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Short Papers

The Vector-Gradient Hough Transform
Rita Cucchiara and Fabio Filicori

Abstract—The paper presents a new transform, called Vector—
Gradient Hough Transform, for identifying elongated shapes in gray-
scale images. This goal is achieved not only by collecting information
on the edges of the objects, but also by reconstructing their transversal
profile of luminosity. The main features of the new approach are related
to its vector space formulation and the associated capability of
exploiting all the vector information of the luminosity gradient.

Index Terms—Hough transform, shape detection, visual inspection,
feature extraction, image analysis, object recognition.
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1 INTRODUCTION

A great deal of scientific interest has been focused on the Hough
transform (HT) and its derived formulations, for detecting and
identifying parametric curves in images [5], [7]. Mainly, the HT is
used as an extractor of low-level primitives (like, for instance,
straight edges) for shape analysis purposes. In addition to the HT
for straight lines [5] and for basic parametric curves, many other
specific shape models and corresponding HT-based approaches
have been proposed. Examples are the ISLS (Ideal Straight Line
Segment) for recognizing bar segments [1], the PWCS used with
the Distributed HT for circular patterns [8] and the STIRS signa-
ture for a generic curve adopted with the Straight Line HT [10]. In
general, these models characterize some geometrical aspects of
objects in terms of 1D curves, by assuming that 2D shapes may by
identified by their 1D (often binarized) edges.

When a more detailed shape model has to be adopted in order
to consider the image points in their gray-level scale, HT-based
approaches normally exploit the gradient of the luminosity func-
tion, according to the widely used Gradient Weighted Hough
Transform (GWHT) [6], [12].

In such a context, we propose a new HT-based technique for
shape detection in gray level images. The method is oriented to a
class of elongated and almost rectilinear objects, whose nonnegli-
gible luminosity variations also in the shorter dimension are
shape-characterizing and thus must be identified and possibly
reconstructed. We call this class of shapes Straight-Translation-
Generated Shape (STGS) since the target objects may be thought to
be generated by a straight translation in the 2D space of a 1D lu-
minosity profile. In order to formally define the STGS model, we
consider a 1D luminosity function, that is a generator profile of
luminosity ¢(é) given in a 1D positive axis x' with &> 0. If the X’
axis is rotated at an angle Swith respect to the axis x of a 2D Carte-
sian space (X, y), the model of the STGS is defined by a function
f(x, y) generated by the straight translation of ¢(¢é) along a direction
y' normal to x'. Thus the STGS is defined by

f(x, y) = 4(9)
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Fig. 1. An example of STGS shape. (a) The generator profile ¢¢).
(b) The generated image f(x, ). (c) The reconstructed image after the
identification process.

where
§=xcos(B) + ysin(H) 1)
If the 2D Cartesian space is the image space, f(x, y) represents the
luminance function associated to the target STGS object. Fig. 1
gives a graphic example, showing a 1D generator profile (Fig. 1a)
and the corresponding image f(X, y) generated after a rotation of an
angle 8= 30" (Fig. 1b).
The 2D image space can also be viewed as a vector space, after in-
troducing two unit vectors i and j along the axes, where a point (x, y)

is identified by the corresponding vector s(x, y) =X + yf. In the same
way, the luminosity gradient can be described in its vector form as

g(s) = (af /ay)i + (af /3y)] -

The g(s) vector can also be identified by its magnitude G(s) and the
associated angle Ks) with y0 [0, 274. According to the STGS model
in (1), all points of the object belonging to the same translation line
should have the same luminosity value and the same gradient
vector (i.e., with equal magnitude and direction). Many 2D shapes
can be described by this model, either as templates of real objects
or elongated light spots, patterns, or extended textures. Typical
objects matching the STGS model are bar shapes, that can be
thought of as generated by a finite translation of a rectangular 1D
profile. Moreover, also less regular real-world shapes may be ap-
proximated by the STGS, such as those in Fig. 2, showing cracks
and scratches on metallic surfaces.

The aim of the paper is to propose a new formulation of the
Hough transform, called Vector-Gradient Hough Transform (VGHT)
which, in addition to providing line location and orientation as the
standard HT, enables the identification of STGS by detecting and
reconstructing the transversal generator profile too.

2 THE VECTOR-GRADIENT HOUGH TRANSFORM

The VGHT is a transformation from the image vector space, where
s and g(s) are defined, into a vector parametric space. Each point of
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Fig. 2. Example of images: (a) IMO, (b) IM1, (c) IM2.

the transformed space is a vector u, represented by its polar coordi-
nates (r, 7). We define the associated transform value, I'(u), as
ueg(s)

[(u) = VGHT(p,9) =
—]ds

(o0 bl ‘ﬁ]D{l‘ o)

where « represents the scalar product operator; X[)lis the Dirac im-
pulse function, while D(a) is a finite version of it, i.e., a finite win-
dow function equal to 1/A¢ if a O [-Ae/2, Ae/2] and 0 otherwise.

