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Abstract—This paper describes a modeling approach for
nonlinear dynamic systems based on a modified Volterra series;
by comparing the truncation error of this series with that of the
classical Volterra one, we outlined that, under the assumption of
short-term nonlinear memory effects, the modified series enables
a single-fold nonlinear convolution integral to be adopted also in
the presence of strong nonlinearities. The measurement-based
identification of the first terms of the modified Volterra series is
described; experimental and simulation results which confirm the
theoretical considerations are also provided.

Index Terms—Nonlinear dynamic model, nonlinear system,
Volterra series.

I. INTRODUCTION

I N MANY application fields, “black box” modeling of
nonlinear dynamic systems (i.e., in the absence of a detailed

microscopic description of the system structure) is important
for the experiment-based characterization and performance
evaluation. Such a modeling, however, is quite a complex
task owing to the simultaneous presence of both “memory”
and nonlinear effects [1]. In fact, when nonlinear effects are
negligible (or equivalently the input signal amplitude is small
enough) a complete system characterization can be obtained by
using the transfer function, which can be easily identified (e.g.,
by using vector voltmeters under sinusoidal operations) and
mathematically modeled (e.g., rational functions with constant
coefficients). Conversely, when memory effects are negligible
(or, equivalently, the signal bandwidth is small enough), the
system transcharacteristic can easily be deduced through a
sequence of low-frequency or “static” (i.e., dc) measurements
and then described in terms of general-purpose approximating
functions (e.g., polynomials or, preferably, “splines” for
strong nonlinearities). Unfortunately, when both nonlinear
and dynamic “memory” effects must be taken into account
simultaneously, a general-purpose “black-box” mathematical
description becomes necessarily very complex and almost
impossible to use in practice since the set of possible system
behaviors is extremely wide since includes any possible system
response. Thus, in practice, some approximations and limita-
tions, related to specific properties and/or operating conditions
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of the system, must be introduced. For instance, the Volterra
series [1]–[4], which is in principle capable of describing a very
large class of nonlinear systems with memory, can be practi-
cally used only for mildly nonlinear systems (or, equivalently,
for limited signal amplitude in strongly nonlinear systems),
where the kernels of higher order (typically greater than three)
can be neglected [5]–[9]. Thus, the truncated Volterra series
represents a general-purpose mathematical description for
systems under mildly nonlinear conditions, regardless of the
system memory and the signal bandwidth. However, in some
cases, the most likely operating conditions to be considered
for a system are somehow complementary to those which
enable the Volterra series truncation, in the sense that nonlinear
phenomena are strong, while the nonlinear memory effects are
quite limited (unwanted effects). This happens, for instance, in
electron devices, where nonlinearity is a “desired” effect, while
memory is an “unwanted” side effect.

A modified Volterra-like approach was recently introduced
as a viable, interesting alternative to the conventional one
[10]–[12]. This approach is based on a series of nonlinear
multifold convolution integrals which, unlike the conventional
Volterra integrals, are expressed in terms of “dynamic devi-
ations” of the input signal. This series can be truncated to
low-dimension terms (e.g., to single- or two-fold integrals)
not only for weak but also for relatively strong nonlinearities,
provided that the duration of the nonlinear “memory” effects is
“short” enough with respect to the signal period.

In this paper, the basic features of this modified Volterra series
are outlined (Section II) and the truncation errors are studied in
comparison with the classical Volterra formulation (Section III).
Measurement-based identification of the first terms of the mod-
ified Volterra series is described in Section IV, while simulation
results which confirm the theoretical considerations on the trun-
cation error are presented in Section V.

II. M ODIFIED VOLTERRA SERIES

The output signal of a nonlinear dynamic system with a
practically finite memory time (strictly speaking a “vanishing”
memory) can be described by a certain functional1 or a line-
function of its input signal in the memory interval
( ), where is the shift with respect to the
instant when the output is evaluated

(1)

1A functional [12] is a real-valued function whose domain is a set of real
functions. A simple example of functional, on the set of integrable real functions
defined on a prefixed domainD, is the integral onD.
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where is identically null in a nonanticipative system. To
represent the functional, we use the original symbolism intro-
duced by Volterra [13] and, coherently, we express the func-
tional description of the output signal through “a series with
memory” [3], [4], [12]

(2)

where is a constant independent of the input signal and

with (3)

is the th-dimensional Volterra term. Each term is there-
fore expressed by means of a multifold convolution integral over
the finite memory interval. The weight is
the th-order time-domain Volterra kernel of the system; each
kernel is bounded and a symmetrical function of its arguments.
The set of kernels describes the dynamic characteristics of the
nonlinear system. Equations (2) and (3) can be interpreted as an
extension of the well-known linear convolution integral, which
describes the time-domain response of a linear dynamic system
( ), to the nonlinear operation ( ).

