1118 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 8, AUGUST 2002

A Modified Volterra Series Approach for Nonlinear
Dynamic Systems Modeling

Domenico Mirri Member, IEEE Gaetano luculandMiember, IEEE Fabio Filicori Member, IEEE
Gaetano PasinMember, IEEEGiorgio Vanninj Member, IEEEand Gabriella Pellegrini Gualtieri

Abstract—This paper describes a modeling approach for of the system, must be introduced. For instance, the Volterra
nonlinear dynamic systems based on a modified Volterra series; series [1]-[4], which is in principle capable of describing a very
by comparing the truncation error of this series with that of the large class of nonlinear systems with memory, can be practi-

classical Volterra one, we outlined that, under the assumption of . . .
short-term nonlinear memory effects, the modified series enables cally used only for mildly nonlinear systems (or, equivalently,

a single-fold nonlinear convolution integral to be adopted also in for limited signal amplitude in strongly nonlinear systems),
the presence of strong nonlinearities. The measurement-basedwhere the kernels of higher order (typically greater than three)
identification of the first terms of the modified Volterra series is can be neglected [5]-[9]. Thus, the truncated Volterra series
described; experimental and simulation results which confirm the represents a general-purpose mathematical description for
theoretical considerations are also provided. systems under mildly nonlinear conditions, regardless of the
Index Terms—Nonlinear dynamic model, nonlinear system, system memory and the signal bandwidth. However, in some
Volterra series. cases, the most likely operating conditions to be considered
for a system are somehow complementary to those which
enable the Volterra series truncation, in the sense that nonlinear
phenomena are strong, while the nonlinear memory effects are
N MANY application fields, “black box” modeling of qguite limited (unwanted effects). This happens, for instance, in
nonlinear dynamic systems (i.e., in the absence of a detailgéctron devices, where nonlinearity is a “desired” effect, while
microscopic description of the system structure) is importaﬁ{emory is an “unwanted” side effect.
for the experiment-based characterization and performancey modified Volterra-like approach was recently introduced
evaluation. Such a modeling, however, is quite a complgg a viable, interesting alternative to the conventional one
task owing to the simultaneous presence of both “memory{o]_[lz]_ This approach is based on a series of nonlinear
and nonlinear effects [1]. In fact, when nonlinear effects aggyitifold convolution integrals which, unlike the conventional
negligible (or equivalently the input signal amplitude is smallp|terra integrals, are expressed in terms of “dynamic devi-
enough) a complete system characterization can be obtainegiiyns” of the input signal. This series can be truncated to
using the transfer function, which can be easily identified (e.ggw-dimension terms (e.g., to single- or two-fold integrals)
by using vector voltmeters under sinusoidal operations) apgt only for weak but also for relatively strong nonlinearities,
mathematically modeled (e.g., rational functions with constagovided that the duration of the nonlinear “memory” effects is
coefficients). Conversely, when memory effects are negligiblghgrt” enough with respect to the signal period.
(or, equivalently, the signal bandwidth is small enough), the |n this paper, the basic features of this modified Volterra series
system transcharacteristic can easily be deduced througBra outlined (Section I1) and the truncation errors are studied in
sequence of low-frequency or “static” (i.e., dc) measurememigmparison with the classical Volterra formulation (Section I11).
and then described in terms of general-purpose approximatiigasurement-based identification of the first terms of the mod-
functions (e.g., polynomials or, preferably, “splines” foified Volterra series is described in Section IV, while simulation

strong nonlinearities). Unfortunately, when both nonlinegesyits which confirm the theoretical considerations on the trun-
and dynamic “memory” effects must be taken into accoughtion error are presented in Section V.

simultaneously, a general-purpose “black-box” mathematical
description becomes necessarily very complex and almost II. MODIFIED VOLTERRA SERIES

impossible to use in practice since the set of possible system . ) . .
behaviors is extremely wide since includes any possible system! N€ output signak(#) of a nonlinear dynamic system with a

response. Thus, in practice, some approximations and limigjactically finitt memory time (strictly speaking a “vanishing”

tions, related to specific properties and/or operating conditiof{€MOry) can be described by a certain functiorad a line-
function of its input signals(¢ — 7) in the memory interval
(—T4 < 7 < +Tp), wherer is the shift with respect to the
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where T4 is identically null in a nonanticipative system. Toviations in the memory interval, evaluated with respeat thf-
represent the functional, we use the original symbolism intréerent shiftsr, ..., and weighted by theth-order modified
duced by Volterra [13] and, coherently, we express the fundelterra kernel,.{-}. Each kernel is generally a nonlinear func-
tional description of the output signa(t) through “a series with tion of the reference signal¢). It can be shown (see the Ap-
memory” [3], [4], [12] pendix) that each term of the modified series can be expressed as
- a function of the original Volterra kernels through the relation-
ships (39) and (43). From these equations we deduce that the
u(t) = o+ Z Un(t) 2) original Volterra series (2) is a particular case of the modified
n=t \olterra one (6) since it can be obtained from (6) by imposing

wherey, is a constant independent of the input signal and ~ s(t) = 0.
From the previous considerations, it is clear that both the

