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Simulation and Design of Microwave Class-C
Amplifiers Through Harmonic Analysis
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Abstnrct-A method for anafyzfng microwave cfass-C ampfifkxs is

proposed wtdcb satisfies the requirements of a wide application fiel~ ao~

at the same thnq operatea with a fast runrdng thee and widmut eonver-

gemx problems. It is based on the partitioning of the cfreuft tnto linear and

nordhear subnetworks for wtdcbj mqwetively, k%equerwydonmin and

tbne+mmh equatfons are written. Thew takfng fnto accolmt that the

tfmo+maio and freqnency-domafo representations are related by the

Fumier sert~ the tit bebavior is deserfbed by means of a system of

nordfnear Iquatfons whose unknowns are the barmonfc componeMa of the

tnefdent w~rnveaat alf the cmmedoos. To overcome the nunwricd problems

arfshg in the search for the sofntion of this system when strong nordinemi-

tfea are fnvolvedj a special step-by-step procedure fs adopted. The problem

fs tram#ormed fnto the seareb for the solution of a sequence of wett-condi-

tkmed systerm of equations mrrespondfng to a sequence of weft-chosen

drcufts obtdned from the miginal one tbruogb progressive changea of the

fnput signal stardng from O op to the nondmd vatne. ‘l%e program wbfcb

iI@sIO@ti? the method is atSO descrfbed and the resofts Of the tUUdySiS

refattve to a cfass-C ampttffer are compared wftb measured vafnes.

L INTRODUCTION

F

OR MANY nonlinear circuits operating in periodic

steady state, such as class-C amplifiers, frequency

multipliers, converters, etc., it is interesting to know the

waveforms of the voltages and currents at some compo-

nents in the circuit in order to obtain useful information

for the clesign. The existing general-purpose analysis pro-

grams, which perform the analysis throughout the tran-

sient interval, require great computing effort and are

therefore of no practical use when they must be called as

subroutines by optimization programs for CAD. To over-

come this drawback two methods have been recently

proposed.. The first—the “shooting” method [1], [2] —con-

sists of searching, by an optimization process, for those

values of the state variables x(tO) to be taken as starting

values at the time to in the integration process, such that

after a complete period T the condition X(to + T)= X(to) is

satisfied. The second—the “harmonic balance” method

[3]—on the other hand is based on the search for the

harmonic components of the voltages and currents at the

terminals connecting the linear and nonlinear sub-

networks into which the complete circuit is partitioned.

This search is made by means of an optimization process

whose objective function is the sum of the squares of the

differences between the sampled values of voltages or

currents i~t the terminals of the two subnetworks.
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Although attempts have been made to improve their

efficiency, both these methods require considerable com-

puting effort owing to convergence difficulties and the
high number of variables in the optimization process. The

harmonic balance technique also has the drawback of

requiring the explicit form for the equations describing

nonlinear components or subnetworks. This property, at

the same time, requires a minute partitioning of the circuit

and a somewhat difficult choice of the variables to be

considered as unknowns.
In this paper a new method is proposed which satisfies

the requirements of a wide application field, and, at the

same time, operates with a fast running time and without
convergence problems. It is based on the partitioning of

the circuit into linear and nonlinear subnetworks for

which, respectively, frequency-domain and time-domain

equations are written. Then, taking into account that the

linear and nonlinear subnetworks are interconnected and

that the time-domain and frequency-domain representa-

tions are related by the Fourier series, the circuit behawior

can be described by means of a system of nonlinear

equations whose unknowns are the harmonic components

of the incident waves at all the connections. As described

in Section II, the periodic steady--state analysis of the

nonlinear amplifier is thus reduced to the search i’o~

the solution of this system of equations from which all the

other electrical variables and network functions can easily

be determined.

A particular advantage of this method is the possibility

of describing the component nonlinearities also with equa-

tions in implicit form and the linear subnetwork in terms

of wave variables. This feature, since the scattering matrix

can exist whatever the composition of the circuit, enables

one to avoid the possibly difficult and time-consuming

choice of the variables to be assumed as unknowns.
As far as numerical problems are concerned, moreover,

the method operates with a special step-by-step procedure

which provides fast and reliable convergence. As de-

scribed in Section III, this iterative procedure transforms

the ill-conditioned nonlinear problem, which is difficult to

solve, into a series of problems—more numerous but

well-conditioned and immediately solvable. In the same
section the program structure is also outlined and a de-

scription is given of the algorithms which have been

implemented to adjust the steps of the iterative procedure

and to find the optimum value for the order of harmonics

necessary to adequately approximate the waveforms of

the electrical variables.
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In Section IV the results of computations relative to a

class-C amplifier which has been implemented on micro-

strip are compared with those obtained by measurements

effected on the same amplifier.

