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ABSTRACT

The ranklet transform is a recently developed image process-
ing technique characterized by a multi–resolution and o-
rientation–selective approach similar to that of the wave-
let transform. Yet, differently from the latter, it deals with
pixels’ ranks rather than with their gray–level intensity val-
ues. In this work, the ranklet coefficients resulting from
the application of the ranklet transform to regions of inter-
est (ROIs) found on breast radiographic images are used as
classification features to determine whether ROIs contain
mass or normal tissue. Performances are explored recur-
sively eliminating some of the less discriminant ranklet co-
efficients according to the cost function of a support vector
machine (SVM) classifier. Experiments show good classifi-
cation performances (Az values of 0.976±0.003) even after
a significant reduction of the number of ranklet coefficients.

1. INTRODUCTION

In 2002, the ranklet transform was developed by Smeraldi
as a specific tool for face detection problems [1]. The ran-
klet coefficients resulting from the application of the ranklet
transform to different faces were therein used with success
as input features for a distance–based classification scheme.
The reasons for the excellent results achieved by this ap-
proach rely mainly in the notable properties which char-
acterize ranklet coefficients. Ranklet coefficients are, for
instance, non–parametric. The ranklet transform, in fact,
deals with pixels’ ranks rather than with their gray–level in-
tensity values; i.e., supposing that (p1, . . . , pN ) pixels are
given, the intensity value of each pi is replaced with the
value of its order among all the other pixels. Secondly, ran-
klet coefficients are multi–resolution and orientation–selec-
tive. Similarly to the bi–dimensional Haar wavelet trans-
form [2], in fact, ranklet coefficients can be calculated at
different resolutions and orientations (i.e., vertical, horizon-
tal, and diagonal) by means of a suitable stretch and shift of
the oriented compact supports used for their computation.

In this work, the ranklet transform is used to determine
whether regions of interest (ROIs) found on breast radi-
ographic images contain mass or normal tissue. Masses
are thickenings of the breast tissue with size ranging from 3
mm to 30 mm often associated with the presence of breast
cancer, whereas normal tissue represents healthy tissue. In
one of our recent works, a database of ROIs representing
both the mass class and the non–mass class (i.e., normal
tissue) was collected; the ranklet transform was then ap-
plied to each ROI and the transformed ROIs discriminated
by means of a previously trained support vector machine
(SVM) classifier [3]. Experiments demonstrated that ran-
klet features perform better than pixel and wavelet features
evaluated in one of our previous works on the same data-
base [4]. With the intention of reducing the great amount
of ranklet coefficients arising from the ranklet transform of
each ROI, a feature reduction technique known as SVM re-
cursive feature elimination (SVM–RFE) is applied herein.
Classification performances are then explored as the ranklet
coefficients are eliminated. Experimental results show that,
by following this approach, the number of ranklet coeffi-
cients can be sensibly reduced without affecting classifica-
tion performances. Furthermore, an accurate analysis of the
most discriminant ranklet coefficients gives interesting in-
sights about which features are important for classification
purposes.

2. DATA AND METHODS

2.1. ROI database

The ROIs used in this work are extracted from radiographic
images of the publicly available digital database for screen-
ing mammography (DDSM) collected by the University of
South Florida [5]. In Fig. 1 some of them are shown. The
total number of ROIs analyzed amounts to 6000. A par-
tition of 1000 ROIs representing diagnosed mass tissue is
collected by extracting square crops centered on the location
of each annotated mass from the DDSM benign and malig-



Fig. 1. ROIs belonging to different classes. Mass class (top)
vs. non–mass class (bottom).

nant cases. For the non–mass class, a partition of 5000 ROIs
representing normal tissue is collected by randomly extract-
ing square crops from the DDSM normal cases. Since SVM
deals exclusively with dimensionally homogeneous feature
vectors, all ROIs are resized to an arbitrarily prefixed size.
After initial tests, this size is chosen to be 64× 64 pixels.

2.2. The ranklet transform

Suppose that an image is constituted by (p1, . . . , pN ) pix-
els. The ranklet transform is defined by first splitting the N
pixels into two subsets T and C of size N/2, thus assign-
ing half of the pixels to the subset T and half to the subset
C. The two subsets T and C are defined being inspired by
the Haar wavelet supports shown in Fig. 2. For the vertical
Haar wavelet support, the two subsets TV and CV are de-
fined. Similarly, for the horizontal Haar wavelet support the
two subsets TH and CH are defined, whereas for the diag-
onal Haar wavelet support the two subsets TD and CD are
defined. The definition of the aforementioned Haar wavelet
supports forms the basis for the orientation–selective prop-
erty of the ranklet transform.