15 n conventional Volterra series and the modified one have the

yu(t) = / ~~~/hn(r1, T2y vny Tn) H [s(t — ;) dr;], same asymptotic convergence properties. However, when for
_T, i=1 practical reasons only a relatively small, finite number of terms

withn > 1 A3) must be considered, the basic properties of the two series are

quite different. For instance, when both the series are truncated

is thenth-dimensional Volterra term. Each temp(t) is there- 10 the single-fold integral, the conventional Volterra model
fore expressed by means of a multifold convolution integral ovEPrrésponds to a linear convolution (i.e., a purely linear dy-
the finite memory interval. The weighit, (71, 72, ..., 7,) is Nnamic system), while the modified one is capable of describing
the nth-order time-domain Volterra kernel of the system; eadhPt only nonlinear systems without memory through the term
kernel is bounded and a symmetrical function of its arguments(t), but also some nonlinear dynamic effects represented by
The set of kernels describes the dynamic characteristics of i@ single-fold convolution integral. This happens since the
nonlinear system. Equations (2) and (3) can be interpreted akgfels in the modified series are nonlinearly dependent on
extension of the well-known linear convolution integral, whicfihe instantaneous value of the inpyt). Thus, an adequate
describes the time-domain response of a linear dynamic systépparison of the two series should be based on the study

(n = 1), to the nonlinear operatiom (> 1). of the accuracy properties in the presence of quite a limited,
By introducing the dynamic deviatiar(t, 7) practically usable, number of terms. .

A gqualitative comparison between the Volterra series and the

et, 7) = s(t — 1) — s(t) (4) modified one can be made by referring to the periodic signal

s(t — 7) reported in Fig. 1(a) as a function both of the time
which represents the deviation of the sigs@l ) with respect and the shiftr. The contributions of the successive products,
to s(t), the output signal at the instantan be expressed by  which appear in (3), of the shifted signals of Fig. 1(a) may turn

out to be quite large also in the presence of a short memory

1 interval. Instead, the dynamic deviatioa&, =) can be small
ult) = FHS(t)j—Tf(t’ ol ) even in the presence of large values of ter:(e inp)>ut signal, provided
) that the memory interval is sufficiently short [Fig. 1(b)]. Under
Thus, the following dynamic-deviation-based Volterra serighese conditions, the contributions of the successive products in
[9]-[11] can be introduced: (8) become progressively less important. In other words, we can
characterize the system with a small number of terms using the
Volterra series only in the presence of a small amplitude signal,
u(t) = #(t) + Z #n(t) ©6) independently of the memory interval; instead, we can repre-
n=t sent the output signal with a small nhumber of terms using the
where zy(t) is the system response when the dynamic devigodified Volterra series also in the presence of large amplitude
tions are identically null, i.e., it represents the response of thignals if the memory interval is sufficiently short. In the next
nonlinear dynamic system to a dc input equak(®) and is a section, these considerations are mathematically outlined.
purely algebraic function of(¢)

+oo

lll. TRUNCATION ERRORS OF THEVOLTERRA SERIES
AND THE MODIFIED ONE

+1'p
zo(t) = fls(t)] = F[[s(t)]] . (7
—Ta In the following, the convergence properties of the conven-
r%gnal Volterra series and the modified one will be studied and
compared. In particular, as far as the conventional series is con-

+Tn " cerned (2) and (3), we can write
2n(t) = / -.~/gn{s(t), Tly vy Tn} H [e(t, ;) dm] " +T5
1 = u®=wo+ Y [ [l )
n=1 T,

The memory effects in (6) are accounted for by the sum of ter

with n > 1 8)

which represent theth-dimensional modified Volterra terms .

