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Abstract-This paper presents a new computationally effi- 
cient unified approach to the numerical simulation of sensitivity 
and noise in majority-carrier semiconductor devices, based on 
the extension to device simulation of the adjoint method, well 
known in the sensitivity and noise analysis of electrical net- 
works. Sensitivity and device noise analysis based on physical 
models are shown to have a common background, since they 
amount to evaluating the small-signal device response to an im- 
pressed, distributed current source. This problem is addressed 
by means of a Green’s function technique akin to Shockley’s 
impedance field method. To enable the efficient numerical eval- 
uation of the Green’s function within the framework of a dis- 
cretized physical model, interreciprocity concepts, based on the 
introduction of an adjoint device, are exploited. Examples of 
implementation are discussed, relevant to the sensitivity and 
noise analysis of GaAs MESFET’s. 

I. INTRODUCTION 
HE IMPRESSIVE development of CAD tools for T semiconductor device design based on physical 

models which has taken place over the last ten years only 
marginally has touched two important areas of device per- 
formance evaluation: sensitivity and noise simulation. 

Although the concept of sensitivity analysis as a tool 
for device optimization had already been suggested in [ 11, 
the only method for device sensitivity analysis proposed 
so far to our knowledge is the technique for evaluating 
static small-change device sensitivities with respect to 
uniform doping and geometry variations presented in [2] 
and implemented in the HFIELDS simulator [3]. No at- 
tempt has been made to address other topics, such as ac 
sensitivity (i.e., the sensitivity of small-signal parame- 
ters) or the statistical sensitivity of the device with respect 
to random parameter variations [4]. 

Concerning noise analysis, classical analysis tech- 
niques, such as the impedancejield method described by 
Shockley, Copeland, and James [5] and its extensions and 
generalizations have been available for many years (for a 
review, see, e.g., [6], [7]). Although such techniques are 
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well suited for numerical implementation in two- or three- 
dimensional geometries, only applications to one-dimen- 
sional structures [8] or to quasi-physical models of GaAs 
FET’s have been presented so far (see [9] and references 
therein). 

Despite their different purposes, small-change para- 
metric sensitivity and the noise analysis of semiconductor 
devices have a common background: both analyses re- 
quire obtaining the small-signal response of the device to 
an equivalent distributed current source impressed either 
into the volume of the device or into its surface. Since the 
small-signal device model is linear, the response to an 
arbitrary impressed harmonic current density can be ex- 
pressed in terms of the response to a spatially impulsive 
dipole source, also called the Green’s function of the 
problem [ 101 and a superposition integral over the device 
volume. Moreover, linearity allows the device response 
to be uniquely expressed, for instance, in terms of the 
open-circuit voltages induced on the device ports. This 
choice justifies the name of vector impedancejield 2 orig- 
inally assigned in [5] to the open-circuit voltage response 
to a spatially impulsive dipole source. It is worth stressing 
that the response to a dipole source, which is primary in 
noise and sensitivity device analysis, can, however, be 
derived from the response to a spatially impulsive scalar 
current source (i.e., the scalar impedanceJield Z [5]). 

In sensitivity analysis, the source term arises from lin- 
ear perturbation of the physical model as a dc (ac) current 
density for the static (small-signal) case, so that the small- 
signal response is directly related to the device sensitiv- 
ity. In noise analysis, the distributed current source 
models microscopic random fluctuations of the current 
density with respect to its average value, and the purpose 
of the analysis is to relate the power and correlation spec- 
trum of the microscopic fluctuations (see, e.g., [ l l ] ,  [5], 
[12] and references therein) to the power and correlation 
spectra of the voltage or current fluctuations induced into 
the external circuit connected to the device. 

In order to formulate the problem into a more familiar 
form, it will be helpful to recall that the equations of the 
discretized device model can be interpreted in terms of an 
equivalent electrical network (cf. e.g., [13] and refer- 
ences therein). Therefore, the analysis of device sensitiv- 
ity and noise can be more easily understood by consider- 
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ing the well-known problem of evaluating the sensitivity 
and noise of an electrical network [14], [15]. Also in the 
latter case, sensitivity and noise can be evaluated from the 
linear response of the network to current sources related, 
respectively, to parameter variations or to the noise be- 
havior of the individual components. The network anal- 
ogy also offers a straightforward interpretation of the sca- 
lar impedance field. In fact, if the device model is 
discretized on a N-node mesh through a suitable numeri- 
cal scheme, the discretized scalar impedance field Z,  is 
just the transimpedance between an internal node j and 
the electrode i .  Thus the potential induced by a distribu- 
tion of current generators can be simply evaluated by su- 
perposition, which is a discrete form of the spatial super- 
position integral appearing in a Green’s function 
formulation. 

From a computational standpoint, the evaluation of the 
discretized scalar impedance field within the framework 
of a frequency -domain small-signal numerical device 
simulator [ 161, is a straightforward but computationally 
intensive task. In fact, it is necessary to repeatedly per- 
form a device analysis while placing a single current 
source in each of the N internal nodes, with a computa- 
tional cost amounting to the solution of N (N = lo3 - 
lo4) linear systems of dimension = N ,  or, at least, to one 
LU factorization and N backsubstitutions for each fre- 
quency. While a Green’s function formulation cannot be 
avoided in noise analysis, where the total available noise 
power at the device terminals is obtained by power sum- 
mation of spatially uncorrelated internal noise sources, ’ 
sensitivity analysis does not strictly require a Green’s 
function approach. This happens because the small-change 
device sensitivity with respect to a parameter can be de- 
scribed as the response to a well-defined current source 
distribution proportional to the parameter variation, and 
can, therefore, be obtained by globally solving a single 
current-driven problem. Nevertheless, in the Green’s 
function approach the device sensitivity with respect to a 
parameter is expressed as a volume integral (or, in dis- 
cretized form, as a node summation), whose integrand can 
be interpreted as a distributed parametric sensitivity. The 
knowledge of the spatial behavior of the sensitivity clearly 
allows deeper insight into which regions of the device dis- 
play high or low sensitivity with respect to some param- 
eter and is, therefore, a valuable design tool. 