By introducing the dynamic deviation

(4)

which represents the deviation of the signal with respect
to , the output signal at the instantcan be expressed by

(5)

Thus, the following dynamic-deviation-based Volterra series
[9]–[11] can be introduced:

(6)

where is the system response when the dynamic devia-
tions are identically null, i.e., it represents the response of the
nonlinear dynamic system to a dc input equal to and is a
purely algebraic function of

(7)

The memory effects in (6) are accounted for by the sum of terms

with (8)

which represent the th-dimensional modified Volterra terms
expressed as a multiple integral of the product ofdynamic de-

viations in the memory interval, evaluated with respect todif-
ferent shifts and weighted by theth-order modified
Volterra kernel . Each kernel is generally a nonlinear func-
tion of the reference signal . It can be shown (see the Ap-
pendix) that each term of the modified series can be expressed as
a function of the original Volterra kernels through the relation-
ships (39) and (43). From these equations we deduce that the
original Volterra series (2) is a particular case of the modified
Volterra one (6) since it can be obtained from (6) by imposing

.
From the previous considerations, it is clear that both the

conventional Volterra series and the modified one have the
same asymptotic convergence properties. However, when for
practical reasons only a relatively small, finite number of terms
must be considered, the basic properties of the two series are
quite different. For instance, when both the series are truncated
to the single-fold integral, the conventional Volterra model
corresponds to a linear convolution (i.e., a purely linear dy-
namic system), while the modified one is capable of describing
not only nonlinear systems without memory through the term

, but also some nonlinear dynamic effects represented by
the single-fold convolution integral. This happens since the
kernels in the modified series are nonlinearly dependent on
the instantaneous value of the input . Thus, an adequate
comparison of the two series should be based on the study
of the accuracy properties in the presence of quite a limited,
practically usable, number of terms.

A qualitative comparison between the Volterra series and the
modified one can be made by referring to the periodic signal

reported in Fig. 1(a) as a function both of the time
and the shift . The contributions of the successive products,
which appear in (3), of the shifted signals of Fig. 1(a) may turn
out to be quite large also in the presence of a short memory
interval. Instead, the dynamic deviations can be small
even in the presence of large values of the input signal, provided
that the memory interval is sufficiently short [Fig. 1(b)]. Under
these conditions, the contributions of the successive products in
(8) become progressively less important. In other words, we can
characterize the system with a small number of terms using the
Volterra series only in the presence of a small amplitude signal,
independently of the memory interval; instead, we can repre-
sent the output signal with a small number of terms using the
modified Volterra series also in the presence of large amplitude
signals if the memory interval is sufficiently short. In the next
section, these considerations are mathematically outlined.

III. T RUNCATION ERRORS OF THEVOLTERRA SERIES

AND THE MODIFIED ONE

In the following, the convergence properties of the conven-
tional Volterra series and the modified one will be studied and
compared. In particular, as far as the conventional series is con-
cerned (2) and (3), we can write

(9)
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Fig. 1. (a) Input signals(t � �). (b) Associated dynamic deviatione(t; �) plotted as a function both of the timet and the shift� .

where is the remainder of the series truncated to the
th-order term

(10)

Moreover, taking into account well-known properties of the ab-
solute values of sums and integrals, we have

(11)

and, by indicating with the maximum absolute ampli-
tude of the input signal in the memory interval, i.e.,

for , we can write

(12)

We introduce now the positive parameter defined as follows:

for (13)

This parameter is evaluated through the multiple integral of the
absolute Volterra kernel of the same dimensionand represents
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an equivalent amplitudeof the th-order nonlinear effects. If
these equivalent amplitudes have an upper limit, we can intro-
duce their maximum

(14)

By substituting (13) and (14) in (12), taking into account the
properties of the geometric series under the hypothesis that

, we can write

(15)

Therefore, the superior limit of the absolute truncation
error of the Volterra series, which becomes negligible when

, depends on the joint contribution of
the maximum equivalent amplitude of the nonlinear
effects of the system and the maximum amplitude of
the input signal. More precisely, (15) shows that, in order to
keep the truncation error within sufficiently small values, for
a given system characterized by a given value of , it
may be necessary to limit the maximum amplitude of
the input signal in the memory interval. In practical cases, the
Volterra series must be truncated to the third- or fourth-order
terms since it is very difficult to identify higher order terms
[5]–[8]. Thus, (15) implies that, for accuracy reasons, the signal
amplitude must be small enough to guarantee mildly nonlinear
operation even when the input signal bandwidth is so small
that the “memory effects” in the system are of a relatively short
duration, or even negligible.

