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Abstract—This paper describes a power spectrum analyzer
whose bandwidth is not limited by the mean sampling time. The
procedure is based on the estimation of the spectral components
of the autocorrelation function of the input signal through the
simultaneous random sampling of the given input signal and its
randomly “delayed copy.” The samples are therefore randomly
taken in a double-dimension space, time, and delay. By using
a random process in the time domain with a recursive mean
previously introduced by the authors in order to avoid any
bandwidth limitation due to the sampling strategy, it is shown
both theoretically and through simulation that the estimate of
the power spectral components is asymptotically unbiased on the
unique hypothesis of a synchronized random sampling in the
delay domain, i.e., the sampling delays are uniformly distributed
in an interval equal to the period of the input signal. The
simulation results confirm the theoretical findings.

Index Terms—Autocorrelation, performance analysis, power
spectrum, random sampling.

I. INTRODUCTION

T HE potential advantages of particular random type sam-
pling strategies in the implementation of broadband dig-

ital wattmeters have already been pointed out [1], [2]. In
fact, we introduced two sampling techniques. One is described
by the following additive model which defines a discrete
parameter continuous random process with a recursive mean

:

(1)

where marks a sequence of sampling instants anda generic
value of the sequence, is a sampling instant, the
initial shift, a constant, a random variable uniformly
distributed in the interval (0, 1). The other is described by this
additive model which defines a recursive random process

(2)

where is a random variable uniformly distributed in
the interval (0, 1.5). We theoretically demonstrated and
experimentally verified that these sampling strategies with
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the associated filtering algorithms do not introduce any band-
width limitation when used to deduce the mean power. The
bandwidth limitation is in this case due uniquely to the
bandwidth of the sample and hold (S/H) device. In spectral
analysis the quantities to be measured are, however, not
only related to the set of sampled signal values (as in the
case of the wattmeters), but also to their time allocation.
To this end, a finely controllable sampling time spacing has
been introduced in a basically “random” sampling strategy.
In this way a simultaneous sampling of both the given input
signal and its “delayed copy” can be carried
out and the autocorrelation function of the signal can be
estimated. This procedure, which allows us to evaluate the
power spectrum of the input signal, is described in Section II.
In Section III, the criterion for the performance analysis is
carried out together with the theoretical findings, while in
Section IV the simulation results are given and discussed.

II. M EASUREMENT METHOD

Let us consider the Fourier series of a finite spectrum
periodic signal with period

(3)

with integer, where the spectral coefficients
can be derived from

(4)

When the signal is real, i.e., , we can write
because the conjugate of an integral is the integral

of the conjugate due to the additive property of the integral.
By recalling the frequency shifting property [3], the Fourier
transform of the signal can be expressed as follows:

(5)

and its inverse Fourier transform therefore becomes

(6)
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The autocorrelation function of the real signal is given
by [4]

(7)

and it still contains all the information concerning the signal
power spectrum components, i.e., . The mean value is
identified by the symbol . The frequency allocation of each
spectral component of and is the same; besides the
phase angle of each spectral component of disappears in
the evaluation of , which therefore results in a real even
function of . For we obtain the well-known Parseval
formula

(8)

which represents the mean power associated to the input signal
.

Because also the autocorrelation function is a discrete
spectrum signal with period , we can write

(9)

Due to the frequency shifting property [3], the Fourier trans-
form of the autocorrelation function (7), i.e., the power density
spectrum of the signal , can be expressed as follows:

(10)

where also is a real nonnegative and even function.
This function measures the distribution of power in as
a function of frequency [4]. The autocorrelation function,
representing the inverse Fourier transform of the power density
spectrum, can be expressed as follows:

(11)

Since

(12)

we can write

(13)

Therefore the autocorrelation function, periodic with the same
period of the signal, has its largest magnitude at periodic
intervals , , , .

By substituting (7) into (9) we obtain

(14)
This double integral in the time and delay domain can be
numerically computed as the average of a numberof
samples randomly taken in the double-dimension (, ) space
by using the following formula where the integer marks a
generic value of the output:

for (15)

according to a Monte Carlo-like statistical approach for inte-
gral evaluation [5]. In particular, eachth sampling point in the
( , ) space is randomly generated according to the sampling
strategy defined by (1) and the following formula for the delay:

(16)

being the th random delay used to deduce theth
output estimate, a generic value, and independent
random variables uniformly distributed in the interval 0 to 1.
The properties of this approach are outlined in the following
section.

III. PERFORMANCE ANALYSIS

The estimated th power spectral component of the input
signal through (15) is a function of the variables, and
of the vectors of the two independent, uniformly distributed,
random variables , used to obtain
the output labeled with , i.e., , , , .
The labeling mark identifies a generic discrete output of
the instrument for eachth spectral component; therefore the
integer is random in nature because it can be considered
randomly picked up from a sequence of successive
potential measurement occasions ( ), each of
which has an equal chance of being selected. The value of
is not knowna priori and one is led to interpret any value of

as an outcome of a random variable with a continuous set
of values uniformly distributed in some generic time interval

which encompasses all the possible realizations (
, being unknown). Therefore, we introduce

as a continuous random variable uniformly distributed in the
time interval and as a discrete one uniformly distributed
in the interval . On the hypothesis of a random sampling
strategy defined according to (1), the independent random
variables of the vector are uniformly distributed in the
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interval 0 to 1; from (16) we deduce that also the independent
random variables of the vector are uniformly distributed
in the same interval.