A computationally efficient technique for the noise and 
sensitivity analysis of semiconductor devices, which 
drastically reduces the computational cost of evaluating 
the Green’s function, can be derived from the principle of 
the adjoint system approach [14], [15], [17] proposed 
during the late 1960’s for the noise and sensitivity anal- 
ysis of large electrical networks. The adjoint approach 
avoids the repeated evaluation of the network response to 
a current generator placed in turn in each of the internal 
nodes by exploiting the fundamental property of direct- 

’ The formulation can be extended so as to deal with spatially correlated 
noise sources; see Section 11-C. 

adjoint linear system pairs, i.e., their being mutually re- 
ciprocal, or interreciprocal. The idea is trivial in a recip- 
rocal network where the direct and adjoint system coin- 
cide; thus the transimpedance ZG where i is any of the 
internal nodes and j is an external port, is equal to qi. and 
can, therefore, be evaluated from the solution of one lin- 
ear problem, i.e., by connecting a current generator to 
por t j  and computing the resulting internal potentials. For 
any nonreciprocal linear network simple rules ultimately 
derived from the application of Tellegen’s theorem enable 
the definition of an adjoint network such that the direct 
and adjoint pair are interreciprocal [ 141. 

The purpose of the present paper is twofold. First, a 
unified treatment of the sensitivity and noise analysis of 
semiconductor devices is provided in which, for the first 
time to our knowledge, sensitivity analysis is reduced to 
evaluating the device response to a set of equivalent, dis- 
tributed perturbation current density sources. Second, the 
idea of exploiting the interreciprocity properties of an ad- 
joint system is extended to the numerical analysis of sen- 
sitivity and noise of semiconductor devices. 

A drift-diffusion majority-carrier model will be as- 
sumed as the basis of the discussion, and application of 
the adjoint method to GaAs MESFET’s will be consid- 
ered as a case study. Nevertheless, the adjoint approach 
can in principle be extended to two-carrier or nonstation- 
ary (hydrodynamic) models. In order to derive the discre- 
tized adjoint device from the direct one by formal appli- 
cation of network rules [ 141, the small-signal majority 
carrier model is expressed in an admittance-like form, al- 
ready proposed by the authors for computational expe- 
diency [ 181, [ 191. The extension of the adjoint approach 
to two-carrier models which is currently under develop- 
ment requires on the other hand the use of more general 
forms of the interreciprocity theorem, in which the simple 
formal network analogy is no longer helpful. 

The paper is structured as follows: Section I1 presents 
a unified discussion of sensitivity and noise analysis in 
terms of the small-signal response of the device to a har- 
monic, distributed current source. Section I11 introduces 
the adjoint technique, while its numerical implementation 
is described in Section IV. Finally, Section V is devoted 
to the discussion of some results concerning examples of 
sensitivity and noise analysis of GaAs MESFET’s. 

11. A UNIFIED APPROACH TO SENSITIVITY AND NOISE 
ANALYSIS OF SEMICONDUCTOR DEVICES 

From a physics-based standpoint, parametric sensiti v- 
ity and noise analysis apparently have very little in com- 
mon. In sensitivity analysis, the effect of parameter vari- 
ations on the device response is investigated; in the 
particularly important case where the parameter change is 
small, the device behaves as a linear system (small-change 
sensitivity analysis). In noise analysis, a deterministic de- 
vice model is considered involving average values of mi- 
croscopic quantities, such as the charge density and elec- 
tric potential. Then microscopic fluctuations are 



I 

421 GHIONE AND FILICORI: UNIFIED APPROACH TO NUMERICAL ANALYSIS OF SEMICONDUCTOR DEVICES 

superimposed, which can be modeled as random, distrib- 
uted, harmonic current sources, and the response to such 
sources is investigated [ 5 ] .  Since current fluctuations have 
small amplitude, the device again behaves as a linear sys- 
tem. Therefore, both small-change sensitivity and noise 
analysis involve the evaluation of the small-signal re- 
sponse of the device to a distributed source term related 
either to parameter variations or to microscopic current or 
charge fluctuations. However, while noise in the external 
circuit connected to the device naturally appears as the 
response to microscopic current fluctuations occurring 
with the device, the interpretation of the static and small- 
signal sensitivity as the response to distributed dc or ac 
current sources is less straightforward. The present sec- 
tion is aimed at giving a formal background to the above 
ideas so as to establish a common framework for small- 
change sensitivity and noise device analysis. 

A. n e  Physical Model 
Although most of the concepts introduced in the fol- 

lowing sections can be readily applied to other, more 
complex, physical models, a majority-carrier drift-diffu- 
sion model will be assumed as the basis for the discus- 
sion. In large-signal operating conditions the model equa- 
tions read 

where J = q [ - n p V 4  + DVn] is the drift-diffusion cur- 
rent density and J, is an impressed distributed current 
source, which is zero under normal operating conditions 
and is introduced here for formal expediency, to be ex- 
ploited later. In the above equations n is the electron den- 
sity, 4 the electric potential, p and D the (field-depen- 
dent) electron mobility and diffusivity, q the electron 
charge, E the semiconductor permittivity, while NA is the 
net equivalent ionized donor density; for the sake of sim- 
plicity, the ionization is assumed to be constant. The 
boundary conditions associated to the drift-diffusion sys- 
tem are well known, see, [20]. From the Poisson-conti- 
nuity system, an equation can be derived in the potential 
only, which is useful to establish a direct analogy with 
the nodal formulation of an electrical network. On sub- 
stituting in (1) the charge density derived from (2), the 
following expression is obtained: 

-€V2$ + V [-qNDfpV+ - €pV24V4 + qDVNDf 

+ E D V V ~ ~ ]  E 3(+, 4) = -V J ,  (3) 

where 4 = a$/&.  Similarly, the boundary conditions can 
be entirely expressed in terms of the unknown 4 and its 
spatial derivatives; for the sake of brevity, these will be 
denoted as x ( 4 ,  s)  = 0 ,  where x is a partial differential 
operator acting on the contour of the device and s is a set 
of external sources applied at the device terminals. 

B. Sensitivity Analysis 
To carry out a formal sensitivity analysis, let us set the 

impressed term J, to zero and make 3 and x explicitly 
dependent on a parameter set p ,  which can be either a 
single parameter, a discrete set of parameters, or a con- 
tinuous function (e.g., the doping profile). Since from the 
standpoint of a numerically discretized problem the pa- 
rameter set always has finite dimension, we shall unre- 
strictively consider p to be a vector of dimension Np. We 
have, therefore, 3(+, 4, p) = 0 with associated boundary 
conditions x (4, s, p )  = 0.  Let us suppose we apply to the 
device a dc bias so superimposed on small-amplitude time- 
varying ac generators s^, i .e.,  a small-signal excitation; at 
the same time, let the parameters undergo a small vari- 
ation Ap with respect to a reference value po: 

s = so + s^(t) 

P = Po + AP. 