The truncation error properties of the modified series, in-
stead, are quite different since the integral series expansion is
expressed in terms of the dynamic deviations

instead of simply . This leads to more complex
kernels [as they are nonlinearly dependent on the present signal
value ]; however, this greatly increases the “descriptive ca-
pabilities” of the first terms of the modified series. In fact, the
term in (6) clearly describes a nonlinear system without
memory, while in the conventional Volterra series the corre-
sponding term is not normally considered as it would simply
be a constant [4]. Analogously, while the single-fold integral in
the conventional Volterra series (3) simply describes a purely
linear dynamic system, the corresponding one in (8) describes
a nonlinear system with memory through a linear convolution
nonlinearly controlled by . Thus, the modified Volterra se-
ries truncated to the single-fold integral term can be used for the
modeling of some types of nonlinear dynamic systems. More
precisely, as will be shown in the following and in accord to
the examples provided in Section V, the modified series can be
truncated to when dealing with nonlinear systems whose

operating conditions satisfy a “short term” memory constraint.
In such cases, kernel identification becomes quite easy, since it
can be carried out directly on the basis of conventional dc mea-
surements and small-signal bias-dependent ac parameters (Sec-
tion IV).

In order to evaluate the truncation error of the modified
Volterra series, (6) can be conveniently rewritten, by taking into
account (8), in this form

(16)

where is the remainder of the series truncated to the single-
dimensional term, that is

(17)
We can quite reasonably assume that is differentiable
with respect to in the memory interval; this is true for finite
bandwidth signals (for example this excludes strictly “ideal”
square or triangular waveforms but includes the corresponding
“real” ones). By expressing the dynamic deviations in the La-
grange form, we can rewrite (4) as

(18)

with . By substituting into (17) we obtain

(19)

For well-known properties of the absolute values of sums and
integrals, we have

(20)

By introducing the maximum of the signal derivative within the
memory time interval

(21)
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(20) can be rewritten as follows:

(22)

As far as the nonlinear dynamic characteristics of the system are
concerned, we can define the parameters and . The
first one, which has the physical dimension of time, is defined
as follows:

(23)

and can be interpreted as an equivalent time-duration of the
th-dimensional kernel. The second parameter is positive and

defined as follows:

with (24)

It takes into account the equivalent amplitude of the purely dy-
namic nonlinear effects of orderthrough the multiple integral
of the absolute kernel of the same dimension. By recalling (13)
and (43), we can deduce that, for , the term of the
modified series coincides with the corresponding termof the
conventional one.

By considering (23) and (24), the upper bound on the trunca-
tion error defined by (22) can be rewritten as follows:

(25)
Under the hypothesis that both the parameters and
have an upper limit

(26)

where is the maximum equivalent memory time-duration
of the purely dynamic nonlinear effects associated to the re-

mainder of the series and the corresponding maximum
equivalent amplitude, (25) becomes

(27)

In order to emphasize the relationship between signal ampli-
tude, frequency,2 shape, and the corresponding truncation error,
the positive adimensional peak-derivative shape-factoris in-
troduced

(28)

where and represent the peak-to-peak amplitude of the
signal and its fundamental frequency, respectively. By substi-
tuting into (27), we obtain

(29)

By indicating with the following quantity:

(30)

taking into account the properties of the geometric progressions
and assuming3 , we obtain the final relationship

(31)

Therefore, the truncation properties of the dynamic-deviation-
based series depend basically on the product of the maximum
equivalent amplitude of the nonlinear purely dynamic ef-
fects and the quantity . It is important to point out
that in this case the upper limit of the truncation error depends,
for a given signal shape (i.e., for a given), not only on the
maximum peak-to-peak signal amplitude and on the max-
imum equivalent amplitude of the purely dynamic non-
linear effects, but also on the product between the correspon-
dent maximum equivalent time-duration of the nonlinear
effects in the system and the input signal frequency. There-
fore, this series can be truncated to the one-dimensional kernel
even in the presence of strong nonlinear effects provided that the
product is small enough for a given shape-factor. In
particular, it should be emphasized that, in the dynamic-devi-
ation-based Volterra series, the truncation error depends, for a
given system, not only on the amplitude of the applied signal,
as in the conventional Volterra description, but on a trade off be-
tween its peak-to-peak value and fundamental frequency for a

2For simplicity, a periodic signals(t) with fundamental frequencyf is con-
sidered in the following.