II. DESCRIPTION OF THE HARMONIC ANALYSIS

METHOD

In microwave class-C amplifiers the nonlinearities are

confined to the active device while all the remaining

elements, such as the case parasitic and the matching

network components, are linear and constitute the larger

part of the circuit. Thus the harmonic analysis applied to

the determination of the periodic steady-state response of

class-C amplifiers allows advantage to be taken of the

easiness of the frequency-domain analysis of linear

circuits. It is therefore clearly convenient to partition the

circuit so as to obtain a linear subnetwork containing all

the linear components, to which other subnetworks made

up of nonlinear elements are connected (as shown in Fig.

1).

Although it is somewhat difficult to give general rules

for the circuit partitioning which are valid whatever its

composition, it is also easy to understand that the nordin-

ear subnetworks should be simple enough to allow an easy

formulation of their equations. On the other hand, for the

sake of efficiency, there should be a small enough number

of subnetworks on which the number of variables de-

pends.

As far as the nonlinear subnetworks are concerned, the

voltages and the currents at the N connections are

assumed as variables and must satisfy the system of N

nonlinear equations:

$(v,$,”””$;i,~,”””$)=O,

forj=l,2,. ... fV

kft,O<t<T
(1)

where v(t),. . . . d’v/dts, i(t),. . . . dri/dt’ are the column

vectors of the voltages, currents, and their time derivatives

up to the maximum order present in the equations, and T

is the period of the circuit response. For the linear sub-

circuit, on the other hand, the harmonic components of

the voltages and currents at the same N comections are

assumed as variables and must satisfy the frequency-

domain linear equations:

Ak F’k+ BkIk = Ck, k= O,l,,,., M (2)

where M is the maximum order of harmonics necessary to

adequately approximate the voltage and current wave-

forms, Vk,Ik are the column vectors of the kth harmonics

of the voltages and currents at the connections, Ak and Bk
the matrices describing the linear circuit, and C~ is a

column vector for taking the independent sources into

account.

It follows that the Mh elements of the vectors v(t), i(t)

and of P’kand Ik which are, respectively, the time-domain

and frequency-domain representation of the voltage and

the current at the Ath connection between the linear and

Fig. 1,
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Circuit partitioning into linear and nonlinear subnetworks

linked together through N connections.

nonlinear subnetworks, are related by the Fourier series

(3)

while similar expressions hold for the time derivatives of

the sth and rth orders:

dsq(t)

‘= ~o~e[vw(jk~~”’’)’]dt ‘

d’iA(t)
— .

dt r
~ ~e[ IM(jk~ )’eM2~/TP],

k=O

for~=l,, . . ,N. (4)

Under these conditions the periodic steady-state analysis

can be effected by searching for the values of the 2N(iW+

1) complex variables VN and lM (with X=1,2,. 0. ,N, and

K=o,l, ””” , M) that satisfy the system of equations

(l)-(4) for each t in the interval O to T.

However, since the linear and nonlinear equations must

be solved together, it is not convenient to deal with (1)

and (2) at the same time, but preferable to use the linear

equations (2) to express half the variables as linear func-

tions of the remaining ones, so that the solution of the

system (l), which is the hardest part of the problem, can

be treated with half the number of variables. For example,

if for the linear subnetwork the impedance matrix Z

exists, (2) takes the form

P’k= ZkIk + Ek, with k= O,l,. ... A4 (5)

and, using the Fourier series (3) and (4), (1) becomes

In this way the analysis is transformed into the search for

the (M+ 1) unknown vectors lk, whose elements represent

the kth harmonic components of the currents at the N

connections, such that (6) is satisfied for any t in the

interval O to T.