The second step consists in computing and normalizing
in the range [−1,+1] the number of pixel pairs (pm, pn),
with pm ∈ T and pn ∈ C, such that the intensity value of pm

is higher than the intensity value of pn. This is done for each
orientation, namely vertical, horizontal, and diagonal. Cal-
culating this quantity requires O(N2) operations, thus huge
computational times. Nevertheless, it can be demonstrated
that the same quantity can be calculated in O(NLogN) op-
erations as follows [1]:

Rj =

∑
p∈Tj

π(p)− N
4 (N

2 + 1)
N2

8

− 1, j = V, H, D (1)

where
∑

p∈Tj
π(p) is the sum of the pixels’ ranks π(p) in

Tj . The geometric interpretation of the derived ranklet co-
efficients Rj is quite simple. Suppose that the image we
are dealing with is characterized by a vertical edge, with the
darker side on the left, where CV is located, and the brighter
side on the right, where TV is located. Then, RV will be
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Fig. 2. The three Haar wavelet supports hV, hH, and hD.
From left to right, the vertical, horizontal, and diagonal Haar
wavelet supports.

close to +1 as many pixels in TV will have higher inten-
sity values than the pixels in CV. Conversely, RV will be
close to −1 if the dark and bright side are reversed. At the
same time, horizontal edges or other patterns with no global
left–right variation of intensity will give a value close to 0.
Analogous considerations can be drawn for the other ran-
klet coefficients, RH and RD. In this context, the use of the
pixels’ ranks, rather than their intensities, forms the basis
for the non–parametric property of the ranklet transform.

Finally, the close correspondence between the Haar wa-
velet transform and the ranklet transform leads directly to
the extension of the latter to its multi–resolution formula-
tion. Similarly to what is done for the bi–dimensional Haar
wavelet transform, the ranklet coefficients can be computed
at different resolutions by simply stretching and shifting the
Haar wavelet supports. The multi–resolution ranklet trans-
form of an image is thus a set of triplets of vertical, horizon-
tal, and diagonal ranklet coefficients, each one correspond-
ing to a specific stretch and shift of the Haar wavelet sup-
ports. Suppose, for example, that the horizontal and vertical
shifts of the Haar wavelet supports along the horizontal and
vertical dimensions of the image are of 1 pixel. The num-
ber nT of triplets RV,H,D at each resolution is thus computed
as nT = (I + 1 − S)2, where I and S represent the linear
dimension of the image and that of the Haar wavelet sup-
port, respectively. Here, the possibility of computing ran-
klet coefficients at different resolutions forms the basis for
the multi–resolution property of the ranklet transform.

2.3. SVM classifier

SVM constructs a binary classifier from a set of l training
samples consisting of labeled patterns (xi, yi) ∈ RN ×
{±1}, i = 1, . . . , l [6]. Taking values +1 or −1, the la-
bel yi indicates the class membership (mass or non–mass)
of the correspondent feature vector xi which contains a cer-
tain number of ranklet coefficients. The classifier aims at
estimating a function f : RN → ±1, from a given class
of functions, such that f will correctly classify unseen test
samples (x, y). An unseen sample is assigned to the class
+1 if f(x) ≥ 0 and to the class −1 otherwise.
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SVM selects hyperplanes in order to separate the two
classes. Among all the separating hyperplanes, SVM finds
the maximal margin hyperplane, namely the one that causes
the largest separation between itself and the borderline train-
ing samples of the two classes:

f(x) = sgn(w · x + b) = sgn

(
l∑

i=1

yiαi(x · xi) + b

)
(2)

The coefficients αi and b are calculated by solving the fol-
lowing quadratic programming problem:

min
α

J = 1
2

l∑
i,j=1

αiαj(xi · xj)yiyj −
l∑

i=1

αi

subject to
l∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l

(3)
where C is a regularization parameter and J is the cost func-
tion to minimize.

In the more general case in which data are not linearly
separable in the input space, a non–linear transformation
φ(x) is used to map feature vectors into a higher–dimen-
sional space where they are linearly separable. With this
approach, classification problems which appear quite com-
plex in the original feature space can be afforded by using
simple decision functions in the mapped feature space, for
instance linear hyperplanes. In order to implement this map-
ping, the dot products x·xi are substituted by φ(x)·φ(xi) ≡
K(x,xi), commonly referred to as kernel function. Admis-
sible and typical kernels are the linear kernel K(x,y) =
x · y, the polynomial kernel K(x,y) = (γx · y + r)d, etc.