In practice, the two Dirac operators select those points of the
image space giving a nonzero contribution to the integral: since u

@

can be written as u = r(cos(z&)f +sin(z9)J), the first Dirac term is

not zero if its argument is null, i.e., if r — r(cos(J) + sin(H))/r =0.

Therefore, the first condition for a point s(x,y) = xf+yi to be
taken into account in the integral is that

r = (xcos(J) + ysin(9)) 3)

If we consider the limit case of limAe - 0, i.e.,, D(Q1 = X[ the

second Dirac term is not null if and only if =) _ 41 This
condition is satisfied when
y=39+km k=0,+1,+2... 4

The former condition states that for a given u, the VHGT trans-
form integrates gradient weighted values only from collinear image
points, that is those satisfying (3). For the latter condition, only
points with a vector gradient of the same direction as u (apart from
the krrterm in (4)) contribute to the integral.

We call the transform Vector-Gradient Hough Transform (VGHT)
since it exhibits many similarities with the gradient-weighted HT,
while keeping all the vector proprieties of the gradient of the lu-
minosity function. The VGHT can be used, like the other HT-based
operators, for accumulating weighted “votes” in the transformed
space, where peak detection identifies the parametric curve. How-
ever, in addition to detecting lines corresponding to straight edges
in gray-levels images, VGHT also enables the 1D transversal pro-
file of luminosity to be reconstructed and thus allows for a com-
plete STGS identification.

3 COMPARING VGHT AND GWHT

In this section, we outline several features of VGHT by a compari-
son with the well-known GWHT [6]. The GWHT integrates votes of
image points: unlike the basic HT, each image point (x, y) “votes”
proportionally to its gradient magnitude and only for the angle of
the gradient direction KX, y).

(b)
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For easier comparison, it should be noted that the standard HT
for lines has been shown to be a particular case of the Radon trans-
form [4] and defined in its integral form; also the GWHT can be
expressed as

GWHT(x,y) =

”G(x, y)3(p - xcos(®) - y sin(9))8(0 - y(x, y))dxdy (5)

Beyond the formal differences due to the adoption of a vector rep-
resentation in (2), the VGHT and the GWHT have some points in
common: In both transforms, the integral weight is a function of
the gradient and the point selection is based on the collinearity
constraint defined by (3). Nevertheless, many substantial differ-
ences can be pointed out:

1) Different transformed space: The VGHT is defined over a vec-
tor space described by the polar coordinates 4 O [0, 27fand r
which is intrinsically nonnegative since represents the
Euclidean distance computed by (3). Thus, the r coordinate
ranges the interval [0, R], with R = \/@I (for an image of I’
pixels). Instead, the GWHT space is described by the same
angular coordinate J 0 [0, 274, but by the algebraic coordi-
nate p O [-R, R] (i.e., with both positive and negative values)
derived from the parametric straight line equation [6]. As an
example, the VGHT and GWHT spaces related to the image
IM1 are shown in Fig. 3 and Fig. 4, respectively. In both
spaces, the two highest local extrema identify the two main
straight edges of the crack; both peaks have a positive r coor-
dinate in the VGHT space while have an opposite p sign in
the GWHT space. By using the same discretizing grid (dr, da),
the implementation of VGHT needs half the memory space
with respect to that required by the conventional approach.
Different angle selective operator: In GWHT an image point
(x, y) votes only for the angle 3= KX, y). Instead, VGHT se-
lects two possible angles & = Kx, y) and 2" = (X, y) + 7)
mod(27); however, the point votes for only one between &
and 4" owing to the constraint of r = 0. This original feature
enhances the correlation between parallel “wavefronts” of
luminosity variations, like the main parallel edges of objects
modeled as STGS: In fact, two sets of collinear points with
the same direction of the gradient but with the opposite sign
(as the main edges of the cracks in Fig. 2) generate in the
VGHT space local extrema at the same angle (see Fig. 3). In-
stead, in GWHT they produce two local peaks having the p
coordinates with opposite sign and the angular coordinates
with a rrdisplacement (see Fig. 4).

2)
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Fig. 3. VGHT for image IM1.

3) Different integral weight: The most important difference is the
presence in VGHT of the scalar product g(s) ﬁ implying that

the weight of any voting point is given by G(x, y)cos(y— 9)
instead of simply G(x, y) as in GWHT. This involves the
presence of a signed weight in VGHT: its positive or negative
sign corresponds to the concordance or not of the gradient
angle yand the angle 3, i.e., the angle of the u vector consid-
ered, which identifies the possible direction where a set of
“collinear” points could be detected. Therefore the VGHT
points out, directly through its sign, the relationship be-
tween rising and falling variations of luminance in the same
direction, while the same information is lost in GWHT, or
can be partially retrieved through a post-processing phase
only [12].