3The condition0 < b < 1 is necessary for the convergence of the modified
Volterra series.
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Fig. 2. Qualitative description of the region of validity of the Volterra series
and the modified one truncated to the first terms.

given “shape” (or equivalently its bandwidth). The upper limit
of the truncation error in the Volterra series is instead dependent
only on the signal amplitude and, unfortunately, is not neces-
sarily small in the presence of low-bandwidth signals.

The different behavior of the two series when only a limited
number of terms is used can be qualitatively described by Fig. 2,
where the regions of validity4 of both the truncated Volterra
series and the truncated modified one are schematically repre-
sented in the space of the signal amplitudeand its fundamental
frequency . In particular, the area below the line sym-
bolically represents the validity region of the truncated conven-
tional Volterra series since, according to (15), in order to guar-
antee, for a given system (i.e., given ), a given upper limit
on the truncation error , an upper limit on the signal ampli-
tude must be imposed. In particular, for the
conventional Volterra series simply becomes a single-fold linear
convolution, which can only be used under the so called “small
signal” operating conditions (see the area below the line

). Instead, the validity region for the modified Volterra series
with is symbolically represented by the “hyperbolic”
region below the solid line in Fig. 2. In fact, for a given system
(i.e., given and ), for a constant shape factor of the
signal and by reasonably assuming , (31) can be approx-
imated by (where is a constant), which
shows that the constant truncation error locii have an upper
limit defined by a hyperbolic function in the space.
In particular, for the modified Volterra series becomes
a purely “static” nonlinear transcharacteristic , whose va-
lidity is clearly limited to low-frequency operations (area lim-
ited by the line in Fig. 2). Clearly, the conventional
Volterra series is preferable for mildly nonlinear systems with
strong memory effects (i.e., relatively high operating frequen-
cies). The modified series, instead, is usable also in strongly
nonlinear operation provided that memory effects in the system

4That is, the regions where the truncation error is within a given limit.

are relatively short with respect to the signal frequency (i.e.,
small product). This condition is satisfied, for instance,
in electron devices described in a voltage-controlled form (pos-
sibly after parasitic de-embedding5 ), or in S/H-ADC devices
(eventually after suitable modifications in the system descrip-
tion) [14]. In such cases, the modified Volterra series can be
truncated [see (16)] to the first convolution integral. Moreover,
(16) shows an interesting analogy with the small-signal descrip-
tion of a system. In fact, the short-term memory concept (i.e.,
small dynamic deviations) enables the description in terms of
a single convolution integral with respect to the dynamic de-
viations to be adopted even under large signals. Likewise, the
small-signal hypothesis allows for the description in terms of a
convolution integral with respect to the small signals applied.

IV. M EASUREMENT-BASED IDENTIFICATION OF THE

TRUNCATED MODIFIED VOLTERRA SERIES

The identification of the modified Volterra series truncated to
the first terms (16)

(32)

can easily be carried-out by means of frequency-domain mea-
surements. To this end, we consider a discrete spectrum signal

, described by the generalized Fourier series

(33)

where , and ; by introducing
the Fourier transform of the first-order kernel

for a system with limited memory duration

(34)

the term can be expressed as follows:

(35)

where

(36)

5“Intrinsic” electron devices (i.e., devices not affected by relevant parasitic
effects) are characterized by very short memory effects. This is justified both
by experimental and simulated results [10], [11], [16] and is coherent with the
description of device behavior in terms of quasistatic voltage-controlled charges.
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with and . There-
fore, the truncated modified Volterra series of (32) can be ex-
pressed [14] in the form (7)

(37)