However, if the linear subnetwork does not admit the

Z-matrix description, the method will still be valid, pro-

vided a different and convenient choice is made for the

variables to be considered as unknowns. In fact, if the
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admittance matrix exists, the currents have to be com-

puted (by means of the linear equation) in terms of the

voltages, which must therefore be assumed as unknowns

of the nonlinear problem. In general, for the linear sub-

network, it is necessary to find which kind of matrix

representation exists that allows N variables (voltages

and/or currents) to be computed in terms of the remain-

ing ones. This search could be time-consuming and dif-

ficult and could also require different matrix representa-

tions for the various harmonics so that the choice of the

independent variables could be quite complicated. In

order to overcome this drawback, a transformation of

variables could be effected. In fact, by considering the

wave variables instead of voltages and currents, the re-

sponse of the linear subcircuit at the kth harmonic would

be described by the system

bk = Skak +yk (7)

Sk being the scattering matrix at the kth harmonic, and

ak, bk yk the column vectors whose elements in the Ath

entry are, respectively, the incident, reflected, and im-

pressed waves at the Nh connection which are related to

the kth harmonics of the voltages and currents at the

same connection by

(8)

or inversely by

Vu= (au + bti)~

R. being the normalization resistance. In this way the

necessity for a suitable choice of the independent electri-

cal variables is overcome, since the existence condition for

the scattering matrix is, in practice, always satisfied.

Thus by taking (3), (4), (7), and (9) into account, the

nonlinear system (1) can be expressed in the form

gi(~o,al,”“ o,aM; t)=gi(a, t)=O
with i=l,2, ””” N

Vt, O<t<T. (lo)

The solution of this system of equations gives the values

of the harmonic components ao, al, ” “ . aM of the incident

waves at the N connections so that, by means of a simple

frequency-domain analysis of the linear subnetwork, all

the electrical variables and network functions of interest

can be easily computed. Therefore, the number of real

unknowns for the nonlinear problem is N(2M + 1), since

for all the incident waves at the N connections the de

components and real and imaginary parts of the M

harmonics must be found so that the time-dependent sys-

tem (10) is identically satisfied for all the t’s in the interval

O to T.

However, since also the functions (10) are periodic with

period T, they can be expressed by the Fourier series

fori=l,2, -.. N

Vt, O<t<T (11)

whose harmonics G,~(a) can be computed by the fast

Fourier transform algorithm, &fg being the maximum

order of harmonics necessary to approximate functions

(10). Letting Mg = M, i.e. supposing that each function

g,(a, t) can be approximated by a Fourier series with a
number of harmonics equal to that considered for the

wave variables at the connections between the linear and

nonlinear subnetworks, the system of nonlinear tirne-

dependent equations (10) can be transformed into the

system

G,k(ao, al,. “ . ,aM)=O,
fori=l,2,. .N

k= O,l,. ..A4
(12)

which consists of N(M + 1) nonlinear time-independent

equations with an equal number of unknowns, which are

the M+ 1 harmonics of the incident waves at the N

connections, The periodic steady-state analysis of the

amplifier is thus reduced to the search for the unknowns

in system (12), in terms of which all the electrical variables

and network functions can be determined.

It is to be noted that the maximum order of harmonics

M necessary to adequately approximate the waveforms is

generally unknown and its value must be chosen taking

into account that, if M is greater than necessary, the

waveform approximation is certainly good but the number

of equations and unknowns is too high and the computing

time too long. If, on the other hand, M is smaller than its

appropriate value, the solution of (12) is not acceptable or

does not exist because the number of harmonics is not

sufficient to represent the waveforms in the circuit. There-

fore, as it is convenient to keep M as small as possible in

order to have a small number of unknowm, and conse-

quently less computing time. an algorithm is needed

which, starting with a small tentative value &f. for M,

increases it until the solution of (12) also represents a

good approximation of (10). More details on this algo-

rithm are given in the next section.

III. NUMERICAL SOLUTION

The solution of the nonlinear equations (12) describing

the circuit behavior can be numerically found using one

of the well-known iterative techniques. Then, by ordering

the unknown variables (the real and imaginary parts of

the harmonics of the incident waves at the N connection)

in the column vector x and the real and imaginary parts

of all the complex functions G,~ in the CC~lUIIMI vector

IXI(X), system (12) becomes

qx)=o (13)

where ID(x) represents a set of real functioms in the real

variables x. Thus by adopting the Newton–Raphson

method, the solution is sought by linearizing the nonlinear
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system (13) so that at every kth iteration the linear system

@[x@+ l)] =@[x(’)] +J@)[x@+’%@)] =(1 (14)

is obtained, where x(~) is the vector of variable values at

the kth iteration and ~(k) the Jacobian of @ with respect

tox. This iterative procedure petits the computation, at

every step, through the solution of the linear system of

(14), of the vector of the variables X(k+ 1) necessary for the

(k+ l)th step. The procedure ends when, for all variables,

the difference between the values relative to two succes-

sive steps becomes less than a suitably fixed value.
This method is very efficient only if the starting esti-

mated values x(o) are not too far, in relation to function

nonlinearity, from the solution. On the other hand, when

the initial values are not well chosen, the method may be

very slow and sometimes may not converge. This diffi-

culty of convergence, however, does not depend on the

method chosen since it arises, although in a different way,

when the solution of the system (12) is sought for through

the minimization of an “error function” defined as

E(x)=* (15)