In conclusion, VGHT operates a sort of “double-mirroring” of
GWHT (with symmetry axes p= 0 and &= 7) balanced by a sign
change: In particular, the same peaks associated to a decreasing
(with respect to the axis origin) luminance function, which arise in
the range [z 3/274 of J when using GWHT, are located in the
range [0, 74, when using VGHT.

However, peak detection in VGHT space exhibits an enhanced
discriminating capability with respect to that in GWHT space,
since by using VGHT shape edges corresponding to increasing or
falling luminance variations can easily be distinguished. In fact, if

two peaks u,; and u, are detected in VGHT at the polar coordinates
(ry, 3y and (ry, 9,), with the same angle, 4, = J, and ordered with r
(ry <), the presence of a possible straight-edged object is detected

by the condition I"(u,) 0" (u,) < 0.

This feature enables a “real” object to be distinguished from
other shapes with two edges with the same sign of the luminosity
variation (e.g., the spot between an object’s edge and the edge of

its shadow where '(u;) [0 (u,) > 0). Moreover, dark shapes on a
bright background or bright shapes on a dark background can be

distinguished by verifying if a peak has either I'(u;) >0 or I'(u;) <0,
respectively. Actually, the VGHT sign may cause a loss of infor-
mation in some special cases, due to the integral nature of the HT,
whenever two edges with equal length, equal gradient magnitude
but opposite direction are exactly collinear. Conversely, the sign is
essential for univocally identifying STGS objects, as will be
pointed out in the next section.

4 JGWHT
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Fig. 4. GWHT for image IM1.

Up to now, an ideal Dirac operator X[)} instead of its practical
finite version D([), has been considered for a primarily VGHT
evaluation. Instead, by exploiting the finite D([) operator, the
VGHT provides a more effective matching also with nonideal
shapes. This operator accepts an angular displacement Aa be-
tween the local gradient and the u directions. In particular, the
argument of the VGHT integral at a point u(r, J) becomes G(x,
y)cos(UX, y) —I) if r = xcosd + ysind and J= KX, y) + kit Aa
(with k as defined in (4)) or 0 otherwise. The D() operator acts as a
filtering on the angles in order to smooth the effects of small
variations of the gradient direction between “collinear” points of
the image. This operation is similar to many other smoothing op-
erations, as for instance the one proposed in [11]. In our case, the
adoption of the cosine-weighted operator, instead of a simple av-
eraging as in [11], may make the transform slightly more angle-
selective. However, this marginal benefit is not the reason for in-
troducing the more computationally expensive cosine operator,
which has been adopted with the main aim of exploiting also the
sign information in the transform.

4 IDENTIFYING STGS WITH VGHT

The VGHT features outlined allow for a more efficient correlation
of selected points in the transformed space and a more immediate
detection of peaks, corresponding to straight edges in the image
space. However, the peculiar aspect of VGHT is its capability of
characterizing more complex shapes, as those modeled by STGS.
In fact, it can be shown that if an image matches the STGS model,
i.e., its luminance function f(x, y) satisfies (1) for a given profile
#(é) and an angle B, the VGHT transformed value at the point
u(r, B is proportional to the first-order directional derivative of the
luminosity function along the S direction of the generator profile.
That is,

F(up) = VGHT(r, B) = c(0¢(5)704) 1«
where the multiplying factor ¢ is proportional to the translation
length [3].

This propriety suggests the idea of associating with the VGHT,
which has a differential meaning since it has the dimensions of
gradients, another transform operator which has the dimensions of
a luminosity function and is obtained by direct integration, with-
out any previous peak detection, in the VGHT space. This leads to
IVGHT (Integrated VGHT) defined as

I (u(r,9)) = J: T(u(a, v))da (6)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 7, JULY 1998 749

100 :
Itw), g=30°

50T

507

-100 ' : :
0 50 100 150 r
@

057 T, 8=30° (norm) |

-05
0 50 100

(b)

150 =g

Fig. 5. (a) VGHT and (b) IVGHT for Fig. 1b (0 < r< Rand &= 30).

The Tj(u(r, ) value is, in practice, the sum of the luminance

values of all the image points which ideally lie on a straight line
whose foot' is identified by u and whose gradient direction coin-

cides with that defined by J. The IVGHT feature is outlined by the
example in Fig. 5, showing the VGHT and IVGHT sections of the
synthetic image in Fig. 1b, with a given angle $= 30" (equal to the 8
rotation of the profile of Fig. 1a). Thus, apart from truncation errors
due to the discretization, the IVGHT is the reconstruction of the
generator profile of the STGS model; on such a basis, an adequate
back-projection enables the source image to be reconstructed. Fig. 1c
is the back-projection of the extracted profile in Fig. 5b.

