that there exist two positive constants 77 and c¢; such that

t
F(O, 2) > 4 VO<t<T. (6.11)

V/det C(t)’

Indeed, from Remark 2.3 and from the explicit expression (1.10) of I'y and I't we get

t e [t £\ *? £\ ey (4)F
F<O,) > AT (0,> -C <> rt (0,) > 2 227
2 A\ 2 2) 7 Jaetc (2)

The claim (6.11) then follows form the fact that detC(t) is an increasing function, by (1.8). As a
consequence of (6.10) and (6.11) we then find

C1 —1—l(C71(i)w,J:) N
Iz,t) > ———=M 2 2 , for every (z,t) € R™ x]0,T1]. 6.12
@0zl y (a.1) € R )0, T (6.12)

We next show that there exist tree positive constants T5, ¢’ and ¢” such that
(T ),y <(CTH(t/2)z,2) < (T (), ) (6.13)
for every x € RN, 0 < t < T,. By the above inequalities and (6.12) we obtain

D(z,t) > ——t M1+ (Daa) (6.14)

T \/det C(t)

for every (z,t) € RY x]0, min {T}, 75} [. We next use (2.9) to prove (6.13). We have

1—crg . (Cot (5) x,x) < € (§)x,z) < 1+crs - Cot (L) z,z)
L+cert (ot (ta,z) — (€ t)z,x) — L—cpt  (Cy ' (H)x,z)

for every z € RN and ¢ €]0,T[ such that ¢ < é We next use the second identity in (2.7)

G (e _ G B D(5) =0 (%)
(Co'za) et 1)D (%) z,D (%) )

and the claim (6.14) follows from the fact that the constant matrices Cj ' (
positive. From (1.10) and (6.14) we easily find that

1) and Cy'(1) are strictly

I(z,t) > ¢ T (x,t), Ve e RY, 0 <t <min{Ty, T},

for some two positive constants g and ¢~, thus the proof is accomplished if T < min {77, T>}. If not,
we apply repeatedly the reproduction property of the fundamental solution (2.17) and we conclude the
proof after a finite number of steps. O

We now use Theorem 1.5 and the uniqueness result by result by Di Francesco and Pascucci ([11],
Theorem 1.6) to prove Theorem 1.6.

42



Proof of Theorem 1.6. We first show that, if v be a non-negative solution of Lu = 0 on the strip
RY x]0, T[, then

u(x,t) > /RN D(x,t,& m)u(€, 7)dE (6.15)

for every (x,t) € RVNx]0,T[ and 0 < 7 < t. For every n € N, we consider the function ¢, (x,t) =
1 — n,(z,t), where 7, is defined in (2.46). We recall that, for every n € N, ¢, € C*(RY), 0 < ¢, < 1,
on(z,t) = 1if ||[(z,t)]| < 2 and @y, (,t) = 0 if ||(z,t)|| > n. For every (z,t) € RVx]0,T[and 0 < 7 < t,
we set

Un(’l,’, t7 T) - /N F(I‘, ta 6, T)gon(f)U(f, T)df
R
Clearly, we have that Lu,(-,7) = 0 in RN x]7, T[ and

hm Unp (1‘7 ta T) = apn(y)U(y, T) S ’U,(y, T)
(z,t)—=(y,7)

for every y € RY. We then recall that ¢, u is a compactly supported continuous function and use the
upper bound (1.21) of I. We obtain

lim ( sup un(x,t,T)) =0

|z|—+o00 \r<t<T
hence, by the maximum principle, we get
0 <wup(x,t,7) <wu(z,t)+e (6.16)

for every (z,t) € RY x|, T and for any positive e. Thus, being I' and u positive, we find

n—-+4oo

fin_un(o,t,7) = [ o€ ru(e,r)de
RN
and (6.15) plainly follows from (6.16).
In order to conclude the proof, we note that, for every s €]0,¢[ there exist two positive constants
k1, ko, only depending on s,¢ and on the constant p in (1.22), such that
r=-(0,t,&7) > fege k1161
for every 7 € [0, s] and £ € RY. We then have
ke [ MU g <ep [ T, Tule e
RN RN
(by Theorem 1.5) < / 00,t, & m)u(g, 7)dE < (by (6.15)) < u(0,t)
RN

We next conclude the proof of the Theorem. Let u,v be two non negative solutions to the solution
of the Cauchy problem (1.19). By integrating the above inequality with respect to 7 €]0, s[, we obtain

T
R [0[RIl ) - ol ldedr < ul0,t) + o(0,1),
S 0 RN
then Theorem 1.6 in [11] implies that u = v in RY x [0, s[. This accomplishes the proof. O
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