. . . [s(t — 7)) dri] + A, (9)
expressed as a multiple integral of the product dfnamic de-

1

n

%
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an equivalent amplitud®f the nth-order nonlinear effects. If operating conditions satisfy a “short term” memory constraint.
these equivalent amplitudes have an upper limit, we can intdo-such cases, kernel identification becomes quite easy, since it

duce their maximum can be carried out directly on the basis of conventional dc mea-
surements and small-signal bias-dependent ac parameters (Sec-
Biax = max[B,]. (24) tion IV).
n

In order to evaluate the truncation error of the modified
By substituting (13) and (14) in (12), taking into account th¥olterra series, (6) can be conveniently rewritten, by taking into
properties of the geometric series under the hypothesis taggount (8), in this form
Smax. Bmax < 1, we can write T
B
w(t) = 20(t) —|—/ gi{s(t), rite(t, m)dm +A (16)

Al < Y S Bk —h

max, max

n=m+1 whereA is the remainder of the series truncated to the single-
1 o0 N dimensional term, that is
= B Z (Smax,_ Bmax)
max n=m—+1 +oo +T1'g n
! oo « pow m o o A:Z/... ---/gn{S(t),ﬁ---Tn}HC(t,n)dn-
= Bmax Z ( max, max) - Z ( max, max) n=2 —T, =1
rn+ln=(r)n =0 (17)
_ _ Simax, Dinax (15) We can quite reasonably assume thiat— ) is differentiable
1 — Smax, Bmax with respect tor in the memory interval; this is true for finite

] o ~ bandwidth signals (for example this excludes strictly “ideal”
Therefore, the superior limit of the absolute truncatiogyyare or triangular waveforms but includes the corresponding
error of the Volterra series, which becomes negligible whepg» ones). By expressing the dynamic deviations in the La-
(Smax. Bmax)™ < 1, depends on the joint contribution Ofgrange form, we can rewrite (4) as
the maximum equivalent amplitud®,,,, of the nonlinear
effects of the system and the maximum amplitutig,,. of ds(t — )
the input signal. More precisely, (15) shows that, in order to et, 7i) = s(t —7i) = s(t) = —7i [ dr L_m_ (18)
keep the truncation error within sufficiently small values, for Y
a given system characterized by a given valueBf.,, it Wwith 0 < 9 < 1. By substituting into (17) we obtain
may be necessary to limit the maximum amplitulg,,.. of

the input signal in the memory interval. In practical cases, the = . e
Volterra series must be truncated to the third- or fourth-ordé¥ = (-1) / ---/g,,,{s(t), L Ta}
terms since it is very difficult to identify higher order terms n=2 —T

[5]-[8]. Thus, (15) implies that, for accuracy reasons, the signal ds(t — 1)
amplitude must be small enough to guarantee mildly nonlinear : H i [T} dri. (19)
operation even when the input signal bandwidth is so small i=1 =T
that the “memory effects” in the system are of a relatively Shog, well-known properties of the absolute values of sums and
duration, or even negligible. integrals, we have

The truncation error properties of the modified series, in-
stead, are quite different since the integral series expansion is too +75

expressed in terms of the dynamic deviatiefs 7) = s(t — |A| < Z / ---/gn{s(t), T Th} H i
T) — s(t) instead of simplys(¢). This leads to more complex n=2 T im1
kernels [as they are nonlinearly dependent on the present signal .

values(t)]; however, this greatly increases the “descriptive ca- ds(t —7)

pabilities” of the first terms of the modified series. In fact, the ’ [T} g dr;

term zo(¢) in (6) clearly describes a nonlinear system without
memory, while in the conventional Volterra series the corre- +oo +1n
sponding term is not normally considered as it would simply < Z/ /
be a constant [4]. Analogously, while the single-fold integral in n=2 7,

the conventional Volterra series (3) simply describes a purely ‘
linear dynamic system, the corresponding one in (8) describes
a nonlinear system with memory through a linear convolution
nonlinearly controlled by(¢). Thus, the modified Volterra se- ) ) ) o o
ries truncated to the single-fold integral term can be used for tR¥ introducing the maximum of the signal derivative within the
modeling of some types of nonlinear dynamic systems. Mof@emory time interva{+1p, —1’4)

precisely, as will be shown in the following and in accord to
the examples provided in Section V, the modified series can be
truncated to. = 1 when dealing with nonlinear systems whose

gnist), 7 -} H T

ﬁ dr;. (20)

i=1

) ﬁ [W} =97

i=1

ds(t — )
dr

ds(t—7)
dr

e
max-

] (21)
T=09T7;