The quantity represents a nonlinear purely dynamic
function which weights the contribution to the output of each
spectral component of the input signal and depends both on the
instantaneous value and frequency of the input signal. Equation
(37) is another, more convenient, way of representing the
proposed nonlinear dynamic model defined by (6)–(8), when
the integral series is truncated to the first, single-fold integral.
Moreover, (37) provides a straightforward way of computing
the system output to any input signal , defined by a given
set of discrete spectral components, once the algebraic
function and the nonlinearly controlled transfer func-
tion have been measured for any frequencyand
any input signal value over the region of possible operating
conditions of the system to be modeled. To this end, a suitable
identification experimental procedure, based on bias-dependent
small-signal measurements, can be defined by using (37). In
fact, by considering an input test signal made up of a dc bias
component and a superimposed small sinusoidal signal with
amplitude and frequency , by expanding (37) in
the Taylor series with respect to the variable around

and by assuming the system to be linear with respect to the
sinusoidal component, we can write [14]

(38)

Since, according to (36), , (38) shows that the
nonlinear algebraic function can be directly measured
by pure dc measurements [i.e., ] of the static
transcharacteristic of the system. Instead, the frequency and
signal dependent complex function, which characterizes the
nonlinear dynamics of the system, can be completely character-
ized by measuring, with a vector voltmeter, the bias-dependent
small-signal transfer function . In fact, according to
(38), the complex function can be directly computed,
for any value and , as

(39)

where clearly represents the
low-frequency small-signal transfer function of the system at
the bias point . Thus, on the basis of conventional mea-
surements of the bias-dependent small-signal transfer function

, the nonlinearly controlled purely dynamic transfer
function can be easily deduced from a sufficiently

large discrete set of bias and frequency values in order to obtain,
through a suitable interpolation procedure, the nonlinear purely
dynamic transfer function .

The nonlinear dynamic model defined by (37) can be easily
implemented in conventional simulation tools. In fact, (37),
when the system output is directly expressed in terms of
both time-domain values and spectral componentsof the
input signal can be directly embedded within harmonic-balance
circuit analysis algorithms (this was done in order to obtain the
simulated results described in Section V). However, this is not
always possible, since the source code of commercial circuit
or systems simulators is normally not accessible to the user.
In such cases, nonlinear model (37) or (32) must be somehow
approximated with negligible loss of accuracy, in order to
allow for model implementation through the typical user tools
available in the input interfaces of commercial simulation
packages.

For instance, the convolution integral in (32) can be dis-
cretized, so that the nonlinear model can be described in
terms of elementary delay operators and nonlinear memoryless
elements. This approach was adopted for implementing the
nonlinear dynamic model of a S/H-ADC device [17].

V. SIMULATED RESULTS

According to the considerations made in the previous sec-
tion, the identification of the nonlinear model defined by (37)
is relatively easy as it can be carried out on the basis of conven-
tional dc and bias-dependent small-signal ac measurements. The
model can be used to predict the large-signal dynamic system
response provided that the “short memory” condition, which
guarantees a sufficiently small truncation error, is verified. Rel-
atively short duration of nonlinear memory phenomena is com-
monly encountered in devices whose response must be neces-
sarily “fast,” as happens for instance in sample-hold devices or
electron devices when described in a voltage controlled form.6

Thus, the accuracy of the nonlinear dynamic model in (37) [11,
nonlinear integral model, (NIM )]) obtained by truncating the
modified Volterra series to the first term has been experimen-
tally verified for field-effect transistors operating at microwave
frequencies under strongly nonlinear operation [10], [16]–[18].
The extension of the model in (37) to the case of two-port elec-
tron devices is straightforward since it is sufficient to consider
(37) as a matrix description where and are the vectors
of port currents and voltages, and , suitable 2 2
matrices.

The NIM was identified through the procedure described in
Section IV, i.e., by means of conventional measurements (dc
characteristic and frequency-bias dependent small-signal ac pa-
rameters), and implemented in a harmonic-balance (HB) pro-
gram for circuit analysis. As an example, Fig. 3 shows the ex-
cellent agreement between the measured output power spec-
trum and the performance predicted by the NIM for an Al-
catel-Telettra 0.6 600 m GaAs MESFET 50 amplifier with
sinusoidal source at 5 GHz.

6In fact, in “quasistatic charge-controlled” models, charges stored within the
intrinsic device are normally considered as instantaneous, “memoryless” func-
tions of the voltage applied.
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Fig. 3. Comparison between measured (�) and predicted (–) output power
spectrum for a 600� 0.6 �m GaAs MESFET versus input power at
f = 5 GHz.

