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We present a computer code that implements a general Tabu Search technique for

the solution of two- and three-dimensional bin packing problems, as well as virtually

any of their variants requiring the minimization of the number of bins. The user

is only requested to provide a procedure that gives an approximate solution to the

actual variant to be solved.
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1. Introduction

Several real-world optimization problems in the cutting and packing area
require to allocate, without overlapping, a set of rectangular items to larger iden-
tical rectangular standardized stock units (often called bins) by minimizing the
number of needed bins.

In the Two-Dimensional Bin Packing Problem (2BP), each item j (j =
1, . . . , n) is defined by its width, wj , and height, hj , and the bins are rectangles
of width W and height H. The problem arises, e.g., in wood and glass industries
(cutting of rectangular components from large sheets of material), in warehousing
contexts (placement of goods on shelves), in newspapers paging (arrangement of
articles and advertisements into pages). In practical applications, a number of
variants arise. The items may either have a fixed orientation, or it may be ad-
missible to rotate them in order to obtain a better packing. In cutting contexts
it may be required that the produced patterns are guillotine cuttable, i.e., such
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that the items are obtained through a sequence of edge-to-edge cuts parallel to
the edges of the bin. Research on 2BP started in the Eighties: Chung, Garey and
Johnson [4] and Frenk and Galambos [8] studied approximation algorithms with
asymptotic worst-case performance guarantee, Berkey and Wang [2] presented ex-
tensions of classical one-dimensional bin packing approximation algorithms, and
Bengtsson [1] proposed application-oriented heuristics. More recently, Martello
and Vigo [18] analyzed lower bounds and presented an exact branch-and-bound
approach, while Lodi, Martello and Vigo [11–13] proposed heuristic algorithms,
and developed the Tabu Search approach whose implementation is discussed here.

In the Three-Dimensional Bin Packing Problem (3BP), the items are boxes
of width wj , height hj and depth dj , while the bins are defined by width W , height
H and depth D. The problem finds applications in the loading area (containers,
trucks, ...) and in cutting contexts. In this case too, variants may consider
item rotation and guillotine cutting. In addition, robot packable patterns have
industrial relevance: a robot packing can be achieved by successively placing the
items starting from the bottom-left-behind corner, and is such that each item is
in front of, right of, or above each of the previously placed items. A heuristic
algorithm for 3BP was presented by Scheithauer [20]. Chen, Lee and Shen [3]
gave an integer programming formulation for the case where the bins may have
different sizes. Martello, Pisinger and Vigo [17] proposed an exact algorithm (see
also Pisinger, den Boef, Korst, Martello and Vigo [19]), while a Tabu Search
approach was presented by Lodi, Martello and Vigo [14].

Surveys on packing problems have been given by Dyckhoff and Finke [6],
Dowsland and Dowsland [5], Lodi, Martello and Vigo [15] and Lodi, Martello
and Monaci [10], while Dyckhoff, Scheithauer and Terno [7] have presented an
annotated bibliography.

Both 2BP and 3BP generalize the well-known One-Dimensional Bin Packing
Problem (1BP), hence they are strongly NP-hard.

Computational experiments show that the exact solution of 2BP and 3BP
instances may be attained only for moderate-size instances, while the use of
heuristics is needed for larger instances. The object of this paper is the presen-
tation of a computer code, TSpack, that implements the general Tabu Search
technique developed in [13,14]. The code can be used for the solution of both
2BP and 3BP, and virtually any of their variants calling for the minimization
of the number of used bins (including those allowing item rotation or requiring
guillotine cutting). The user is only requested to provide a procedure that gives
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an approximate solution to the actual variant to be solved.
The algorithm is described Section 2, and the computer code is illustrated

in Section 3. Extensions to other packing problems are discussed in Section 4.

2. The algorithm

The general structure of algorithm TSpack is given in Figure 1, adapted
from [13].

algorithm TSpack:
z∗ := A({1, . . . , n}) (comment: incumbent solution value);
let L be a lower bound on the optimal solution value;
if z∗ = L then stop;
initialize all tabu lists to empty;
pack each item into a separate bin;
z := n (comment: Tabu Search solution value);
d := 1;
determine the target bin t;
while time limit is not reached do

diversify := false; k := 1;
while diversify = false and z∗ > L do

kin := k;
call SEARCH(t,k,diversify,z);
z∗ := min{z∗, z};
if k ≤ kin then determine the new target bin t

end while;
if z∗ = L then stop
else call DIVERSIFICATION(d,z,t)

end while
end.

Figure 1. Algorithm TSpack.