- denoting transposition. In fact, in this case the minimi-

zation algorithm might converge to local minima which

do not coincide with the true solution. Therefore, it must

be taken into account that the possibility of obtaining the

solution of the nonlinear system (13) is conditioned by the

initial estimate of the unknown vector and that making a

good estimate may in practice prove quite difficult, espe-

cially when there is high nonlinearity in the circuit.

This drawback can be overcome if a particular solution,

corresponding to particular values of some parameters of

the circuit, can be easily found and also if it is possible to

define a strategy such that starting from the particular

solution, the required solution can be obtained through

successive gradual transformations of the circuit. Analyti-

cally the concept may be explained by making explicit in

(13) its dependence on the circuit parameters such as, for

example, the bias conditions, the impressed signals, and

the values of some components. These parameters identi-
fying a particular configuration may be ordered in a

vector t that can be explicitly introduced in the system

(13), which takes the form

@=@(x,&)=o. (16)

Thus the circuit transformations described above are op-

erated by changing ~ . In fact, by indicating with $0 the

vector of the parameters in the particular configuration to

which the known solution X“ corresponds and with $* the

vector relative to the final configuration to be analyzed,

the circuit transformation may be expressed in terms of a

single parameter h, whose value may change from f) to 1,

by letting

$(lz)=go+ h(g” -go). (17)

In these conditions, increasing with a suitable strategy the

parameter h, it is possible to modify the circuit step-by-

step in such a way that at every step the search for the

solution relative to that circuit configuration, starting

i
x

o 0.2 OA (16 0i3 Ih

Fig. 2. Extrapolation procedure for estimating, at every step, the start-

ing value x* on the basis of the previous results (the linear case).

from the results of the analyses relative to the previous

one, is easy. At every rth step the column vector x(’+ 1)

must be found corresponding to the parameter h(r+ 1) in

such a way that

(qx(r+o
,$(F’+’))] =0. (18)

The increment Ah(r) = h(r+ 1)– h(r) must be chosen small

enough to obtain a rapid convergence but as large as

possible to reach the given circuit configuration, corre-

sponding to h = 1, in a small number of steps.

In order to make the search for the solution of (18)

efficient also with relatively high values of Ah it is con-

venient to make, at every rth step, an estimate x(’+ 1) of

the solution on the basis of the results x(’), x(’- 1),. . .,X(o)

of the analyses already effected through a preliminary

extrapolation. In practice, it is convenient to limit the

extrapolation to the last points in order to avoid the use of

polynomials of too high order. It has been verified that it

is sufficient to take only the last three values into account.

In Fig, 2 the case of linear extrapolation is shown.

It is also necessary to define an algorithm which finds

the most convenient value for Ah in order to satisfy the

opposing demands specified above. The flowchart of a

very simple algorithm which has been tested with good

results is shown in Fig. 3. It operates by halving the value

of Ah when the solution of the system (18) is not found

and doubling it when in the last three steps the solution

has been successfully found with the current value of Ah.

13ven though many other more sophisticated strategies can

be defined to update Ah, it is not worth dwelling on this

point here.

It should be noted that the method proposed, besides
making the search for the solution more reliable and

faster, at the same time gives results which are useful to

completely characterize the circuit behavior. For example,

in the analysis of a class-C amplifier the particular circuit

configuration whose solution is clearly known corre-

sponds to a zero input signal and, therefore, the vector $

contains only one element: the input signal amplitude

which must be increased with h, starting from zero, until

the nominal value is reached for h = 1. The input signal is

zero for h = O and the solution is known since the transis-

tor is biased in the interdiction region, so that both the

emitter and collector current harmonics are zero. Increas-

ing the value of h means increasing the amplitude of the



FILICOIU et d.: SIMULATION ANO DESIGN OF CLASS-C AMFLIFISRS 1047

&
a

H= H+DH

+
SOLVE

1

4
NO IS THE SOLUTION

rG31’E’

3LH= H-OH

DH =: D14/2

(

GO TO

a

I

8

PRINT

DIAGMXTIC

STOP

+
GIVE LAST STEPS

? ,T

CDMPUTE

ACCEPTABLE SOLUT IONS NETwORK

FUMCTIQNS

YEs

NO

Fig. 3. Flowchart of the step-by-step algorithm for the nonlineal
circuit analysis.

input signal which characterizes the various circuit

configurations. In this case, therefore, the step-by-step

technique proposed here not only gives the solution corre-

sponding to the nominal value of the input signal, but

supplies also, as an extra result, the circuit response for a

set of input signal values lower than the nominal one.