Fig. 4. Flow-chart of the simulation procedures adopted to practically validate
the properties of the dynamic-deviation-based Volterra series.

In order to provide a “practical” confirmation of the relevant
properties of the dynamic-deviation-based series in terms of the
upper limit of the truncation error (31), the following simulated
experiment, described by the flow-chart in Fig. 4, has been
carried out. A highly accurate two-dimensional (2-D) drift-dif-
fusion simulator was adopted to identify the NIM for a 0.5-m
field-effect transistor. As described in [10], [15], and [16], dc
characteristics and frequency-bias dependent small-signal ac
parameters were accurately computed on a suitable grid of bias
conditions and in the chosen frequency range. The identified
model was used, in the framework of a microwave circuit anal-
ysis program based on HB techniques, to predict the nonlinear
dynamic performance of a common-source, 50-loaded,
microwave amplifier driven under strongly nonlinear operation
by a large-signal sinusoidal source. The results were compared
with the performance predicted for the same amplifier by means
of the 2-D drift-diffusion simulator.7 In particular, Fig. 5 shows
the constant error loci, associated to maximum discrepancies
of 2% and 5% between the instantaneous values of the drain

7The strong difference between the two kinds of simulators should be
outlined: the first one is based on the highly accurate numerical solution of
the physics-based Poisson’s and continuity semiconductor equations, and
the second one based on the approximated mathematical black-box model
described by (37).

Fig. 5. Constant error loci corresponding to maximum discrepancies between
the instantaneous values of the drain currents predicted by the NIM and 2-D
drift-diffusion simulations, for a common-source, FET large-signal amplifier.

currents computed by means of the 2-D and HB simulations,
plotted as functions of the peak-to-peak gate-to-source voltage

and the source frequency. It must be said that the sim-
ulations in Fig. 5 correspond to relatively strong nonlinear
operation since the associated gain compression (which is con-
ventionally adopted as a measure of the level of nonlinearity)
goes from a minimum of 2 dB at 20 GHz to a maximum of 7 dB
at 2 GHz. The errors loci in Fig. 5 are clearly in accordance
with the upper absolute limit defined by (31) and shown in
Fig. 2. In particular, Fig. 5 points out that the accuracy of the
NIM, as predicted by (37), is mainly dependent on a trade off
between the peak-to-peak voltage (i.e., ) and the operating
frequency (i.e., ). In other words, the same level of accuracy
can be obtained at higher frequencies if the value of the
input voltage (i.e., the level of nonlinearity) is reduced. It can
be observed that the constant truncation-error loci associated,
for a given system, to the Volterra series would be represented
by horizontal lines in the space since the convergence
properties of the Volterra series depend only on the input signal
amplitude (see Fig. 2).

VI. CONCLUSIONS

A mathematical approach for the measurement-based mod-
eling of nonlinear dynamic systems having relatively short non-
linear memory effects has been described. It has been derived by
truncation of a suitably modified Volterra series expansion ob-
tained by introducing the dynamic deviations of the input signal
with respect to its past values. In particular, it has been shown
that, unlike the Volterra series, the truncation error can be neg-
ligible, even for strongly nonlinear operation, provided that the
“short” term nonlinear memory condition is satisfied or, more
precisely, an upper limit is imposed on the amplitude-frequency
product which characterizes a given input signal. Under this hy-
pothesis model-identification can be easily carried out in the fre-
quency domain on the basis of small signal bias-dependent con-
ventional measurements. The validity of this approach has been
preliminary tested in the nonlinear modeling of field-effect tran-
sistors both through direct measurements and comparison with
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the results of 2-D numerical device simulations based on ac-
curate physics models. Good agreement was found in all cases
with the performance predicted by the mathematical model pro-
posed.

APPENDIX

By introducing in (3) the dynamic deviation (4) and
developing the products, theth-order functional of the Volterra
series can be written in the following form [11]:

(40)

By substituting (40) in (2) we can write

(41)

where

(42)

is the response of the system when the dynamic deviations are
identically null; therefore, represents the static character-
istic of the device. Equation (42) shows that the quantity
can be expressed as a power series in the variable, where
the coefficient of coincides with the multiple integral of
the correspondingth-order Volterra kernel.