The main characteristic of the approach is a unified parametric neighbor-
hood which is independent of the specific problem considered, and whose size is
dynamically varied during the search. More precisely, at each iteration of
the main loop the size and the structure of a neighborhood are de-
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termined and a specific procedure, called SEARCH, to explore it is
invoked. According to the output of procedure SEARCH (given in
Figure 2 and discussed later in detail), the method is iterated until
a time limit is reached. There are a tabu list and a tabu tenure for each
neighborhood size.

The specific constraints of the problem just appear in a deterministic in-
ner heuristic, A, that produces a feasible solution for a given instance (or sub-
instance) of 2BP or 3BP. Algorithm A is used to evaluate the moves within the
neighborhood search. Let A(S) be the output solution value returned by A when
invoked for a (sub-)instance of the problem induced by an input item set S.

Experimental observations show that the objective functions of multi-
dimensional bin packing problems are “flat”, in the sense that very many different
solutions use the same number of bins. Algorithm TSpack introduces a charac-
terization of equivalent solutions, based on the existence of a bin that packs less
and/or smaller items than the others, hence is more likely to be emptied through
local optimization. The moves try to empty this target bin, t, by changing the
packing of a subset S of items made up by one item, say j, from bin t, plus the
current contents of k other bins, where k defines the current neighborhood size.
A new solution is then obtained by adding the A(S) bins produced by A to the
bins that currently pack items {1, . . . , n} \ S. This solution is considered
“feasible” if the overall number of bins used do not exceed the one of
the current solution and, obviously, the packing is changed. In other
words, we are looking for moving item j outside from bin t without
creating extra bins.

The target bin is determined as follows. Let Si denote the set of items
currently packed into bin i, and α a user-specified positive value. Bin t is then
the one minimizing, over all current bins i, the filling function

ϕ(Si) = α

∑
j∈Si

vj

V
− |Si|

n
(1)

where
{

vj = wjhj and V = WH for 2BP
vj = wjhjdj and V = WHD for 3BP

(2)

As mentioned, the neighborhood is searched by procedure SEARCH, given
in Figure 2, taken from [13]. For each item j in bin t, algorithm A is executed on
all the sub-instances induced by j and by all k-tuples of other bins. Parameter
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procedure SEARCH(t,k,diversify,z):
penalty∗ := +∞;
for each j ∈ St do

for each k-tuple K of bins not including t do
S := {j} ∪ (

⋃
i∈K Si);

penalty := +∞;
case

A(S) < k:
execute the move and update the solution value z;
k := max{1, k − 1};
return;

A(S) = k:
if the move is not tabu or St ≡ {j} then

execute the move and update the solution value z;
if St ≡ {j} then k := max{1, k − 1};
return

end if;
A(S) = k + 1 and k > 1:

let I be the set of k + 1 bins used by A;
t̄ := arg mini∈I{ϕ(Si)}, T := (St \ {j}) ∪ St̄;
if A(T ) = 1 and the move is not tabu then

penalty := min{ϕ(T ), mini∈I\{t̄}{ϕ(Si)}}
end case;
penalty∗ := min{penalty∗, penalty};

end for;
end for;
if penalty∗ 6= +∞ then execute the move corresponding to penalty∗

else if k = kmax then diversify := true else k := k + 1
return.

Figure 2. Algorithm TSpack: procedure SEARCH.

k, that defines the size of the neighborhood, may be seen as a local intensifica-
tion/diversification tool. Its value is updated as follows. When a move decreases
the current number of used bins, or when a non-tabu move removes j from t by
packing the sub-instance in exactly k bins, the move is immediately performed,
the neighborhood size is reduced by one unit, and the control returns to the
main algorithm. When, instead, the neighborhood has been completely searched
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without finding an acceptable move, its value is increased by one unit.
A move that is not immediately performed is evaluated through a penalty.

The penalty is infinity if the move is tabu, or if algorithm A used at least two
extra bins (i.e., A(S) > k + 1), or if k = 1. Otherwise (i.e., A(S) = k + 1 and
k > 1), the penalty is computed as follows. We determine a local target bin t̄

among the k + 1 bins produced by A, and re-execute algorithm A on the sub-
instance induced by the items in bin t̄ plus the residual items in the target bin,
in an attempt to get a single-bin solution. If this happens, the penalty of the
overall move is the minimum among the filling function values computed for the
k + 1 resulting bins; otherwise, the move is not acceptable and its penalty is set
to infinity.