Therefore, by adopting the VGHT and IVGHT, not only can the
edge points be detected by the corresponding peaks, but also all
the bright points of an STGS-like object between the rising and
falling luminance variations are identified. Fig. 6 shows the
IVGHT space for IM1 of Fig. 2b. Both the amplitude and the shape
of peaks in the IVGHT space are meaningful: In fact, while its
spread along the angular direction shows the angular deviation of
the translation direction from an ideal straight line, its spread
along the r coordinate is a measure of the width of the luminosity
generator profile and thus of the object thickness.

As an example of application, we present the use of the (I)VGHT
for a highly selective quality inspection task, namely the detection
and identification of cracks or scratches on metallic surfaces.

These defects are bright, elongated visual objects with steep
contour edges, mainly straight (or with a very low curvature) and
very close to each other due to the object thinness. These shapes
appear to have been generated by translation of a 1D impulse of
brightness in its normal direction, according the STGS model. Dif-
ferent transversal profiles produce different shapes: In Fig. 2, IMO
shows two “large and short” cracks, produced by translation of
two separate profiles. Instead, IM1 and IM2 show a single and a

1. The foot of a line is intended as the intersection point between the
line and its normal from the axes origin.

IVGHT

100
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Fig. 6. IVGHT for image IM1 (particular with 0 < & < 180°).

double surface scratch, respectively: they can be modeled as
STGSs characterized by different shaped generator profiles: the
former by a single larger profile, while the latter by a sequence of
two shorter pulses.

Accurate crack detection and identification criteria should be
capable of distinguishing between these shapes, by also recon-
structing the generator profile. This task can be carried out by
VGHT followed by a local maxima detection, in order to find at
least one of the peaks, possibly corresponding to an edge of a de-
fect. Then, the defect detection is validated by the presence of an-
other peak on the same angular coordinate but with the opposite
sign (corresponding to the parallel complementary edge). Finally,
the classification is carried out by the analysis of the IVGHT space
in the neighborhood of the points where peaks have been detected,
as the shape of the Fj(u) reveals the generator profile.

The same kind of classification is not always possible with
GWHT: In some cases, the presence of the pair of peaks may be
deduced only after a specific post-processing aimed at verifying a
correlation between peaks, which could be located at a displace-
ment of 7z However, since peak detection is normally carried out
by peak ordering followed by appropriate peak selection, or by a
thresholding operation on the peak amplitude [7], local peaks with
a relatively low amplitude are not selected; therefore, some target
objects, such as for instance the double scratch of IM2, whose inner
pair of edges generate a couple of low amplitude peaks in the
Hough space, are not detected by GWHT. Thus GWHT is not ca-
pable of discriminating between a large scratch and a double
scratch, while this goal can be achieved by IVGHT. Fig. 7 shows
the values of VGHT and IVGHT sections along the r direction for
the angle where the highest peak has been found in VGHT. Fig. 7a
and 7b refer to the single scratch of IM1 while Fig. 7c and 7d to the
double scratch of IM2. The shape of the IVGHT profiles can be
easily classified according to the specific requirements. This
IVGHT approach is currently applied in an on-line fully auto-
mated industrial prototype for detecting and identifying cracks
and scratches in the produced metallic objects.

5 CONCLUSION

The Vector-Gradient Hough transform has been proposed for
identifying elongated and almost rectilinear shapes. The new
approach exploits all the information associated to the vector
formulation of the luminosity gradient, by introducing in the
Hough transform a new angle selective operator and a signed
weight function of the gradient magnitude. This intrinsic feature
enhances the selectivity of peak detection for identifying collin-
ear edge points in gray level images. However, the most peculiar
feature of VGHT is the possibility, after an adequate integration of
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Fig. 7. Profiles reconstructed of IM1 and IM2. (a) and (c) VGHT sections for IM1 and IM2 at the angle of the highest peak. (b) and (d) IVGHT sec-

tions for IM1 and IM2 at the same angle.

the transformed space, of fully characterizing detected target
shapes by also extracting their transversal luminosity profiles. This
is made possible by the capability of the VGHT space to keep in
each single angular coordinate all the information associated with
the luminosity variation in the image space along that direction.

From the computational point of view, VGHT and GWHT have
the same computational complexity O(N), as N = I” is the image
space cardinality. In practice, the algorithm for computing VGHT
recalls the GWHT one and adds only a conditional branch which
selects the angle, either KX, y) or (X, y) + ) mod(27) as in (4), so as
to have a positive r in (3). Therefore, due to the practical computa-
tional equivalence between the two approaches, all the considera-
tions on discretization effects and the alternative algorithms for
HT accumulation proposed for GWHT [7], [12], can be easily ex-
tended also to VGHT.
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