(4) 

(5) 

(6) 

The resulting potential distribution will be written as 

4 = 4 0  + A40 + d(0 + Ad@) 
where <bo is the dc response with nominal parameters, A+o 
t>e dc perturbation caused by the parameter variation, 
4( t )  the small-signal potential due to the time-varying part 
of the impress!d generators s^(t), i.e., the small-signal re- 
sponse and A 4 ( t )  the variation of the latter due to the 
parameter variation. I,n the linear approzimation, one 
clearly has A$J~ a Ap, 4 ( t )  a s^(t), while A+(t) a s^(t)Ap. 
If the expressions of (4), (9, and (6) are introduced into 
(3) and the operator and boundary conditions are ex- 
panded in Taylor series around the point (so, do, po) ,  the 
zeroth-order term yields the nominal (i.e., unperturbed) 
dc problem: 

T + O ,  0, Po) = 0 

x ( 4 0 ,  $0, Po) = 0 

(7) 

(8) 
while first-order terms in Ap yield the perturbed dc prob- 
lem: 

3#A& = -3,Ap (9) 

X # N O  = -xpAP (10) 
where 3a stands for the gradient of 3 with respect to CY, 
and all gradients are evaluated at the operating point (40, 
so, po)  and in dc steady-state conditions (4 = 0). Simi- 
larly, by taking the terms of first order in 3, one has the 
ac small-signal problem, which can be written in the fre- 
quency domain: 

Y(46(4 = 0 (11)  

X # d ( W >  = -x,s^(w) (12) 

where $(U) and $(U) are the Fourier transforms of the 
small-signal potential and impressed sources, respec- 
tively, and y ( w )  = 3+ + j ~ 3 4  is the small-signal admit- 
tance operator arising from the linearization of the drift- 
diffusion model. Notice that in (9) 3$ = y(0). Finally, 
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the second-order bilinear terms of the order 8Ap yield the 
perturbation of the ac small-signal problem, which reads 
in the frequency domain: 

(13) 

(14) 

Y ( 4 A 6  (U) = - [ Y g (w)A+o + Y , ( + P l 6  (U)  

x g A 6 ( 4  = -[xQQA+o + XgpAP16(4 
where ya is the gradient of with respect to a. On in- 
troducing the inverse operator of 9 ,  2, the above equa- 
tions can be rewritten in the following more explicit form: 

Y ( W 6  (0) = - [ Y g  (d53(0)3, + Y p  ( w ) l 3  b ) A P  

(15) 

(16) 
Inspection of the above systems suggests the following 

interpretations. It is clear from (9) that evaluating the 
static device sensitivity with respect to parameter vari- 
ations reduces to computing the small-signal response to 
a dc distributed source term A J, (r) such as: 

(17) 
with boundary conditions given by (10). Comparison of 
(10) with (12) clearly shows that these boundary condi- 
tions are equivalent to a source term impressed on the de- 
vice periphery. According to the type of problem consid- 
ered, either the volume or the boundary term can vanish.2 
Similarly, the ac sensitivity analysis amounts to evaluat- 
ing the small-signal response to an ac distributed source 
term A Js(r,  U) bilinearly related to the small-signal po- 
tential and to the parameter variation Ap, such as 

x g A 6 ( 4  = -[xggZ(0>3, + x g p 1 6 ( w P .  

V * AJ, = 3,Ap 

v * A.f ,  = r Y g  (U) 55 (0) 3, + Y,(w)l 6 b ) A P  (18) 
with boundary conditions given by (16), again equivalent 
to an ac boundary source. 

A final remark is suggested by comparison of (1  3) and 
(9). While for the dc sensitivity analysis the equivalent 
source term depends only on the results of the dc analysis 
with reference parameter values, the ac source terms also 
contain the variation of the dc potential distribution, A#o. 
Therefore, the ac sensitivity analysis always requires the 
solution of Np dc small-change sensitivity problems nec- 
essary in order to set up the Np different perturbation dis- 
tributed ac current sources to be used in (13) and (14). 
Thus the ac sensitivity analysis is intrinsically more com- 
putationally intensive than the dc one, independent of the 
technique exploited for evaluating the device response to 
the source term. 

Response to harmonic current sources-Green s Func- 
tion Approach: It has already been shown that the dc and 
ac sensitivity analyses amount to evaluating the small-sig- 
nal response to an equivalent sensitivity current density 
volume source (cf. (9), (13)), subject to a set x of linear 
boundary conditions, which may include a sensitivity sur- 

For instance, the sensitivity to dimension variations not affecting the 
distributed parameters of the device can be formulated as already implied 
in [4], so as to lead to a boundary source term only. 

face excitation (see (lo), (14)). As already pointed out, 
either the volume or the surface excitation can vanish, 
according to which sensitivity parameter is considered. 
Finally, a surface excitation also appears in evaluating the 
nominal small-signal response of the device (see (12)). 
Since in linear operating conditions the superposition 
principle holds, the device response to surface and vol- 
ume sensitivity sources can be separately evaluated so as 
to characterize the equivalent generators appearing at the 
device ports, while the nominal small-signal response can 
be uniquely derived from a linearly independent set of 
small-signal parameters. For the sake of simplicity, we 
shall concentrate mainly on the treatment of volume 
sources, which are also fundamental in noise analysis. 

Let us generally indicatt a harmonic impressed volume 
current density source as Js(r, a), where r is the position 
vector, and the corresponding induced small signal poten- 
tial as &(r, U), which is the solution to the linear problem: 

Y ( w ) 6  = -v * js<4 (19) 

where the operator y ,  already introduced in the last sec- 
tion, is, for the sake of brevity implicitly associated to the 
boundary conditions defined by the boundary operator x .  
It can be noted that the boundary condition set x is now 
homogeneous, that is, it does not include any impressed 
surface generators. For the drift-diffusion model defined 
by (3), the explicit expression of (19) can be readily de- 
rived as 

v [POV + p o e ~ ~ 6  - (qnoE - + joE)v61 

= -v * j ,(w) ( 20) 

where po and Do are the dc operating point electron rno- 
bility and diffusivity, the dc electric field, no the dc 
electron concentration, + (U) the Fourier transform of the 
small-signal electric potential and - is the small-signal 
equivalent mobility tensor 

(21) 

where Z is the identity tensor and V,  the voltage equivalent 
of temperature. 