When the neighborhood has been entirely searched without finding a move
that has to be immediately performed, the acceptable move having the minimum
penalty (if any) is performed and the control returns to TSpack. If, instead,
no acceptable move has been found, the neighborhood is enlarged by increasing
the current value of parameter k by one, or, if k already reached a maximum
prefixed value kmax, by executing a global diversification: according to the value
of parameter d, two kinds of diversification are performed, as shown in Figure 3.

procedure DIVERSIFICATION(d,z,t):
if d ≤ z and d < dmax then

d := d + 1;
let t be the bin with d-th smallest value of ϕ(·);

else
remove from the solution the bz/2c bins with smallest ϕ(·) value;
pack into a separate bin each item currently packed in a removed bin;
reset all tabu lists to empty;
d := 1

return.

Figure 3. Algorithm TSpack: procedure DIVERSIFICATION.

Each neighborhood has a tabu list and a tabu tenure τk (k = 1, . . . , kmax).
For k > 1, each list stores the penalty∗ values corresponding to the last τk moves
performed in the corresponding neighborhood. For k = 1 instead, since no
penalty is computed (see Figure 2), the tabu list stores the values of the fill-
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ing function, ϕ(·), corresponding to the last τ1 sets for which a move has been
performed.

The key aspect of the framework described above is the switching
among neighborhoods of different size. The main motivation of this
resides in the attempt of interchanging efficiently intensification and
diversification with the aim of emptying the target bin, thus improving
the current solution. On one side, a small value of k implies, in general,
the re-combination of only few items, somehow assuming that most of
the current solution is “good”. The corresponding neighborhoods are
small and their exploration is fast. On the other side, greater values
of k involve much more items, i.e. a wider neighborhood, possibly
allowing a relevant change in the current solution.

3. The code

The ANSI-C code implementing algorithm TSpack is available at:

http://www.or.deis.unibo.it/research pages/ORcodes/ORcodes.htm

and its use is free for academic purposes. The code was compiled using both cc

and gcc compilers. It was also tested with the -pedantic option of gcc to check
strict respect of the ANSI-C standard.

The n items are numbered from 0 to n − 1. The position of the items in
the solution is referred to a coordinate system having its origin in the lower-left(-
front) corner of the bin.

A prototype of TSpack appears as

int TSpack(int d, int n, int **w, int *W, int lb, float TL,

int *ub0, int **x, int *b)

Function TSpack returns the output number of used bins. The meaning of
the input parameters is:
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d number of dimensions, d ≥ 2 (tested values: 2, 3);

n size of the problem, i.e., number of items;

w d×n array giving the item sizes, i.e., w, h (and d), where w[0][j− 1] = wj ,
w[1][j− 1] = hj (and w[2][j− 1] = dj) for j = 1, . . . , n;

W d×1 array giving the bin sizes, i.e., W , H (and D), where W[0] = W ,
W[1] = H (and W[2] = D);

lb lower bound on the optimal solution value (trivial value lb = 1 is ac-
ceptable);

TL time limit.

On output, the used bins are numbered from 0 to TSpack−1. The meaning
of the output parameters is:

ub0 intial upper bound as computed by the selected algorithm A;

x d×n array giving the coordinates of the point where the item lower-
left(-front) corner is packed, i.e., x[0][j− 1] = w-coordinate of item j,
x[1][j− 1] = h-coordinate of item j (and x[2][j− 1] = d-coordinate of
item j) for j = 1, . . . , n;

b n×1 array giving the number of the bin where each item is packed, i.e.,
item j is packed in bin b[j-1]+1.

Procedure TSpack implements the pseudo-code given in Figure 1, and in-
vokes the procedure SEARCH implementing the inner loop described by the pseudo-
code given in Figure 2. Both procedures (together with some utility functions)
are included in the source-code file TSpack.c. The source-code file driver.c

contains a simple driver program which reads from an input file either a 2BP or
a 3BP instance and invokes procedure TSpack. A couple of simple 2BP and 3BP
instances with n = 10 are also given to allow the user to initially test the code.

The current release of the code contains a pair of very simple heuristic al-
gorithms which can be used as inner heuristic (algorithm A) to test Two- and
Three-Dimensional problems. Specifically, we have implemented the classical Hy-
brid Next Fit algorithm for 2BP (see Johnson [9]), and a possible adaptation of the
same algorithm in the 3BP context. Moreover, the code contains a straightfor-
ward implementation of the trivial continuous lower bound LB = d∑n

j=1 vj/V e,
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where vj and V are defined as in (2).
In order to facilitate the user in experimenting specific approaches or in

adapting the code to other packing contexts, procedures TSpack and SEARCH

invoke generic procedures for:
(i) inner heuristic;
(ii) lower bounding;
(iii) filling function;
(iv) penalty function.