= max [
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(20) can be rewritten as follows: mainder of the series and,,,,. the corresponding maximum
equivalent amplitude, (25) becomes
+oo +1's n n
ds(t—T7
|A| < Z/ . / gn{s(t)7 T 'Tn} H T 400 < % N CTmaXCmax>
n=2 _T, i=1 Al < Z C’I (27)
n n n=2 max
ds(t —7) . N : :
R H dr; In order to emphasize the relationship between signal ampli-
mexs /o i=1 tude, frequency,shape, and the corresponding truncation error,
/14 s(t— 1) " +1s the positive adimensional peak-derivative shape-faetas in-
= Z T — R troduced
n=2 dT max;
—Ta ds(t—7)
n n dr
Agn{s®), r--m ] =l I drie (22) A . (28)
=1 =1

whereSpp and f; represent the peak-to-peak amplitude of the

As far as the nonlinear dynamic characteristics of the system g[gnal and its fundamental frequency, respectively. By substi-
concerned, we can define the parame¥r§ } andC,.{-}. The  tuting into (27), we obtain

first one, which has the physical dimension of time, is defined

as follows: = (pffISPPﬂnaXCmax)n
< .
|A| - le::Q anax (29)
T.{s(t)H" . . . .
(Tuds®)}) T . . By indicating withb the following quantity:
n3t77'7,,,7'n T dTi
. f —T4 f g { ( ) ' }zl;[l il;ll (23) b= pfflﬂllaXSPPCI1lax (30)
- +T; n
[ B...f lgn{s(t), 11, ... }| T] dmi taking into account the properties of the geometric progressions
—Ta i=1 and assumirg0 < b < 1, we obtain the final relationship
and can be interpreted as an equivalent time-duration of the 1 oo .
nth-dimensional kernel. The second parameter is positive and Al < Croon Z b =b-1
defined as follows: . "*10
= —— —(1+5b
+Tg n Cma.x |:1 —b ( * ):|
" 2
(Cals(})" ! = / ST / lgn{s(t), 71, H ] _ s h TS rr) O (31)
—T, =1 1- pffltrmaXSPPCmax
withn > 1. (24)  Therefore, the truncation properties of the dynamic-deviation-

based series depend basically on the product of the maximum
It takes into account the equivalent amplitude of the purely dﬁquiva|ent amp”tudéj’max of the nonlinear pure'y dynamic ef-
namic nonlinear effects of orderthrough the multiple integral fects and the quantity; f1 TimaxSpp. Itis important to point out
of the absolute kernel of the same dimension. By recalling (1gat in this case the upper limit of the truncation error depends,
and (43), we can deduce that, for= 0, the termC;, {0} of the  for a given signal shape (i.e., for a givep), not only on the
modified series coincides with the corresponding tétgrofthe  maximum peak-to-peak signal amplituig > and on the max-

conventional one. imum equivalent amplitud€,,. of the purely dynamic non-
~ By considering (23) and (24), the upper bound on the trundgrear effects, but also on the product between the correspon-
tion error defined by (22) can be rewritten as follows: dent maximum equivalent time-durati@f,,,. of the nonlinear

effects in the system and the input signal frequeficyThere-
+oo " fore, this series can be truncated to the one-dimensional kernel
|A] < Z T.{s(t)} | (C.{s()})""'.  eveninthe presence of strong nonlinear effects provided that the
n=2 productf; Timax is small enough for a given shape-factgr. In
Under the hypothesis that both the paramefers } andC(?S}) particular, it should be emphasized that, in the dynamic-devi-
ypothe: P - mUJ ation-based Volterra series, the truncation error depends, for a
have an upper limit . . . i
given system, not only on the amplitude of the applied signal,
as in the conventional Volterra description, but on a trade off be-
Tnax = max[To{s(t)}]  Cumax = max[Cn{s(t)}] (26) tween its peak-to-peak value and fundamental frequency for a

5(t) 5(t)

ds(t — )
dr

max,

2For simplicity, a periodic signal(¢) with fundamental frequencg is con-
. . . . . sidered in the following.
whereT . is the maximum equivalent memory time-duration 3The condition) < b < 1 is necessary for the convergence of the modified

of the purely dynamic nonlinear effects associated to the neiterra series.
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are relatively short with respect to the signal frequency (i.e.,
small7,,.x f1 product). This condition is satisfied, for instance,
in electron devices described in a voltage-controlled form (pos-
sibly after parasitic de-embedding or in S/H-ADC devices
(eventually after suitable modifications in the system descrip-
tion) [14]. In such cases, the modified Volterra series can be
truncated [see (16)] to the first convolution integral. Moreover,
(16) shows an interesting analogy with the small-signal descrip-
tion of a system. In fact, the short-term memory concept (i.e.,
small dynamic deviations) enables the description in terms of
a single convolution integral with respect to the dynamic de-
viations to be adopted even under large signals. Likewise, the
small-signal hypothesis allows for the description in terms of a
convolution integral with respect to the small signals applied.