Taking into account that there are no terms with index
in the sum of (41), by inverting the order of summation and by
substituting for , we can deduce the following expression:

(43)

where the second term represents the output of a purely dynamic
nonlinear system because it takes into account only the dynamic
deviations of the signal within the interval
around the actual instant. Equation (43) can be rewritten syn-
thetically as a modified Volterra series [12]

(44)

where the quantity represents the th-order term of the
modified series and is given by

(45)

This equation shows that the strictly dynamic phenomena
are described by multidimensional convolution integrals of
the signal dynamic deviations
with the th-order modified kernel . By
comparing (45) and (43), we can deduce that

(46)

where we have separated the term with and in the re-
maining terms we have substituted the generic indexwith

. Each modified kernel is nonsta-
tionary and symmetric with respect to its arguments; it is equal
to the sum of the same order original Volterra kernel plus a sum
of contributions directly related to higher-order kernels of the
original Volterra series. Eachth term of this summation is a
function of both and of , since it is obtained
by integrating the original Volterra kernels of an order greater
than in the space with . From (46), we
can also see that, according to (45) and (3),

and consequently when .
This means that the modified kernels coincide with the original
Volterra ones when evaluated for . From (46), we can
also see that and, conse-
quently, according to (45) and (3), , since
equal to for .

When the system is linear with memory, all the kernels of
the traditional Volterra series of order greater than one are null

for . Therefore, from (42) we deduce that

(47)

Furthermore, from (43), we obtain that also the kernels of the
modified Volterra series of an order greater than one are null
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while the first order kernel is independent of and coincides
with the corresponding one of the traditional Volterra series, that
is

(48)

while

for (49)

By substituting (47) and (48) in (8) and (6), we obtain the well-
known linear convolution integral

(50)

REFERENCES

[1] H. W. Chen, “Modeling and identification of parallel nonlinear systems:
Structural classification and parameter estimation methods,”Proc.
IEEE, vol. 83, pp. 39–66, Jan. 1995.

[2] J. J. Bussgang, L. Ehrman, and J. W. Graham, “Analysis of nonlinear
systems with multiple inputs,”Proc. IEEE, vol. 62, pp. 1088–1119, Aug.
1974.

[3] M. Schetzen,The Volterra and Wiener Theories of Non-Linear Sys-
tems. New York: Wiley-Interscience, 1980.

[4] J. S. Bendat,Non-Linear System Analysis & Identification From Random
Data. New York: Wiley, 1990.

[5] S. Boyd, Y. S. Tang, and L. O. Chua, “Measuring Volterra kernels,”IEEE
Trans. Circuits Syst., vol. 30, pp. 571–577, Aug. 1983.

[6] L. O. Chua and Y. Liao, “Measuring Volterra kernels (II),”Int. J. Circuit
Theory Appl., vol. 17, no. <AU: ISSUE NO:?>, pp. 151–190, 1989.

[7] , “Measuring Volterra kernels (III): How to estimate the highest
significant order,”Int. J. Circuit Theory Appl., vol. 19, no. <AU: ISSUE
NO:?>, pp. 189–209, 1991.

[8] C. Evans, D. Rees, L. Jones, and M. Weiss, “Probing signals for mea-
suring nonlinear Volterra kernels,” inProc. Instrumentation and Mea-
surement Technology Conf. (IMTC’95), Boston, MA, June 1995, pp.
10–15.

[9] B. J. Leon and D. J. Schaefer, “Volterra series and Picard iteration of non-
linear circuits and systems,”IEEE Trans. Circuits Syst., vol. CAS-25, pp.
789–792, Sept. 1978.

[10] F. Filicori and G. Vannini, “Mathematical approach to large-signal mod-
eling of electron devices,”Electron. Lett., vol. 27, no. 4, pp. 357–359,
1991.

[11] F. Filicori, G. Vannini, and V. A. Monaco, “A nonlinear integral model
of electron devices for HB circuit analysis,”IEEE Trans. Microwave
Theory Tech., vol. 40, pp. 1456–1465, July 1992.

[12] D. Mirri, G. Iuculano, F. Filicori, G. Vannini, G. Pasini, and G. Pelle-
grini, “A modified Volterra series approach for the characterization of
nonlinear dynamic systems,” inProc. IEEE Instrumentation and Mea-
surement Technology Conf. (IMTC’96), Brussels, Belgium, June 1996,
pp. 710–715.

[13] V. Volterra,The Theory of Functionals and of Integral and Integro-Dif-
ferential Equations. New York: Dover, 1959.