The potential induced by the volume source js (r ,  U), 
$(r) ,  can be generally expressed in terms of the vector 
Green 's jimction 2 and of a spatial superposition integral 
[lo] as 

$(r ,  U) = s, Z(r, r', 0) j ( r ' ,  U) dr'. (22) 

As shown in [5] (see also [ 7 ] ) ,  2 can be derived from a 
potential Z as 

Z(r,  r', w )  = VrZ(r,  r', U). (23) 

2 can, in turn, be interpreted [5 ]  as a scalar Green ' shnc-  
tion, since the response to a harmonic scalar current source 
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i(r, U )  = -V - j 3  can be expressed in terms of Z as 

$(r ,  U )  = s, Z(r, r f ,  ~ ) f ( t ’ ,  U )  dr’.  (24) 

The treatment of an impressed surface current source is 
similar to the case of volume sources; only the volume 
integral of (22) is replaced by a surface integral. 

For open-circuit boundary conditions, Z(ri, r ’ ,  U) ,  

where ri denotes the electrode i ,  coincides with the vector 
impedance jield originally introduced by Shockley [5 ]  as 
the open-circuit potential Pi 6 (Ti)  induced on electrode 
i by a unit dipole source P impressed in rf  (or, equiva; 
lently, induced by a spatially impulsive current density J 
= pS(r - r f ) ) .  Similarly, in the same conditions Z(ri, r ‘ ,  
w )  coincides with Shockley ’s scalar impedance j e l d ,  de- 
fined [5] as the open-circuit voltage induced on the elec- 
trode i by a unit current source t impressed in rf (or, 
equivalently, indyced by a spatially impulsive scalar cur- 
rent density i = ZS(r - f ) ) .  

The meaning of the scalar and vector impedance fields 
for a device having M contacts (plus one ground terminal) 
is shown in Fig. 1. Expressing the vector Green’s func- 
tion in terms of a scalar Green’s function, i.e., of the de- 
vice response to a scalar current source connected be- 
tween the ground and a point of the device, clearly leads 
to computational advantages. 

Green s Function Formulation of Sensitivity: On the 
basis of the previous discussion, the expression of device 
sensitivities as superposition integrals is straightforward. 
Device sensitivities include the dc sensitivities of external 
variables such as open-circuit voltages or short-circuit 
currents, and the ac sensitivities of small-signal parame- 
ters. Since the problem is linear, the small-change sensi- 
tivity of any set of parameters can be derived from a lin- 
early independent set of sensitivities. With no loss of 
generality, we shall consider here as the relevant electri- 
cal variable the electrode potential ei and its open-circuit 
variations. Let us suppose that Np parameters p I  - pN,, 
are varied; the impressed distributed current source term 
will be linearly related to the parameter variations. For 
the dc case: 

N” 

where S6k(r). is the sensitivity of ei with respect to P k ,  

which can be expressed as the volume integral of a dis- 
tributed sensitivity s: (r) .  

For the ac case, the sensitivity of the impedance matrix 
elements zii can be directly expressed as the sensitivity of 

’From the continuity equation, the tern -Vrs . j ( r ‘ )  can be interpreted 
as the equivalent scalar current densiry i (r’)  = jwqk (r‘) impressed into r’. 

the open-circuit voltage P f  = zk; induced on electrode i by 
a unit current generator applied to the electrode k. If the 
distributed source corresponding fp a set of parameter 
variations Apk term is denoted as AJk(r’> the variation &ki 

of the impedance matrix element zki reads: 

N O  

Both in the dc and the ac cases, the knowledge of the 
distributed sensitivity, rather than of only the overall sen- 
sitivity, can provide the device designer with valuable in- 
sight on how to properly optimize the device structure and 
technological process, since it allows the contribution of 
specific parts of the device to be singled out as critical. 
This information is altogether indispensable if one is in- 
terested in random parameter variations occurring in the 
device volume (e.g., random doping fluctuations or ran- 
dom geometry irregularities [4]); in this case, which is 
not discussed in detail here, the treatment is similar to that 
for noise analysis. 

C. Noise Analysis 
Noise in the circuit connected to a semiconductor de- 

vice can be interpreted as the small-signal response to mi- 
croscopic fluctuations SJ of the current density in the 
semiconductor. Random current fluctuations are modeled 
as a volume source term like the one introduced in (3) and 
denoted there as J,; the device response is linear since the 
amplitude of fluctuations is small. For further details on 
the physical background, the reader can refer to [ 5 ] ,  [ 111 
and references therein. 
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Compared to sensitivity analysis, noise analysis re- 
quires a further step, since the impressed current density 
6J(r) is a space-dependent random process rather than a 
deterministic function. The aim of the analysis is there- 
fore to obtain a second-order statistical characterization 
(i.e., the power and correlation spectra) of the equivalent 
external noise generators on the basis of the statistical 
properties of the microscopic current fluctuations. The 
treatment presented here closely follows the original for- 
mulation of [5] (see also [ l l ] ,  [7]) which is generalized 
so as to allow for spatially correlated microscopic noise 
sources. 

Green 's function formulation of noise analysis: Start- 
ing from (22), the power ( i  = j )  and correlation ( i  # j )  
spectrum Sa,,&,, of the induced potential fluctuations 
6ei(6ej)  on electrode io')  can be related to the correlation 
spectrum of the current fluctuations SGJ(r,,GJ(n)(rl, r2, U )  

as:4 

where Q is the device domain, and * denotes complex 
conjugate. The correlation spectrum of the current density 
fluctuations is a matrix whose components are the Fourier 
transforms of the spatial correlation functions R, defined 
in a rectangular reference system as R,(rl ,  r,, T) = 
E [6Ji (rl)6Jj (r2)], where E [ ] denotes ensemble average. 

Equation (27) can be considered as a generalization to 
three dimensions of the one-dimensional transmission line 
formulation of [22]. Since the correlation length of cur- 
rent fluctuations is of the order of the mean free path in 
the semiconductor, the microscopic sources can be as- 
sumed to be spatially uncorrelated in most practical situ- 
ations. In this case 

s&,(rl)&J(r2)(~17 r2, = KsJsJ(r1, w ) W ,  - r2) (28) 

where K is usually referred to as local noise source [12]. 
for uncorrelated diffusion noise [5], [ 1 11 the local noise 
source takes the form: 

K ~ J & A ~ ,  = 4q2~0(r)no(r> (29) 

where Do is the diffusivity tensor and no tne electron den- 
sity at the nominal dc operating point. 