Modified Volterra Series

IV. MEASUREMENT-BASED IDENTIFICATION OF THE

f, TRUNCATED MODIFIED VOLTERRA SERIES
! The identification of the modified Volterra series truncated to
Fig. 2. Qualitative description of the region of validity of the Volterra seriedhé first terms (16)

and the modified one truncated to the first terms.

w(t) 2 20(t) + 71 (t)

given “shape” (or equivalently its bandwidth). The upper limit = 20(t) + /+TB g {s(t), T }[s(t — ) — s(t)] dry
of the truncation error in the Volterra series is instead dependent —Ta ’
only on the signal amplitude and, unfortunately, is not neces- (32)

sarily small in the presence of low-bandwidth signals.

The different behavior of the two series when only a limitegan easily be carried-out by means of frequency-domain mea-
number of terms is used can be qualitatively described by Fig.sirements. To this end, we consider a discrete spectrum signal
where the regions of validity of both the truncated Volterra s(t), described by the generalized Fourier series
series and the truncated modified one are schematically repre- )
sented in the space of the signal ampliti$tend its fundamental = j2mfit
frequencyf;. In particular, the area below the lige= S sym- s(t) = Z g™
bolically represents the validity region of the truncated conven-
tional Volterre_l series since_, accqrding to (15), in order to guagheres_, = S¥, f—q = —f, and fo = 0; by introducing
antee, for a given system (i.e., givéhy.x), a given upper limit the Fourier transform@; {s(t), f} of the first-order kernel

on the truncation erra\,,,, an upper limit on the signal ampli- 5 £5(¢), 1} for a system with limited memory duratiah,
tude S,ax < S” must be imposed. In particular, for = 1 the

conventional Volterra series simply becomes a single-fold linear 75 ionfn

convolution, which can only be used under the so called “small Guls(t), fI = [T g1{s(®), Ti}e dry  (34)
signal” operating conditions (see the area below the fine .

S7). Instead, the validity region for the modified Volterra seriethe termz;(¢) can be expressed as follows:

with m = 1 is symbolically represented by the “hyperbolic”

(33)

qg=—N

region below the solid line in Fig. 2. In fact, for a given system = jom fot +T5 o
(i.e., giverTy, ., andCy,.), for a constant shape factoy of the ()= Y S /T4 gi{s(t), 7 e 92 dry
qg=—N —4

signal and by reasonably assuming: 1, (31) can be approx-
imated by|A| < k(f1.Spp)? (wWherek is a constant), which +Ts
shows that the constant truncation error locii have an upper B /
limit defined by a hyperbolic function in th€prp/f; space.

g1{8(t), 7'1} d’/’1]

_TA

+N
In particular, formm = 0 the modified Volterra series becomes _ Z D{s(t), f,}S 724t (35)
a purely “static” nonlinear transcharacteristig ), whose va- N e

lidity is clearly limited to low-frequency operations (area lim- q#0

ited by the linef; = f{ in Fig. 2). Clearly, the conventional

\olterra series is preferable for mildly nonlinear systems with1€re
strong memory effects (i.e., relatively high operating frequen- _
cies). The modified series, instead, is usable also in strongly Dis(t), [} = Guis(t), £} = Guls(?), 0} (36)

nonlinear operation provided that memory effects in the systen¥intrinsic” electron devices (i.e., devices not affected by relevant parasitic
effects) are characterized by very short memory effects. This is justified both

by experimental and simulated results [10], [11], [16] and is coherent with the
4That is, the regions where the truncation error is within a given limit. description of device behavior in terms of quasistatic voltage-controlled charges.
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with D{s(t), —f} = D*{s(¢), f} andD{s(¢), 0} = 0. There- large discrete set of bias and frequency values in order to obtain,
fore, the truncated modified Volterra series of (32) can be ethrough a suitable interpolation procedure, the nonlinear purely
pressed [14] in the form (7) dynamic transfer functio®{s(¢), f}.