An appropriate characterization of the output uncertainty
can be obtained by evaluating the statistical parameters of

, i.e., the mean value and the mean square
error . In order to incorporate
all the a priori chances into the instrument’s performance, the
number of the output states, i.e., , must be sufficiently
large and theoretically tend to infinite. Therefore we must
consider the asymptotic statistical parameters of the output,
i.e., the asymptotic mean and the asymptotic

mean square error (mse) .

It can be shown (see the Appendix) that, on the hypothesis
of a delay uniformly distributed in a time interval equal
to the period of the input signal, the asymptotic bias is
null (A14)

(17)

Therefore the asymptotic mean square error coincides with the
asymptotic variance, which can be expressed as follows (A31):

Var

Re

sinc
sinc

sinc

(18)

On the hypothesis that with an integer (i.e., a
synchronous sampling strategy) we obtain

Var

(19)

IV. SIMULATION RESULTS

A power spectrum analyzer based on the operating principle
defined by (15) was simulated by assuming s;
each spectral component was estimated by considering
random samplings of the input signal. It is important to observe
that the results were essentially the same independent of the
random sampling strategy adopted (1) or (2). Table I shows
the asymptotic bias and standard error of a periodic sinusoidal
input signal with an amplitude equal to 2 V at different
frequencies from 1 kHz to 1 GHz estimated by considering

samples. In order to evaluate the asymptotic bias
and standard error, each measurement simulation was repeated
103 and 104 times. These results are not, in practice, frequency

TABLE I
BIAS AND STANDARD ERROR (THEORETICAL AND SIMULATED ) OF THE

SIMULATED MEASUREMENTS FORSINUSOIDAL INPUT SIGNALS

AT DIFFERENT FREQUENCIESBETWEEN 1 kHz AND 1 GHz

Fig. 1. Estimate of the asymptotic variance Var
!

as a function of the number

of the samples for each measurement.

dependent. A very small (theoretically zero) bias is confirmed
by observing that the error associated to “measured” values
(i.e., simulated) are within the expected range correspondent
to three times the standard error.

Fig. 1 shows the shape of the asymptotic variance as a
function of the number of sampling values used to esti-
mate the spectral component of a periodic sinusoidal signal
with an amplitude of 1 V and kHz; the continuous
curve represents the corresponding theoretical values for the
asymptotic variance according to (18). Clearly, simulated and
theoretically quantities are in very good agreement.

In Fig. 2(a) theoretical and simulated results are compared
in the case of the power spectrum measurement, with

, of a 1-V sinusoidal signal with frequency variable
from 1 kHz to 1 GHz; Fig. 2(b) and (c) shows, respectively,
the corresponding values for the bias and the variance.

Fig. 3(a) shows in a semilogarithmic scale the theoretical
and simulated power spectral components of a square-wave
together with the correspondent value of bias. It is interesting
to observe that, according to the theory, the variance relative
to the dc component is approximately twice that of the other
components.

V. CONCLUSIONS

A power spectrum analyzer based on the estimation of
the spectral components of the autocorrelation function of
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(a)

(b)

(c)

Fig. 2. Comparison between theoretical and simulated results in the case of
the power spectrum measurement, withN = Nr = 10

3, of a 1-V sinusoidal
signal with (a) frequency variable from 1 kHz to 1 GHz, (b) corresponding
values for bias, and (c) variance.

the input signal through the simultaneous random sampling
of the given input signal and its randomly “delayed copy”
was introduced. Therefore the samples are randomly taken
in a double-dimension space, time, and delay. In order to
evaluate the performance of the proposed method irrespec-
tive of each measurement occasion, the asymptotic statistical
properties of the output must be considered. It was shown
that the asymptotic bias is null and the expression of the

(a)

(b)

Fig. 3. Theoretical and simulated power spectral components of a
square-wave (a) in a semilogarithmic scale and (b) together with the
correspondent value of bias.

asymptotic variance was deduced on the unique hypothesis of
a synchronized random sampling in the delay domain, i.e., the
sampling delays are uniformly distributed in an interval equal
to the period of the input signal. By using a random process in
the time domain with a recursive mean or a recursive random
process previously introduced by the authors in order to avoid
any bandwidth limitation due to the sampling strategy, the
theoretical findings were in very good accordance with the
simulated ones.