Assuming spatially uncorrelated sources in (27) finally 
leads to the classical impedance-field formula [5]: 

P 

- VrZ*(rj, r, w)  dr. (30) 

4 A  rigorous proof based on the theory of distributed linear systems with 
random inputs (see [21]) is straigthforward but lengthy, and will not be 
given here. The result is often obtained in a heuristic way by taking (22), 
multiplying by its complex conjugate, taking the ensemble average, and 
exchanging integrals and averages. 

111. THE ADJOINT APPROACH 
In the previous sections, it has been shown that the de- 

vice sensitivity and noise can be conveniently expressed 
through the scalar Green's function 2 (see (25), (26), 
(30)). To evaluate Z, a discretization scheme is intro- 
duced whereby the small-signal Poisson-continuity sys- 
tem, and, therefore, (20), is replaced by a discrete system 
on a mesh with N nodes. 

In this way, the continuous problem: 

y $ = - v . j =  w (3 1) 

is turned into a discretized, admittance-like system of 
equations 

where t$ and i are arrays of nodal potentials and node 
impressed currents, respectively, and Y is an admittance 
matrix whose explicit expression will be given in the next 
section. 

Since the discretized scalar impedance field Zij is the 
transimpedance between an internal node j and an elec- 
trode node i ,  (Le., di = 2,4), each element Z,  could be 
:imply obtained-from the solution of (32) with source te ry  
Z = (0, - , 4, - - - , 0 ) ,  j = 1 - - - N ,  as Z,  = d , / $ .  
The computational burden, however, would be fairly high, 
since for each frequency it would amount to the solution 
of N(N 5: lo3 - lo4) linear equation systems of dimen- 
sions = N  X N ,  having the same coefficient matrix and N 
different forcing terms; this involves only one LU factor- 
ization and N back substitutions for each frequency. The 
same problem arising in the sensitivity and noise analysis 
of electrical networks was effectively solved through the 
so-called adjoint approach [ 151, [ 141. The basic idea can 
be extended to device simulation as follows. 

Let us start with the discretized system of (32) and in- 
troduce an adjoint system defined by the equation 

Yt$ = i (32) 

ytp = i t  (33) 

where t$ and it are the adjoint nodal potential and current 
source, respectively, and Yt is the (heretofore unknown) 
admittance matrix of the discretized adjoint device. Con- 
sistently with the definition of adjoint network, we require 
that the adjoint system be interreciprocal to the direct one, 
meaning that Zj(u) = Z,(w), where Z :  is the discretized 
scalar adjoint impedance field, subject to a set xt of ad- 
joint boundary conditions. Interreciprocity implies that the 
impedance field can be evaluated by just one analysis per- 
formed on the adjoint system of (33), i.e., by impressing 
a current it into the electrod: node i and evaluating the 
adjoint potential distribution +:, j = 1 ,  * * , N .  In fact 
one has 

(:34) z.. B = zt. I' = @ / f i t  
so that only :ne solution of the adjoint system is needed 
to evaluate 4 t. The direct-adjoint current-driven pair is 
shown in Fig. 2. In the direct problem, a unit current 
source is impressed into a discretization node j ,  and the 
open-circuit potential induced on the electrode i is eval- 
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(b) 
Fig. 2. (a) Current-driven direct device. (b) Adjoint device. 

uated, which is equal to 2,. In the adjoint problem, a unit 
current source is impressed into the electrode i and the 
resulting adjoint potential distribution 2; = 2, is ob- 
tained, thereby yielding the whole scalar impedance field 
with a single computation. 

The identification of the adjoint device is more in- 
volved than that of the adjoint network, since a network 
is an intrinsically discrete system while a device is a con- 
tinuous one, discretization being the result of a numerical 
approximation. The derivation of the discrete adjoint 
problem could therefore be performed either directly on 
the discretized device equations, or by first obtaining a 
continuous adjoint system, and then deriving the discre- 
tized adjoint therefrom. 

In the first approach, the analogy between the discre- 
tized problem and the nodal formulation of an electrical 
network suggests the use of general rules [ 151, [ 171 for 
the identification of the adjoint system, thereby leading to 
the simple result Yt(u) = YT(u),  where T stands for 
transpose; interreciprocity between the direct and adjoint 
system readily derives from Tellegen's theorem applied 
to the direct-adjoint pair [15]. 

In the second approach, standard techniques can be ex- 
ploited to derive the adjoint equations and boundary con- 
ditions (see, e.g., [lo] ); interreciprocity directly derives 
from the classical definition of adjoint operator (for a more 
detailed discussion, see [23] ). 

From a computational standpoint, the first approach is 
clearly more convenient, not only because the discreti- 
zation of the adjoint continuous problem is avoided, but 
also because in this way consistency with the direct dis- 
cretized problem is guaranteed. 

IV. IMPLEMENTATION OF THE ADJOINT APPROACH 
The implementation of the adjoint approach has been 

carried out within the framework of a majority-carrier 
drift-diffusion device simulator based on a finite-boxes 

Scharfetter-Gummel discretization scheme on an N node 
grid [20]. The small-signal model is obtained by directly 
linearing around an operating point the large-signal time- 
domain system and by transforming the resulting linear 
time-domain system into the frequency domain. For fur- 
ther details on the present model the reader can refer to 
1181 9 t 191. 

The implementation is based on the following steps. 
First, the discretized direct small-signal frequency-do- 
main current-driven problem is derived in admittance-like 
form [ 161. Second, the small-signal parameters of the di- 
rect device are obtained. Finally, the discretized adjoint 
model is derived from the direct one. 

To handle the discretized problem, we introduce the 
following notation. Let us define as free nodes those dis- 
cretization nodes which do not lie on contacts, and as con- 
tad nodes those nodes which lie on contacts. Quantities 
relative to free nodes will be denoted by a subscript f, to 
contact nodes by a subscript c. Taking into account that 
the discretization admits Nf free nodes and N, contact 
nodes (Nf + N, = N), all arrays of nodal values x can be 
partitioned in two subarrays: x = [xf,  x,], and similarly 
all N x N matrices X can be partitioned into four sub- 
matrices, as follows: 

(35) 

where X, and X,, are square matrices of dimension N' x 
N' and N, X N,, respectively, while Xfc and X, are 
rectangular matrices of dimension Nf X N, and N ,  x ,Vf, 
respectively. 