The nonlinear dynamic model defined by (37) can be easily

+N . . . . .
p implemented in conventional simulation tools. In fact, (37),
~ 2mfqt . . .
u(t) = fls(t)] + Z D{s(t), fq}Sqe’ : (37)  when the system output(t) is directly expressed in terms of
=-N both time-domain values and spectral componefitof the

The quantity D{-} represents a nonlinear purely dynamiénputsignal can be directly embedded within harmonic-balance

function which weights the contribution to the output of eacFﬂrCUit analysis algorithms (this was done in order to obtain the

spectral component of the input signal and depends both on %@ulated re_sults d_escribed in Section V). However, this is_, no_t
instantaneous value and frequency of the input signal. Equat Ways possﬂ_)le, since _the source code of commermal cireutt
(37) is another, more convenient, way of representing the systems S|mulat(_)rs is normally not accessible to the user.
proposed nonlinear dynamic model defined by (6)—(8), wh i SUCh. casej, nprr:hnealr_ mt?ldell (37) ?r (32) must _be s%mehow
the integral series is truncated to the first, single-fold integraﬂpprox'mate W't negligible 1oss of accuracy, In order to
Moreover, (37) provides a straightforward way of computing"OW for model implementation through the typical user tools
the system output to any input signék), defined by a given vailable in the input interfaces of commercial simulation
set of discrete spectral componerfig, once the algebraic paI(::kages. h lution i Lin (32 be di
function f[s(t)] and the nonlinearly controlled transfer func- "°F instance, the convolution integral in (32) can be dis-

tion G, {s(¢), f} have been measured for any frequerficand cretlzedf, To that thz Inonlmear mode:j canl_be descnbedI in
any input signal value over the region of possible operating[erms of elementary delay operators and nonlinear memoryless

conditions of the system to be modeled. To this end, a suitaﬁlgments' This approach was adopted for implementing the

identification experimental procedure, based on bias—depend@ﬂf‘"near dynamic model of a S/H-ADC device [17].

small-signal measurements, can be defined by using (37). In

fact, by considering an input test signal made up of a dc bias V. SIMULATED RESULTS

components, and a superimposed small sinusoidal signal with According to the considerations made in the previous sec-

amplitudeS; and frequency, = —f_,, by expanding (37) in tion, the identification of the nonlinear model defined by (37)

the Taylor series with respect to the variable= s(t) around s relatively easy as it can be carried out on the basis of conven-

So and by assuming the system to be linear with respect to nal dc and bias-dependent small-signal ac measurements. The

sinusoidal component, we can write [14] model can be used to predict the large-signal dynamic system
response provided that the “short memory” condition, which

<d20(3)> + D{So, fr}] guarantees a sufficiently small truncation error, is verified. Rel-

=0

u(t) = f(So)+ Y

B ds atively short duration of nonlinear memory phenomena is com-
G pitmfit monly encountered in devices whose response must be neces-
"ot i sarily “fast,” as happens for instance in sample-hold devices or
=fSo)+ Y. AlSo, fr}SI Tt (38) electron devices when described in a voltage controlled form.
r=-1,+1 Thus, the accuracy of the nonlinear dynamic model in (37) [11,

nonlinear integral model, (NIM )]) obtained by truncating the
modified Volterra series to the first term has been experimen-
tally verified for field-effect transistors operating at microwave
fredquencies under strongly nonlinear operation [10], [16]-[18].

e extension of the model in (37) to the case of two-port elec-
tron devices is straightforward since it is sufficient to consider

?) as a matrix description whew€t) ands(t) are the vectors
of port currents and voltages, aag{-}, H{-} suitable 2x 2
matrices.

The NIM was identified through the procedure described in
Section 1V, i.e., by means of conventional measurements (dc
d20($)> characteristic and frequency-bias dependent small-signal ac pa-

s=5So

Since, according to (36)){S,, 0} = 0, (38) shows that the
nonlinear algebraic functiorf(Sy) can be directly measured
by pure dc measurements [i.es(t) = Sp] of the static
transcharacteristic of the system. Instead, the frequency
signal dependent complex functidn, which characterizes the
nonlinear dynamics of the system, can be completely charac
ized by measuring, with a vector voltmeter, the bias-depend
small-signal transfer functiod{So, f.}. In fact, according to
(38), the complex functio®{s, f} can be directly computed,
for any values = Sy andf = f,, as

D{So, fr} =A{S0, fr} - < Is rameters), and implemented in a harmonic-balance (HB) pro-
5= gram for circuit analysis. As an example, Fig. 3 shows the ex-
= A{So, fr} = A{So, 0} (39) cellent agreement between the measured output power spec-
trum and the performance predicted by the NIM for an Al-

where A{So, 0} = (dzo(s)/ds)a=s, clearly represents the ..o rejetirg 0.6 600,:m GaAs MESFET 5@ amplifier with
low-frequency small-signal transfer function of the system Qnusoidal source at 5 GHz

the bias pointSy. Thus, on the basis of conventional mea-

surements of the bias-dependent small-signal transfer functio
P 9 g‘n fact, in “guasistatic charge-controlled” models, charges stored within the