2.4. SVM recursive feature elimination

SVM–RFE is a general method for eliminating features re-
sponsible of small changes in the classifier’s cost function
[7]. In the specific case of non–linear SVM, the cost func-
tion to minimize is that discussed in Eq. (3) or, more com-
pactly:

J =
1
2
αT Hα−αT 1 (4)

where H is the matrix with elements yiyjK(xi,xj) and 1
is an l–dimensional vector of ones. In order to compute the
change in the cost function by removing the feature f , one
has to compute the matrix H(−f), where the notation (−f)
means that the feature f has been removed. The variation in
the cost function J is thus:

∆J(f) =
1
2
αT Hα− 1

2
αT H(−f)α (5)

The feature corresponding to the smallest ∆J(f) is then re-
moved, SVM is trained once again with the new smaller set

of features and finally tested. The procedure can thus be
iterated feature after feature until a reasonable small num-
ber of features survives or the performances of the classifier
start degrading.

2.5. Performance evaluation

In order to evaluate classification performances, a 10–folds
cross–validation procedure is adopted in this study [8]. The
ROI database is partitioned into 10 distinct and homoge-
neous folds, then SVM is trained with the collection of the
first 9 folds (i.e., 900 mass crops plus 4500 non–mass crops)
and tested on the fold left out (i.e., 100 mass crops plus 500
non–mass crops). Training and test are repeated 10 times
by changing the test fold in a round–robin manner. Per-
formances are analyzed using the receiver operating char-
acteristic (ROC) methodology [9]. For each test partition,
the ROC curve of the system and its associated area Az are
evaluated. An average Az value is then obtained by aver-
aging the 10 aforementioned Az values. ROC curves and
their associated areas Az are estimated using the ROCKIT
software by Metz.

3. TESTS AND RESULTS

3.1. Ranklet features

The starting point for our tests is represented by the best
classification result previously reached using ranklet fea-
tures and its relationship with the best classification result
reached by pixel and wavelet features [3, 4]. To this pur-
pose, in Fig. 3, the best ROC curve achieved using ranklet
features (RankletS3{16,8,4,2}) is compared to the best ones
achieved using pixel (PixHRS) and wavelet (OwtS2) fea-
tures. Pixel features are 256 and are obtained by (a) resizing
the original 64 × 64 pixels ROIs to 16 × 16 pixels and (b)
considering their gray–level intensity values. Wavelet fea-
tures are 2955 and are obtained by (a) applying a redundant
wavelet transform [10] to the original 64 × 64 pixels ROIs
and (b) considering the wavelet coefficients. In particular,
previous experiments indicated that higher–resolution ROIs
are fundamental for wavelet features in order to reach good
classification performances; that is why ROIs are not re-
sized before the wavelet transform is performed [4]. Finally,
ranklet features are 1428 and are obtained by (a) resizing the
original 64 × 64 pixels ROIs to 16 × 16 pixels, (b) apply-
ing the multi–resolution ranklet transform, and (c) consid-
ering the ranklet coefficients: in particular, multi–resolution
is achieved by stretching the Haar wavelet supports to di-
mensions 16 × 16, 8 × 8, 4 × 4, and 2 × 2 pixels. As they
offer the best results [3, 4], a linear SVM kernel is used in
combination with pixel features, whereas polynomial SVM
kernels with degree 2 and 3 are used in combination with
wavelet and ranklet features, respectively.
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Fig. 3. ROC curves comparison. RankletS3{16,8,4,2} (Az

value of 0.978 ± 0.003) represents the best ranklet fea-
tures previously evaluated [3]. PixHRS (0.973±0.002) and
OwtS2 (0.956±0.003) represent the best pixel and wavelet
features previously evaluated [4].

The results reached by the three different approaches
are all definitely interesting, yet ranklet features achieve
slightly better results. More specifically, ranklet features
achieve average Az values of 0.978 ± 0.003, pixel features
of 0.973±0.002, and wavelet features of 0.956±0.003. The
improvement on the Az value of ranklet features over that
achieved by pixel features does not achieve statistical sig-
nificance, whereas its improvement over that achieved by
wavelet features is statistically relevant with two–tailed p–
value < 0.0001.

3.2. Reduced ranklet features

In order to study whether it is possible to reduce the number
of ranklet coefficients without sensibly affecting the classi-
fication performances, SVM–RFE is applied. The iterative
procedure adopted is the following:

1. Train SVM for each of the 10 cross–validation repe-
titions

2. Test SVM by performing ROC analysis for each of
the 10 cross–validation repetitions and compute an
average Az value by averaging the 10 Az values

3. Compute the ranking criterion (Eq. 5) for each feature
in each of the 10 cross–validation repetitions

4. Compute an average ranking list, common to all of
the 10 cross–validation repetitions, by averaging the
ranking position of each feature over each of the 10
cross–validation repetitions
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 RankletS3{16,8,4,2} (1428 features)

 RankletS3{16,8,4,2} (1000 features)
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 RankletS3{16,8,4,2} (200 features)

Fig. 4. ROC curves for ranklet features after the application
of SVM–RFE. The differences in the Az values achieved by
the original 1428 ranklet features and the reduced ones do
not achieve statistical significance.