Nodal formulation of the small-signal model: It can be 
readily shown [ 161, [ 181, [ 191 that the frequency-domain 
discretized small-signal system can be written in the form 

where B is a diagonal area weight matrix, A the rigidity 
matrix of the Poisson equation, and C and E derive from 
the linearization of the continuity equation discretized ac- 
cording to the Scharfetter-Gummel scheme with respect 
to electron density and potential, respectively. For a de- 
tailed expression of these N X N matrices see [ 181, [ 191. 
The array 6 (a) and fi (U) are the Fourier components of 
the electric potential land electron density at the angular 
frequency U ,  while Z is the array of current generators 
impressed into discretization nodes; finally, 0 is a N x 1 
null array. The previous arrays can be partitioned into a 
free and a contact part as follows: 

(37) 
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While homogeneous Neumann boundary conditions are 
already implicit in the discretization, on the ohmic con- 
tacts A, is assigned according to the neutrality condition, 
whereas it, is approximately zero on Schottky contacts in 
reverse bias. Therefore ti, = 0, always unless the sensi- 
tivity has to be computed with respect to doping varia- 
tions, for which lici = AND on ohmic contacts and rici = 
0 on Schottky contacts. Concerning the potential, the only 
boundary condition is that all nodes belonging to the same 
electrode have the same potential. In this way, only one 
unknown potential remains for each contact; on the other 
hand, for each electrode the current distribution is to be 
determined, the only datum being the total current for each 
electrode; therefore the system of (36) is completely de- 
fined. We shall not discuss in further detail the treatment 
of the current-driven problem, since as shown later, its 
explicit solution as such is not needed. 

To proceed with the analysis, let us introduce the fol- 
lowing matrix partitioning: 

E = [  Eff EfC 1; C = [  cff Cfc ] 
E, Ecc Ccf c c c  

and similarly, taking into account that A is symmetric and 
B diagonal: 

where Ofc is a null matrix of dimension Nf X Nc and T 
stands for transpose. 

Through Poisson's equation, A (U)  can be expressed in 
terms of 4 (U).  This allows the electron density to be elim- 
inated in the continujty equation, thereby leading to a no- 
dal formulation in 4 ( w )  alone. In order to correctly in- 
clude the charge neutrality condition it, = 0, into the nodal 
formulation, one must express ti, in terms of nodal poten- 
tial values, through the Poisson equation. The neutrality 
condition, expressed in terms of potential, reads: 

A, = BSI (A& + = 0,. (38) 
4 

As already mentioned, the neutrality condition has to 
be properly modified for dc sensitivity analysis with re- 
spect to doping variations, thereby originating a boundary 
source term whose detailed treatment is omitted for the 
sake of brevity. 

By taking (38) into account, the nodal formulation in 
terms of potential (compared with (32)) can be expressed 
as 

(39) 

where the submatrices into which the nodal admittance 
matrix Y is partitioned read 

Yff = qEff - jwcAff - E C ~ B ; ' A ~  

Yfc = qEf, - jweAf, - E C$i AfC 

(40) 

(41) 

Ycf = qEcf - jwcAi - E C ~ B ~ I A ~  (42) 

Ycc = qE, - jucAcc - eCcfBF'Afc. (43) 

It is worth noting that the neutrality condition has been 
imposed on the nodal formulation by explicitly modifying 
the nodal admittance matrix according to (38). 

Evaluation of the Small-Signal Parameters: In order to 
derive the small-signal parameters of the device from the 
nodal formulation of (39), the first step is to se: to zero 
all current generators applied to free nodes (If = Of), 
thereby leaving the contact excitation only. Then com- 
putational expediency suggests the use of a voltage-driven 
problem rather than of a current-driven one. In a voltage- 
driven problem, the cpntact part of th,e nodal potential ar- 
ray is assigned, i.e., 4c = V,, where Vc is the small-signal 
potential applied to the contact nodes. On the other hand 
fc is an unknown which can be derived from the solution 
of the system, thereby yielding the current distribution on 
the electrodes and, therefore, the total small-signal cur- 
rents. Thus, a reduced nodal formulation can be derived 
in the free nodes only, which reads: 

Yff(U)6f(U) = -yfc(4Vc(4 (44) 

while the contact currents can be obtained, after solving 
(44), from (39) as 

ic = Ycf (44f (U) + YCC(4VC(4. (45) 

Finally, the total smail-signal current is derived by sum- 
ming all elements of Zc relative to the same contact. In a 
device having M electrodes and one ground contact, M 
small-signal solutions to independent voltage excitations 
are required to evaluate the admittance matrix. The com- 
putational burden corresponds for each frequency to the 
factorization of the reduced nodal matrix Yf and M back 
substitutions, one for each independent excitation. 

Derivation of the Adjoint Problem: Taking into ac- 
count that the direct problem of (39) is in admittance form, 
analogy to network analysis immediately yields the ad- 
mittance matrix of the adjoint device: 

Y+ = YT. (46) 

Therefore, the discretized adjoint system simply becomes 
(compare with (33)): 

where 41, 4: are the adjoint potential on the free and 
contact nodes, respectively, while It is the adjoint current 
impressed into the nodes. According to the direct-adjoint 
interreciprocal pair of Fig. 2, one chould now set to zero 
all bulk adjoint currents (Z) = Of) and evaluate the adjoint 
potential distribution excited by a unit current generator 
impressed into one of the electrodes while the others are 
open. Again, the implementation of current boundary 
conditions, which is slightly inconvenient from the stand- 
point of device simulation, can be avoided in favor of 
more straightforward voltage boundary contitions, since 
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the linearity of the adjoint problem enables the current- 
driven problem in Fig. 2(a) to be replaced by an equiva- 
lent problem yherein the device is driven by a set of volt- 
age sources k‘l = zli = Z i k ,  where Z+ = zT is the imped- 
ance matrix of the adjoint device. 

ThusL in the voltage-driven adjoint problem 3,‘ = V J  
where V J  is the assigned adjoint potential on the elec- 
trodes corresponding to a unit current excitation on ter- 
minal i ;  therefore, the reduced nodal formulation for the 
free nodes follows as: 

Y & d ) 3 f t ( W )  = -Y&)V.r(w). (48) 
The solution of (48) finally yields the distribution of the 

adjoint potential and, thus, with the above voltage exci- 
tation, the impedance field. Notice that, from a compu- 
tational standpoint, the adjoint system matrix Y$ is just 
the transpose of the direct one, which has already been 
LU factorized to perform the small-signal analysis. Since 
the solution of the transpose system can be obtained by 
exchanging and transposing the L and U factors, the com- 
putational cost of evaluating the impedance field relative 
to one electrode only amounts to one back substitution. 