The user selects the algorithms by setting the corresponding parameters in the
header file TSpack.h. In this way, he/she can easily enlarge the arsenal of the
current release by adding new algorithms for the procedures above, and try several
configurations by just changing the parameters’ selection.

Finally, the same header file also contains a default setting of the parameters
which characterize algorithm TSpack as described in Section 2.

Distribution package

In conclusion, the distribution package TSpack.tar.gz contains the files:

1. TSpack.c and TSpack.h (source and header codes);

2. driver.c (driver program);

3. 2d.in and 3d.in (2BP and 3BP sample instances).

Web Page and Benchmark

The web page indicated above contains, together with the distribution pack-
age, the output files of the algorithm on the classical Two- and Three-Dimensional
benchmark instances described in [18] and [17], respectively. The source codes to
generate these instances can be downloaded from the web sites:
http://www.or.deis.unibo.it/research pages/ORinstances/ORinstances.htm

and
http://www.diku.dk/∼pisinger/codes.html
for 2BP and 3BP, respectively. Specifically, files ... and ... contain the
results obtained by executing TSpack on 500 2BP and 320 3BP in-
stances, one line for each test problem. The inner heuristics used for
these tests are the ones provided with the distribution package and
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the execution is halted after 500 Tabu Search iterations. Thus, these
results are just intended to give the user a starting point for his/her re-
search. However, the results immediately show the good improvement
obtained with respect to the simple inner heuristic. This is somehow
obvious, but at the same time it is a very important feature of using
this code: the user is allowed to spend a moderate amount of time
in developing his/her own inner heuristic for the specific (sometimes
tricky) application by only taking care of the “feasibility” viewpoint,
and then let TSpack take care of the “optimization” viewpoint which
means improve an initial (trivial) solution. Nevertheless, tuned ver-
sions of TSpack using effective inner heuristics have proved to be very
effective for 2BP and 3BP, often finding state of the art results [13,14].
These results are summarized in Table 1.

In particular, Table 1 reports in the 2BP part the results ob-
tained with 60 CPU seconds on a Silicon Graphics INDY R10000sc
(195 MHz). For each pair instance size (n) - instance type (Class1), the
average, over ten instances, number of bins used by the inner heuristic
Alternate Directions (AD) [13], and by the Tabu Search are reported.
The 3BP part of Table 1 is constructed exactly as the previous one and
reports results obtained with 60 CPU seconds on a Digital Alpha 533
MHz, and using as inner heuristic algorithm Height first-Area second

(HA) [14].

4. Extensions

As already mentioned, several basic extensions of 2BP and 3BP, as those
allowing item rotation or requiring guillotine packing, may be directly solved by
TSpack by simply providing a suitable inner heuristic. In this section we discuss
further extensions of the code for the solution of other multi-dimensional packing
problems.

The first family of problems we consider involves single-bin packing. Two
main problems arise, known as the Strip Packing Problem in the two-dimensional
case and the Container Loading Problem in the three-dimensional one, in which
there is a unique bin, whose size is infinite in one dimension (say, the height)

1 Classes 1-4 are the ones proposed by Martello and Vigo [18], while classes 5-10 were proposed

by Berkey and Wang [2], see e.g., [13] for details.
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and finite in the remaining one(s). The objective is to allocate all the items by
minimizing the height to which the bin is used.

In the second family of problems, known as Multi-Dimensional Knapsack
Problems, there is a single multi-dimensional bin and each item is associated
with a given numerical value (profit). The objective is to pack a subset of items
whose total profit is a maximum.

The above single-container problems cannot be directly solved by TSpack.
However, the code can be modified so as to handle a relevant variant of both
families, namely the one requiring that the items are packed in rows forming
layers (see Figure 4). This kind of packing is known as level packing in the
bin/strip context, and as 2- and 3-staged cutting in the knapsack context (see
Lodi, Martello and Vigo [16]). A relevant aspect of these variants is that the
resulting packings can be automatically separated through guillotine cuts, as
frequently required in several industrial applications.
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Figure 4. Two- and Three-Dimensional level packings.

Since the levels can be seen as separate bins of different heights, single-bin
level-packing problems can be solved by modifying TSpack so as to pack the
items in separate levels rather than into bins. For the first family of problems,
the current set of levels may then be aggregated by simply placing them one above
the other. For the second family instead, it is necessary to select a subset of the
obtained levels. This can be done by solving (either exactly or heuristically) an
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associated one-dimensional knapsack problem in which: (i) there is an “element”
per level, whose profit is the sum of the profits of the items it packs, while its
weight is the level height; (ii) the knapsack capacity is the height of the bin.
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