Moreover, for better computing efficiency, it is also

necessary to define the algorithm to find the minimum
value for the number M of harmonics needed to ade-

quately approximate the waveforms of the unknown elec-

trical variables taking into account that, as has been

stated in the previous paragraph, M must increase as the

circuit nonlinearities increase and, therefore, with h,

which, in the case of the class-C amplifier, fixes the input

signal amplitude. This algorithm has been included in the

routine SOLVE whose flowchart is shown in Fig. 4. At

every step, after the solution corresponding to the current

value of h and M has been found by the N ewton–Raph-

son algorithm, the “accuracy indexes”

R]=
~J

1 T2

70
g, (a, t) dt, forj= l,... ,N (19)

which are the rms values of the residuals of the circuit
equation (10), are computed and the tests

R]< c, forj=l,. ... N (20)

are effected with a suitable value for e. The verification of

these tests indicates that, for the current value of M, the

solution of the system (18) represents an acceptable ap-

proximation to the solution of the circuit equation (10). If
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Fig. 4. Flowchart of the routine “SOLVE.”

%

Fig. 5. The analyzed microwave class-C transistor amplifier.
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Fig. 6. The MSC 3000 transistor model

the tests are not verified, the number M of harmonics is

not sufficient to represent the circuit waveforms and must,

therefore, be increased by a convenient increment.

The computer program, which has been written to

analyze nonlinear circuits on the basis of the method and

the algorithms described above, has been structured in

such a way that it is easy to prepare the input data

describing the circuit. The user first has to partition the

circuit into linear and nonlinear subnetworks and describe
the linear one with the language of the program adopted
to perform the frequency-domain linear analysis [4]. Then

the data and the routine for computing the nonlinear

functions relative to the nonlinear subnetworks must be

provided. This operation is very simple since it consists in

writing the Kirchhoff’s laws in terms of the connection

voltages and currents and the functions relative to every

nonlinear component. However, some care must be taken

in partitioning the circuit in order to avoid the introduc-

tion of a large number of variables from which the com-

puting time strongly depends. A practical example of
these operations is given in the following section where a

class-C amplifier is considered.

,--__-___ —________ ,-_-___---—-3

I
1 I

::
i

i I
I I

I----------------- l_____ --__--J

LINE., NON LINEAR

Fig. 7. ArnpWler partitioning into liiear and nonlinear subnetworks.

15

10

5

0 1

rlJ n$
2 3 4 k

Fig. 8. Amplitudes of the harmonics of the emitter and cottector cur-
rents computed with M= 4 and M= 8.

IV. ANALYSIS OF A CLASS-C AMPLIFIER

The program has been used to analyze the response of

the class-C transistor amplifier with a center-band

frequency of 1.6 GHz shown in Fig. 5 and provided by

ESA-ESTEC under a research contract with the Turin

Polytechnic. The amplifier implemented on microstrips

employs a MSC 3000 transistor which has been modeled

with the equivalent circuit [5] shown in Fig. 6. Its parame-

ters have been measured at the Turin Polytechnic under
the same contract [6].

For the analysis, the amplifier has been partitioned into

two subnetworks, one linear and the other nonlinear,

connected through three terminals as shown in Fig. 7. The

nonlinear subnetwork behavior is described by

dv~r
fE=iE–iF+cE~~%k=o

due<
fc=ic–i~+Cc~ +aFiF=O (21)

with

VE,=VE+ RB(ifi+ ic)

UC, = UC + RB(iE + ic) (22)
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where iF, i~, C~, Cc, CYF,and a~ are nonlinear functions of

OE, and Oc,, and RB is a function of iB = i~ + i=. Thus (21)

can be expressed in terms of the voltages and currents at

the connections and of their first derivatives

(’ dv~ dvc

)
fE=fE ‘E.~9iC,$9vE,~? v0_&_ ‘O

(

di~ dic dv~ dvc

)
fC ‘fC ‘E, ~ ,iC9~ ,vE>~ 7vC,~ ‘o. (23)

These functions have been coded in the routine NONLIN

which is attached to the main program.