Discretization of Sensitivities and Noise Spectra: On 
applying simple first-order quadrature formulas consistent 
with the finite-boxes discretization scheme, the following 
expressions can be obtained for the dc sensitivity: 

where the summation is extended to all N discretization 
nodes, and Qj is the area of the polygonal box surrounding 
each node; similar expressions apply for the ac sensitivity 
case. for noise analysis 

B 

S6ez6e j (0 )  v z i k ( w )  . KW6.1( rk ,  U) * v z $ T ( w ) Q k .  
k =  I 

(50) 
For both sensitivity and noise analysis the numerical eval- 
uation of the gradient of the scalar impedance field can be 
avoided by careful use of the Gauss theorem on the con- 
trol volume surrounding each node. 

A. Computational Advantages of the Adjoint Approach 
In this section, the comparative computational cost of 

the dc and ac sensitivity analysis and that of the noise 
analysis with respect to the small-signal analysis alone 
will be investigated. In order to give at least an approxi- 
mate quantitative basis for the comparison, let us intro- 
duce the following parameters: CLu as the computational 
cost of the LU factorization of an N X N sparse matrix; 
C, as the cost of a back substitution on an N X N sparse 
linear system; C, as the cost of a scalar product between 
two vectors of length N .  All matrices have dimension N, 
where N is the number of discretization nodes. Taking 
into account that for an M terminal device the evaluation 
of the complete set of M linearly independent impedance 
fields amounts to the solution of M adjoint problems for 

each frequency, i.e., to M back substitutions on the trans- 
posed system, and supposing that the ac analysis is per- 
formed on Nf frequencies and the sensitivity analysis in- 
volves Np parameters on a device with M ports, it is easy 
to show that, neglecting the computational cost of matrix 
assumbling, one has 

(51) 
for the cost of the small signal analysis’ 

CN NfMC, (52) 
for the cost of noise analysis, roughly amounting to eval- 
uating a set of independent Green’s function for each fre- 
quency, i.e., to M solutions of the adjoint problem. The 
cost of a dc sensitivity analysis is found to be 

e,, = Nf [CL, + MCSI 

C D c  MC, + NpMCp (53) 
where the first term is related to the evaluation of the dc 
Green’s function, while the second one refers to the com- 
putation of (49) to be repeated for all parameters (see 
(25)). While dc sensitivity analysis is fairly inexpensive, 
the ac sensitivity analysis can be rather intensive. To fix 
the ideas, let us propose evaluating the sensitivity of‘ the 
impedance or admittance matrix. The cost would be 

CA, N,C, + NfMC, + NPNfM2Cp (54) 
where the second and third terms are similar to those aris- 
ing in dc sensitivity, while the first one corresponds to 
evaluating the dc sensitivity of the static distribution for 
each of the parameters involved. Since usually C,, >> 
C, > C,, dc sensitivity and noise analysis can be per- 
formed with negligible overhead with respect to the small- 
signal analysis alone for any value of Np. On the other 
hand, the ac sensitivity analysis can become computation- 
ally intensive whenever Np is large, for instance when Np 
= N ,  as in statistical sensitivity analysis with respect to 
random parameter variations. 

A final remark concerns the computational expediency 
of the adjoint implementation of the Green’s function ap- 
proach in device sensitivity analysis. As already stated in 
Section I, the response to an assigned perturbation dis- 
tributed source can be obtained by a direct method, i .e. ,  
by solving one linear system with a given forcing term. 
If the Green’s function were evaluated without making 
use of the adjoint technique by solving N linear systems, 
the direct solution would be faster than the Green’s func- 
tion approach whenever Np < N .  Nevertheless, the ad- 
joint approach reduces the computational cost of evalu- 
ating the Green’s function to just one back substitution, 
thereby making it convenient with respect to the direct 
technique even for Np = 1. 

V. EXAMPLES 
This section discusses a few examples of the techniques 

presented in the paper. For sensitivity analysis, the simple 
but practically important case of dc sensitivity with re- 

5As a reference the direct technique is assumed, rather than the iterative 
one described in [ 161. 
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Fig. 3 .  Simulated dc characteristics of epitaxial 1-pm MESFET. The op- 
erating points are: # 1 ,  V,, = 0 V, V,, = 3 V; #2, V,, = - 1  V, VD, = 
3 v; #3, v,, = -2 v, VD, = 3 v. 
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Fig. 4. dc charge and potential distributions for bias point #1 of Fig. 3 .  
(a) Electron density, 10'' units. (b) Electric potential, V. 

spect to doping variations will be addressed in detail, with 
the aim of clarifying the general procedure presented in 
Section 11-B with a specific example. For noise analysis, 
the purpose of the example shown is to demonstrate that 
the technique proposed leads to results which are in good 
agreement with other, simplified models (see [9] ). A more 
complete discussion on the physical aspects of two-di- 
mensional noise analysis is beyond the scope of this pa- 
per, and will be presented elsewhere. The sensitivity and 
noise analysis have been implemented within the frame- 
work of a two-dimensional drift-diffusion MESFET sim- 
ulator derived from the one described in [18], 1191. All 
microscopic quantities are treated as invariant along the z 
axis, and volume integrals are interpreted as surface in- 
tegrals on a per unit length basis. 

As a case study, an epitaxial 1-pm MESFET, with 300- 
pm gate periphery, active layer thickness 0.2 pm, epi- 
layer doping No = 10'' cmP3 and semi-insulating bufier 
layer has been considered. In all the computations shown, 
a nonuniform triangular mesh of about 1800 nodes was 
used. The dc curves are shown in Fig. 3; small signal and 
noise analysis was performed forf = 0, * - - , 14 GHz on 
the operating points marked in Fig. 3. The charge density 
and potential for the operating point #1 are shown in Fig. 
4. 

A first result concerns the direct outcome of the adjoint 
technique, i.e., the frequency-dependent scalar imped- 
ance field Z(w). Instead of Z, Fig. 5 shows (for the op- 
erating point #1 andf = 4 GHz) a related function whose 
interpretation is easier: the short-circuit gate (Fig. 5(a), -_ 
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Fig. 5. (a) Small-signal short-circuit gate current for a unit harmonic current source injected into a point internal to the device. 
(b) Small-signal short-circuit drain current for a unit harmonic source injected into a point internal to the device. The frequency 
isf  = 4 GHz; the bias point is #1 o f  Fig. 3 .  
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Fig. 6.  Distributed sensitivity of the short-circuit drain current with re- 
spect to uniform variations of  the doping level for the MESFET of Fig. 3 ,  
( A / r ~ - ~ ) r n - ~  units; the bias point is #1 of Fig. 3 .  