5. Remove the feature with the smallest rank in the av-
erage ranking list

6. Repeat until a reasonable small number of features
survives or performances (i.e., average Az value) start
degrading

Two aspects of this approach deserve some deep and care-
ful consideration. For instance, SVM must be re–trained
after each feature elimination. This is reasonable, since the
weight of a feature characterized by medium–low impor-
tance may be promoted by removing a correlated feature.
Secondly, each cross–validation repetition is characterized
by a different training set. After each training phase, thus,
the computation of the ranking criterion can lead to a rank-
ing list different for each repetition. This specifically means
that the feature having smallest ranking can be different for
each repetition. In order to eliminate the same feature from
all the training sets, it is thus necessary to compute a ranking
list common to all repetitions.

In Fig. 4, the ROC curves achieved reducing the num-
ber of ranklet coefficients by means of SVM–RFE from
1428 down to 1000, 500, and 200 are shown. A polyno-
mial SVM kernel with degree 3 is used. As evident, the
number of ranklet coefficients can be sensibly reduced with-
out significantly affecting classification performances. The
reduced 1000 ranklet features, in fact, achieve average Az

values of 0.978 ± 0.003, the reduced 500 ranklet features
achieve average Az values of 0.977 ± 0.002, and the re-
duced 200 ranklet features achieve average Az values of
0.976± 0.003. The difference among these average Az val-
ues and that achieved by the original 1428 ranklet features
does not achieve statistical significance. On the other hand,

4



a smaller number of features affects more or less sensibly
the computational times required by SVM for calculating
the dot products in Eq. (2) and therefore assigning a crop to
the mass or non–mass class. On a dual Intel Xeon 2.6 GHz
PC, the original 1428 ranklet features take approximately
30 seconds for the analysis of an entire radiographic image,
whereas the reduced 1000, 500, and 200 ranklet features
take approximately 20, 10, and 4 seconds, respectively.

4. DISCUSSION

Some interesting considerations can be drawn about which
ranklet coefficients are the most discriminating ones in this
two–class classification problem. To this purpose, it is nec-
essary to look carefully at the ranklet coefficients which
survive after SVM–RFE. In Fig. 5, for example, the 200
most discriminating ranklet coefficients obtained by apply-
ing to the entire ROI database the ranklet transform at reso-
lution 16 × 16, 8 × 8, 4 × 4, 2 × 2 pixels and then SVM–
RFE are shown. Small circles represent vertical ranklet
coefficients, whereas medium and large circles represent
horizontal and diagonal ranklet coefficients, respectively.
The dashed square represents the dimensions of the Haar
wavelet supports. By looking carefully at the ranklet co-
efficients calculated at resolutions 2 × 2 and 4 × 4, it is
evident that the majority of those surviving are located near
the borders of the ROI, thus are those codifying the contour
information of the ROI. This is reasonable, as the main dif-
ference between the two classes at fine resolutions is given
by the presence or absence in the ROI of a boundary delimit-
ing the bright centered nucleus of the mass. On the contrary,
as the resolution decreases to 8 × 8 and 16 × 16, the most
important ranklet coefficients are those near the center of
the ROI, thus those codifying the symmetry information of
the ROI, rather that its contour information. That is reason-
able too, as at coarse resolutions the main difference is that
masses appear approximately as symmetric circular struc-
tures centered on the ROI, whereas normal tissue has a less
definite structure.

5. CONCLUSIONS

In this paper, a recently developed family of non–parametric,
multi–resolution, and orientation selective features, called
ranklets, is applied to a mammographic mass classification
problem, in order to determine whether ROIs found on breast
radiographic images contain mass or normal tissue. By us-
ing a feature reduction technique known as SVM–RFE, the
dimensionality of the classification problem is reduced from
1428 down to 200 features without significantly affecting
the classification performances (Az values of 0.978±0.003
and 0.976 ± 0.003, respectively). Furthermore, it is dis-
cussed that the true majority of the ranklet coefficients sur-

vived at the feature reduction are those produced by the ran-
klet transform at fine resolutions near the borders of the ROI
and at coarse resolutions near the center of the ROI.
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Fig. 5. Ranklet coefficients after SVM–RFE has selected the 200 most relevant ones. Small circles represent vertical ranklet
coefficients, medium circles represent horizontal ranklet coefficients, large circles represent diagonal ranklet coefficients. The
dashed square represents the dimensions of the Haar wavelet supports. Resolutions 16× 16 (upper–left), 8× 8 (upper–right),
4× 4 (lower–left), and 2× 2 (lower–right) are represented.
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