[14] D. Mirri, G. Iuculano, F. Filicori, G. Pasini, and G. Vannini, “Modeling
of non ideal dynamic characteristics in S/H-ADC devices,” inProc.
IEEE Instrumentation and Measurement Technology Conf. (IMTC’95),
Boston, MA, Apr. 1995, pp. 27–32.

[15] D. Mirri, G. Pasini, F. Filicori, G. Iuculano, G. Vannini, and G. Neri, “A
nonlinear dynamic modeling approach for the characterization and error
compensation in sampling digital instruments,” inProc. 14th IMEKO
World Congress, vol. IVA, Tampere, Finland, June 1997, pp. 37–42.

[16] G. Vannini, “Non-linear integral modeling of dual-gate GaAs Mesfets,”
IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1088–1091, June
1994.

[17] D. Mirri, G. Pasini, P. A. Traverso, F. Filicori, and G. Iuculano, “A fi-
nite-memory discrete-time convolution approach for the nonlinear dy-
namic modeling of S/H-ADC devices,” inProc. IMEKO TC-4 Symp.
ADC Modeling and Testing, Lisbon, Portugal, Sept. 2001, pp. 23–27.

[18] F. Filicori, G. Vannini, A. Santarelli, D. Torcolacci, and V. A. Monaco,
“Accurate prediction of intermodulation distortion in GaAs MESFETS,”
in Proc. 25th Eur. Microwave Conf., Bologna, Italy, Sept. 1997, pp.
625–629.

[19] G. Vannini, F. Filicori, and A. Santarelli, “Integral approaches to non-
linear modeling of electron devices,” inProc. Workshop Nonlinear Mea-
surements and Modeling, 1997 IEEE MTT-S, Denver, CO, June 1997.

Domenico Mirri (M’91) was born in Imola, Italy in
1936. He received the M.S. degree in electronic en-
gineering from the University of Bologna, Bologna,
Italy, in 1963.

Currently, he is a Full Professor of electronic mea-
surements at the University of Bologna. His current
research interests are in the areas of digital measure-
ment instruments, devices metrological characteriza-
tion, and biomedical measurements.

Gaetano Iuculano (M’66) received the degree
in electronic engineering from the University of
Bologna, Bologna, Italy.

He is currently a Professor of electrical measure-
ments and metrology at the Department of Electronic
Engineering of the University of Florence, Florence,
Italy. He has experience in calibration applications
and planning experiments, in reliability analysis and
life testing for electronic devices and systems, and
considerable expertise in practical statistical analysis
for electrical engineering. He has authored and coau-

thored more than one hundred technical papers in his current research interests.

Fabio Filicori (M’98) was born in Imola, Italy in
1949. He received the degree in electronic engi-
neering from the University of Bologna, Bologna,
Italy, in 1964.

He is currently a Full Professor of applied
electronics at the University of Bologna. His current
research interests are in the areas of nonlinear
circuit analysis and design, electronic devices
modeling, digital measurement instruments, and
power electronics.

Gaetano Pasini(M’97) was born in Imola, Italy in
1964. He received the M.S. degree in electronic en-
gineering from the University of Bologna, Bologna,
Italy 1991.

Currently, he is with the University of Bologna,
where he is Associate Professor in electrical mea-
surement. His research activity is mainly oriented to
digital signal processing in electronic instruments,
power measurements, and characterization of
nonlinear systems with memory.



1128 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 8, AUGUST 2002

Giorgio Vannini (S’87–M’92) received the Laurea
degree in electronic engineering and the Ph.D. degree
in electronic and computer science engineering, from
the University of Bologna, Bologna, Italy, in 1986
and 1992, respectively.

In 1992, he joined the Department of Electronics of
the University of Bologna, as a Research Associate.
Since November 1998, he has been an Associate Pro-
fessor at the Faculty of Engineering, Dipartimento di
Ingegneria, University of Ferrara, Ferrara, Italy. His
research activity is mainly devoted to electron device

modeling, CAD techniques for MMICs, and nonlinear circuit analysis and de-
sign.

Gabriella Pellegrini Gualtieri graduated from the
University of Rome, Rome, Italy, in 1965.

She is currently an Associate Professor of
mathematical analysis at the University of Florence,
Florence, Italy. Her research interests include
numerical methods of nonlinear dynamic systems
and uncertainty estimation in metrology by statistical
techniques and probability theory.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