A{So, f}, the nonlinearly controlled purely dynamic transfef,insic device are normally considered as instantaneous, “memoryless” func-
function D{Sy, f} can be easily deduced from a sufficientlyions of the voltage applied.
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Fig. 3. Comparison between measuredgnd predicted (-) output power frequency (GHz)

spectrum for a 600x 0.6 um GaAs MESFET versus input power at

= 5 GHz.
fo Fig. 5. Constant error loci corresponding to maximum discrepancies between
the instantaneous values of the drain currents predicted by the NIM and 2-D
drift-diffusion simulations, for a common-source, FET large-signal amplifier.
PHYSICS-BASED
DEVICE MODEL
DC CHARACTERISTIC currents computed by means of the 2-D and HB simulations,
AC PARAMETERS )
v plotted as functions of the peak-to-peak gate-to-source voltage
NON-LINEAR . .
INTEGRAL MODEL Vpp. and'the'source frequency. It mus.t be said that thg sim-
ulations in Fig. 5 correspond to relatively strong nonlinear
\ e gBALANCE operation since the associated gain compression (which is con-
TIME-DOMAIN HA . . )
ANALYSIS OF THE ANALYSIS OF THE ventionally adopted as a measure of the level of nonlinearity)
COMMON SOURCE COMMON SOURCE FET goes from a minimum of 2 dB at 20 GHz to a maximum of 7 dB
FET AMPLIFIER AMPLIFIER at 2 GHz. The errors loci in Fig. 5 are clearly in accordance

with the upper absolute limit defined by (31) and shown in

Fig. 2. In particular, Fig. 5 points out that the accuracy of the

NIM, as predicted by (37), is mainly dependent on a trade off
Fig. 4. Flow-chart of the simulation procedures adopted to practically validetlig':‘tween the peak-to-peak voltage (i¥é-,>) and the operating

the properties of the dynamic-deviation-based Volterra series. frequency (i.e. f1). In other words, the same level of accuracy
can be obtained at higher frequencies if #jer value of the

) i ) , input voltage (i.e., the level of nonlinearity) is reduced. It can

In order to provide a “practical” confirmation of the relevanhs ghserved that the constant truncation-error loci associated,

properties of the dynamic-deviation-based series in terms of t'la?, a given system, to the Volterra series would be represented

upper limit of the truncation error (31), the following simulate(iJy horizontal lines in thé’pp/f, space since the convergence

experiment, described by the flow-chart in Fig. 4, has beeji, e ties of the Volterra series depend only on the input signal
carried out. A highly accurate two-dimensional (2-D) d”ft'd'f'amplitude (see Fig. 2).

fusion simulator was adopted to identify the NIM for a Q.6
field-effect transistor. As described in [10], [15], and [16], dc
characteristics and frequency-bias dependent small-signal ac
parameters were accurately computed on a suitable grid of bia& mathematical approach for the measurement-based mod-
conditions and in the chosen frequency range. The identifieting of nonlinear dynamic systems having relatively short non-
model was used, in the framework of a microwave circuit andinear memory effects has been described. It has been derived by
ysis program based on HB techniques, to predict the nonlindeuncation of a suitably modified Volterra series expansion ob-
dynamic performance of a common-source, (bOoaded, tained by introducing the dynamic deviations of the input signal
microwave amplifier driven under strongly nonlinear operatiowith respect to its past values. In particular, it has been shown
by a large-signal sinusoidal source. The results were compatkait, unlike the Volterra series, the truncation error can be neg-
with the performance predicted for the same amplifier by mealigible, even for strongly nonlinear operation, provided that the
of the 2-D drift-diffusion simulatot. In particular, Fig. 5 shows “short” term nonlinear memory condition is satisfied or, more
the constant error loci, associated to maximum discrepancigecisely, an upper limit is imposed on the amplitude-frequency
of 2% and 5% between the instantaneous values of the draheduct which characterizes a given input signal. Under this hy-
pothesis model-identification can be easily carried out in the fre-
The strong difference between the two kinds of simulators should iency domain on the basis of small signal bias-dependent con-
outlined: Fhe first one i_s based on the h_igh_ly accurate numerical so'lution véntional measurements. The validity of this approach has been
the physics-based Poisson’s and continuity semiconductor equations, @&%Iiminary tested in the nonlinear modeling of field-effect tran-

the second one based on the approximated mathematical black-box m . . .
described by (37). sistors both through direct measurements and comparison with