As far as the linear subnetwork is concerned, by means

of sc-~ [10] (a general-purpose program for frequency-

domain linear analysis) the impressed waves y~ and the

scattering matrix Sk of the linear subnetwork have been

determined for every kth harmonic. By means of these

and calling the routine NONLIN, the program computes,

according to the technique described, the incident waves

at emitter and collector connections, in terms of which all

the network functions are also evaluated. In the amplifier

analysis the program introduced M= 8 harmonics and

reached the solution through 14 different values of h

which increased the input power from 1 percent to 100

percent of its nominal value. The Newton-Raphson algo-

rithm required an average of 4 iterations/step and a total

number of 58 computations of the circuit equations.
Moreover, care must be taken not to increase unneces-

sarily the number M of harmonics since the number of

variables, and thus the computing time, depend on it.

Therefore, the maximum value for the accuracy index RJ,

according to which the analysis algorithm establishes the

value of M, must be carefully chosen.

In order to compare the analyses of the amplifier made

with different values of M, the amplitudes of the harmon-

ics of the emitter and collector currents computed with

M= 4 and M= 8 are shown in Fig. 8. The waveforms of

some voltages and currents, relative to the analysis

effected with M =8, are plotted in Fig. 9. The dc collector

current, the output power, the efficiency, and the power
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Fig. 11. Plots of the amplitudes (a) and phases (b) of the computed

(S*) and measured (S) values of the large-signal S-parameters versus
dc collector current for transistor MSC 3000 at 1.6 GHz.

TABLE I
COMPUTED AND MBASURSD VALVSS RSLATIVS TO THE AMPLIFIER rN

FIG. 5 WTTH rNPUT POWSR PIN = 100 mW, VCB = 28 V,

FREQIJENCYf= 1.6 GHz

Network Computed Measured

Functions Values Values

dc Collector Current 79.2 mA 82 mA
Output Power 922 mW 990 mW
Gain 9.65 dB 9.96 dB
Efficiency 37 percent 39 percent

insertion gain versus the input power are plotted in Fig.

10, by using the partial results relative to the different

increasing values of h. Then, to verify the validity of the

results obtained, the computed network functions have

been compared with the corresponding ones directly

measured on the amplifier and the relative values are

given in Table I.

In order to validate the transistor model the large-signal

S-parameters have also been measured and compared

with those computed by the analysis program by simulat-

ing the measurement procedure. In particular, as in the

actual measurement technique, the incident and reflected

waves at the transistor ports have been computed under

two operating conditions: one with the output loaded with
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a 50-0 resistor and the input connected to a signal genera-

tor; the other with the generator connected to the transis-

tor output and the resistive load to the input. The curves

of the computed and measured amplitudes and phases of

S, ~ and Szl as functions of the input power are shown in

Fig. 11. The differences between the measured and com-

puted values of the large-signal S-parameters, due to the

approximation in the transistor modeling, justify the slight

discrepancies between the computed and measured

network functions.

V. CONCLUSIONS

A method has been described for analyzing nonlinear

circuits with periodic response. It is based on the iterative

solution of a nonlinear system whose unknowns are the

harmonic components of the wave variables at the con-

nections between the linear and nonlinear subnetworks

into which the circuit is partitioned. This method, in

comparison with prevl~ous ones, shows some interesting

properties. These make its use preferable especially when,

as in the case of class-C amplifiers, the circuit is composed

of numerous linear reactive lumped and distributed com-

ponents and a few nonlinear components with strong

nonlinearities. These, iiccording to our formulation, can

be expressed in a very general implicit differential form.

Such features derive from the particular formulation

which has been given to the problem and from the proce-

dure which has been proposed to solve it. The main

characteristics of the computer program which imple-

ments this technique have also been described. The results

of the analysis of a class-C amplifier have also been

presented and discussed.

However, the use of this program is not limited to the

circuit analysis for verifying the agreement with the given

specifications, but the possibility of including it in an

optimization program for CAD should also be considered.

In this respect, the program seems to be suitable for a

more efficient use by taking advantage of the possibilities

offered by the proposed step-by-step procedure which
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performs the analysis by gradually increasing the input

signal amplitude, In fact the same procedure can be

applied to the one-dimensional searches, along the direc-

tions given by the optimization algorithm, for those com-

ponent values which minimize a user-defined objective

function. In this perspective further developments of the

proposed method are being studied.
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