(b)) and drain (Fig. 5(c), (ci)) ac currents excited by a unit 
scalar current generator impressed into a point internal to 
the device. As already stressed, the set of small-signal 
short circuit currents can be easily related to the imped- 
ance field through the small-signal parameters of the de- 
vice. Indeed, from a computational standpoint the short- 
circuit currents are a more convenient choice than the 
impedance field in the analysis of insulated-gate FET's, 
since for such devices the impedance matrix becomes sin- 
gular for w -+ 0, whereas the admittance matrix is regular. 
Fig. 5(a), (b) clearly shows that the coupling between a 
current source impressed into the device and the gate 
short-circuit current is mainly capacitive; therefore, the 
induced gate current is in quadrature with the unit current 
source placed inside the device. The in-phase component 
of the gate short-circuit current is almost zero every- 
where, apart from the gate itself, where it is equal to one. 
The abruptness of the jump shown in Fig. 5 is obviously 
proportional to the discretization density. The same re- 
marks hold for the short-circuit induced drain current 
which is, however, mainly in-phase; the capacitive cou- 
pling increases with increasing frequency. 

Sensitivity Analysis: As an example of sensitivity anal- 
ysis, let us consider the static sensitivity of the device 
with respect to distributed variations of donot density ND, 
AND(r). The doping variations cause an impressed charge 
density to appear in the Poisson equation, thereby leading 
to the equation in the potential only 

V [(DoV + PO&O)CV~ - qnolVIA40 - 

= q v  * [&v + P0&01 W D ( r ) *  (55)  
The associated boundary conditions also include the 

neutrality condition on ohmic contacts EV~AC$~ = q m D .  
The open-circuit potential variation A+,(r) caused by a 
doping variation AND@) can be interpreted as the response 
to an impressed dc current density: 

(56) 

The doping variation AND(r) can in turn depend on 
other, more fundamental, process parameters. For in- 

u s ( r )  = -qIDOV + PO%] m D ( r ) .  

stance, in the case of a single-implant profile, it would be 

where Di is the implanted dose and E; the implant energy. 
For a single epitaxial profile, as in the example considered 
here, a uniform doping variation of the epitaxial layer can 
be considered to be the sensitivity parameter. Therefore 
(56) simply yields AJS(r) = -qpo&oAND and the dc sen- 
sitivity of the open-circuit voltage on electrode i can be 
expressed as: 

Aei 
S& = - = - s qpoV,Z(ri, r ,  0 )  - c0 dr 

A N D  Dc 

where the integration domain QC is the epitaxial layer. 
For the reasons outlined above, the sensitivity of the 

short-circuit currents with respect to doping variations are 
a more significant parameter for MESFET's than that of 
the open-circuit voltages. Fig. 6 shows the distributed 
sensitivity sgD(r) of the dc drain current with respect to 
uniform doping variations in the epitaxial layer. Since 
s;'(r) = 0 in the buffer layer, only the epitaxial layer has 
been simulated. As expected, the ohmic part of the device 
shows negligible distributed sensitivity, while maximum 
sensitivity can be found in the velocity-saturated part of 
the channel. The wriggles appearing in the distributed 
sensitivity near the source end of the devices are a nu- 
merical artifact due to discretization, since in that region 
the mesh density varies. 

Noise Analysis: In the present results the only noise 
source considered is duffusion noise, with a scalar diffu- 
sion coefficient (see (29)). Diffusion noise is the prevail- 
ing noise mechanism at high frequency; nevertheless, 
other microscopic noise mechanisms, such as 1 /f noise 
or intervalley scattering noise, could be allowed for by 
properly modeling the microscopic noise source (see 
W1). 
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Fig. 7. Spatial density of power spectra of gate (a) and drain (b) short- 
circuit current noise generators, A* Hz-’ pm-3 units; the bias point is # I  
of Fig. 3. 

Frequency, GHz 
Fig. 8. Power spectra of gate and drain short-circuit noise generators, 
A2/Hz units, as a function of frequency; the bias points are those in Fig. 
3. 

As in sensitivity analysis, the Green’s function formu- 
lation allows the result (in this case the power and cross- 
power spectra of the electrical variables on interest) to be 
expressed in terms of the superposition of what could be 
defined the spatial density of the noise spectra. In the case 
where the noise spectra refer to open-circuit voltages, such 
a spatial noise density is nothing but the integrand of (30). 
The evaluation of the overall noise as the superposition 
of spatially uncorrelated noise contributions allows a di- 
rect physical interpretation of the noise orginating in dif- 
ferent parts of the device. 

As already recalled in the discussion concerning sen- 
sitivity analysis of FET’s, in such devices short-circuit 
parameters or related quantities are more meaningful and 
easier to evaluate than open-circuit ones. Fig. 7 shows the 
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Fig. 9 .  (a) Amplitude degrees. (b) Phase degrees of the correlation spec- 
trum of gate and drain short-circuit noise generators as a function 01’ fre- 
quency; the bias points are those in Fig. 3. 

‘‘spatial noise density” of the short-circuit gate and drain 
currents; in both cases the reference bandwidth is 1 Hz. 
The major noise contributions are seen to originate from 
both the ohmic and saturated part of the channel, in agree- 
ment with the result from previous, analytical models (see 
[24]). Finally, Figs. 8 and 9 show the gate and drain noise 
short-circuit current spectral densities and the correlation 
coefficient, respectively, for all the operating points con- 
sidered. The U* behavior of the gate generator is worth 
noting, as is that the correlation coefficient is almost im- 
aginary at low frequency, in agreement with other ana- 
lytical or one-dimensional noise models [24], [9]. The 
same sort of agreement is found for other parameters, such 
as the noise figure or the optimum generator impedance. 

VI. CONCLUSIONS 
A unified treatment has been presented for the dc and 

ac sensitivity analysis and the noise analysis of semicon- 
ductor devices. Within this framework, an efficient tech- 
nique has been proposed for the sensitivity and noise sim- 
ulation of majority-carrier devices. The method, is based 
on the introduction of equivalent sensitivity and noise dis- 
tributed current sources and on the concept of the adjoint 
device, can be easily implemented in a numerical device 
simulator, and requires little computational overhead with 
respect to the frequency-domain small-signal physical 
simulation. A few examples have been presented to illus- 
trate the application of the method to the sensitivity and 
noise simulation of GaAs FET’s. 
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