APPENDIX

By substituting (1) and (3) into (15) and taking into account
(16), we obtain

(A1)
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For the evaluation of the statistical mean of this quantity it is
necessary to consider the simultaneous random contributions
of the variables , , and of the vectors ,

. To this end it is convenient to recall the following
relationships. By considering the characteristic function of a
continuous random variable uniformly distributed in the
interval 0–1, we obtain [6]

sinc (A2)

where is a real number and is the uniform
probability density. Further, a continuous random variable
uniformly distributed in the interval /2 has the following
characteristic function:

sinc (A3)

where is the uniform probability density. The
characteristic function of a discrete random variableuni-
formly distributed in the interval can be expressed taking
into account the properties of the geometric progressions with

( ) terms as follows:

Prob

sinc
sinc

(A4)

where Prob is the uniform point
probability of the discrete variable . If is an integer, the
result of (A4) becomes identically equal to one.

Finally, the expression of a finite sum must be recalled

sinc
sinc

(A5)

If is an integer the sum in (A5) becomes identically equal
to .

Now, we can easily deduce the statistical mean value of
from (A1). Taking into account the independence

of all the random variables involved, from (A1) we deduce
as shown in (A6) at the bottom of the page. By supposing
each random delay (16) uniformly distributed in a time
interval equal to the period of the input signal ( ,

sinc
sinc

sinc

sinc
sinc sinc

sinc sinc
sinc
sinc

sinc sinc
(A6)



MIRRI et al.: BROAD-BAND POWER SPECTRUM ANALYZER 1351

i.e., ), i.e., the variability range of the time-delay is
synchronized with the input signal, we have

sinc sinc
for
elsewhere

(A7)

where and are integers. On the further hypothesis that also
the mean sampling period is synchronous with the period

, i.e., with a positive integer, by recalling that

sinc sinc

for
elsewhere

(A8)

where and are integers, and that (A5)

sinc
sinc

(A9)

for any integer , we can write

(A10)

When the synchronous sampling satisfies instead the condition
with a positive integer, or the mean sampling pe-

riod is asynchronous [remaining in any case synchronized
the variability range of the delay and so (A7) is always
verified], it must be considered in general the asymptotic
behavior. To this end all the possiblea priori chances of the
output state, i.e., the number of the output states ,
must be incorporated by consideringsufficiently large and
theoretically tending to infinity. Thus, in the following, we

consider the asymptotic mean defined by

no matter the value of . By referring to the first term of
(A6) we can write (A11) as shown at the bottom of the page.
By recalling that

sinc

for
for

(A12)

we obtain (A13) as shown at the bottom of the page. It is
evident that, when the variability range of the delay is
synchronized with the period , by taking into account (A7),
the nonnull contributions are only for and therefore

(A14)

Therefore, the asymptotic bias is in every case null.
Now we consider the asymptotic mean square errorof

which coincides with its asymptotic variance since the
asymptotic bias is null. In fact, we have

Var (A15)

Thus, in order to evaluate the asymptotic variance of ,

sinc sinc

sinc
sinc

sinc sinc
(A11)

sinc sinc
(A13)
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we must first deduce from (A1) the term

(A16)

Successively, its asymptotic mean value can

be deduced taking into account the independence of all the

random variables involved

(A17)

The asymptotic mean at the second member can be evaluated
taking into account (A4). In fact we have

sinc
sinc

for
for .

(A18)

By substituting into (A17) we have

(A19)

This mean value can be expressed as the sum of two terms
and obtained by considering separately the contributions
for and in the double sum with respect toand

. These two terms must be real because the variance is real
in accordance to (A15). Thus, we can write

(A20)

where

(A21)

and, due to the independence of the involved random variables
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for

(A22)

Now, let us remember that the variability range of the
shift has been assumed synchronized with the input signal
so that . Consequently, in order to have nonnull
contributions to in (A21), in accordance to (A2) and (A7),
the first term between brackets in (A21) impose that

, the second one , and the third .
Therefore, since the condition must always
be satisfied, in the three cases we obtain, respectively, the
following correspondences: in the first case,

in the second one, and in the last
one. Therefore, (A21) can be written as follows:

(A23)

By changing in the last term into it results
the complex conjugate of the first one

(A24)

Therefore, the quantity is real as provided by (15).
Now, by considering of (A22), in analogy with the

previous treatment regarding , we can deduce that the first
product between brackets gives nonnull contributions only for

, the second one for , the third one
for , the last one for . Since the
condition and thus must
always be satisfied, in the four cases we obtain the following
correspondences:

Thus, (A22) can be rewritten as follows:

(A25)
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We observe that changinginto in the second term of the
sum, it results the complex conjugate of the first one. Thus
also is real. By taking into account (A2), we obtain

sinc

Re

(A26)

By recalling that we can always write

(A27)

it follows from (A5) that the double sum of (A26) can be
rewritten as follows:

sinc

sinc
(A28)

By substituting into (A26), we obtain

sinc

Re

sinc

sinc
(A29)

The expressions of (A24) and (A29) can now be
introduced into (A20)

Re

sinc
sinc

sinc
(A30)

and, by referring to (A15), we can deduce the final expression
of the asymptotic variance

Var

Re

sinc
sinc

sinc

(A31)
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