[COMPARISON OF THE RESULTS |

VI. CONCLUSIONS
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the results of 2-D numerical device simulations based on aghere the second term represents the output of a purely dynamic

curate physics models. Good agreement was found in all caseslinear system because it takes into account only the dynamic

with the performance predicted by the mathematical model previations of the signal within the intervéd — Tg, t + T4)

posed. around the actual instaht Equation (43) can be rewritten syn-
thetically as a modified Volterra series [12]

APPENDIX
+oo
By introducing in (3) the dynamic deviatior{t, 7) (4) and w(t) = 2(t) + Z 2n(t) (44)
developing the products, theth-order functional of the Volterra o

series can be written in the following form [11]:
where the quantity,,(¢) represents theth-order term of the

e modified series and is given by
yn(t) = / ---/hn('rl, To, ooy Tn)
—Ta +1's
n zn(t):/--- ---/gn{s(t);'rl,...,'rn}
H[(t 7;) + st ]I—Id'rZ r
i=1 . n
+1'B
n e(t, 7)) dr;].  (45)
:s"(t)/ "'/hn(’f'l,’f'g,...,Tn)Hd’Fi £[1
— =1
i Ts This equation shows that the strictly dynamic phenomena
L. n are described by multidimensional convolution integrals of
+>_ ST / / the signal dynamic deviations(t, ;) = s(t — ;) — s(t)
—Ta with the nth-order modified kernely,,{s(¢); 71, ..., 7.}. By

comparing (45) and (43), we can deduce that

(T, T2, Th) H e(t, ;) H dr;. (40)
i=1 i=1

n—+r
By substituting (40) in (2) we can write guts(); Ty s Tk = BT, ) Z < )

+T5 +Tp

t +§§s"—"(t)<:>/--- / / ---/hn+,,(n,...,7n+,,)ilf[1dm,i (46)

T4 T4
ha(T1, Toy oy ) H elt, ;) H dr; (41) where we have separated the term with= » and in the re-
i=1 = maining terms we have substituted the generic inglexith
n + r. Each modified kerne4,, {s(¢); 71, ..., 7, } IS nonsta-
tionary and symmetric with respect to its arguments; it is equal
to the sum of the same order original Volterra kernel plus a sum
/hn of contributions directly related to higher-order kernels of the
original Volterra series. Eactth term of this summation is a
function of boths"(¢) and ofry, ..., 7,,, since it is obtained
(11, T2, oo, Th) H dr; (42) by integrating the original Volterra kernels of an order greater
i=1 thann in the spacér,,+1, - .. d7,+ Withr > 1. From (46), we

is the response of the system when the dynamic deviations 8?@ also see that, according to (45) and g&)0; 71 -~ 7} =
{m - 7.} and consequently, (t) = y, (¢ )Whens( )=0.

identically null; thereforezo(¢) represents the static character’»

istic of the device. Equation (42) shows that the quantity) This means that the modified kernels coincide with the original

can be expressed as a power series in the varidblewhere Volterra ones when evaluated fsft) = 0. From (46), we can

the coefficient ofs™(¢) coincides with the multiple integral of &S0 €€ thag,{0, 7, ..., 7} = hy(r, ..., 7;)) and, conse-

the correspondingth-order Volterra kernel. quently, according to (45) and (3 (t) = yn(t), sincee(t, 7)
Taking into account that there are no terms with index, €dual tos(t —7) for s(#) = 0.

in the sum of (41), by inverting the order of summation and b% When the system is linear with memory, all the kernels of

substituting for 7, we can deduce the following expression: e traditional Volterra series of order greater than one are null
’ " (h.{-} = 0for» > 2). Therefore, from (42) we deduce that

t)+§ ff’ o <;) /+ B/h 20(f) = o + 5(t) /+TR ha(r) dr. (47)

n=1 r=n —Ta —T4

where

+oo +1s
n=1 —Ta

(s Tay o Ty ﬁ e(t, 1) H dr; (43) Furthermore, from (43), we obtain that also the kernels of the
aiv) T modified Volterra series of an order greater than one are null
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while

IS

while

the first order kernel is independent«f) and coincides

gii{s(t), 7} = ha(7) (48)

(18]

g1} =0 for r > 2. (49)

By substituting (47) and (48) in (8) and (6), we obtain the well-
known linear convolution integral

(1

(2]

(3]
[4]
(5]
(6]
(71

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

+1' +1'

ut) = +5(0) |

7’1—"4
cha(m)[st —7) — s(D)] dr

+1'p
=y + / hi(m)s(t — 7)dr.

_TA

hi(r)dr + /

7TA

(50)
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