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1 Introduction

Braunstein and Caves {3] showed that Helstrom’s quantum
information [5] constitutes an upper bound for classical Fisher
information. They also proposed to adopt quantum information
as a metric tensor on the space of density operators. Barndorff-
Nielsen and Gill [1] gave an example of non-uniform attainabil-
ity of quantum information in spin-§ systems. It follows that
Helstrom information cannot be used to define a natural Rie-
mannian metric on the space of density operators. The rela-
tion between classical and quantum information has been widely
studied in Barndorff-Nielsen and Gill [2], Luati [7] and Luati and
Guidotti {8]. However, because of Barndorff-Nielsen and Gill ex-
ample, no emphasis has been devoted to the problem of uniform
attainability. In this study, we analyse if some conditions ex-
ist such that Fisher information equals its maximum, quantum
information. First, we provide a formal proof of non-uniform
attamability in spin—% systems, which are a general class of 2-
dimensional quantum systems. We do that by showing that at-
tainability implies that the measurement to be performed in gen-
eral depends on the parameter of interest. Secondly, we find a
fixed value of a constant parameter (special value) and some val-
ues of the parameter of interest (optimal values} such that the
bound can be attained by a constant measurement, ie. uni-
formly in the parameter space. In the first case, uniform attain-
ability holds, in the second, the measurement is constant only at
a single point of the parameter space.

In the following section some results on quantum statistics for
spin-% systems are briefly summarised. In section 3, the proof of
non-uniform attainability is given. In section 4 we derive special
and optimal values such that global and local uniformly attaining
measurements can be constructed. Comments and open prob-
lems are in section 5. An appendix contains some calculations.



2 Statistical Inference on Spin-i Systems

We summarise the statistical results of the above mentioned
papers of Barndorff-Nielsen and Gill 1] and of Braunstein and
Caves [3]. For a complete treatise on quantum statistical infer-
ence, we refer to the books of Holevo [6] and of Helstrom [4]; for
an introduction on quantum theory, the reference is the book of
Peres [9].

The physical space of a spin—% particle parametrised by Euler
angles ¢ and 7 (Peres [9]) is

(Ha, p (#,1)) (1)

where H; is a two-dimensional complex Hilbert space and p (¢, )
is a parametric density matrix. We assume that p (¢, n) is a pure
state, i.e.

pl¢.n) = v (d.n) (¥ (¢ n) (2)

where |¢ (¢, 7)) is a generic unit vector in H;

(3)

cos (-;l) e~ 7 j|

ey = | oot

and (¢ {¢,n)] is its Hermitian transposed, according to Dirac
‘bra-ket’ notation: a column vector |y} is called ‘ket’ and its
complex conjugate row vector (| is called ‘bra’ and their inner
product (3| |y} is a ‘bra-ket’. In the present study we consider
¢ € [0,2r[ as the unknown parameter of interest and 7 € |0, 7|
as a known constant parameter.

On some measurable space (X,.A) a generalised measure-
ments of the form

M(A) = L m(z)u(dz), VA € A (4)
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is defined, where {mn (z)},_, is a family of nonnegative and self-
adjolnt operators ou My, also called a measurement, and p is a
real o-finite measure on X so that on a measurable space (£, F)
the probability density of the random function X : (Q.F) —
(X, A) is

plz:d.n) = tr{p(d,m) m(z)}. (5)

Since H; is isomorphous to the complex vector space C2, it is
equivalent to refer to selfadjoint operators or to Hermitian ma-
trices.

Expected Fisher information on the parameter ¢ is

i(6.8) = E{(2)'} = [ (a) pasomin ). (6)

where [y = Inp(z; ¢, 1) and 1, = %lnp(:n;é,n). Note that in
quantum statistics expected Fisher information depends on the
measurement A . To derive an upper bound for Fisher informa-
tion, Braunstein and Caves [3] used the symmetric logarithmic
derivative (SLD) or quantum score of p(¢,n) with respect to
¢ which is the self-adjoint operator p 176> firstly introduced by
Helstrom [4], implicitly defined by the relation

Pre = (f‘-’ (6.n) Pi1et Prioh (&, ??)) )

SN

where the matrix p,, is obtained by differentiating each element
of p (¢, n) with respect to ¢.

Helstrom information or expected quantum information on
the parameter ¢ is defined as

1e) = tr { (0.1 (p16)"} (7)



By writing classical Fisher information in terns of the SLD op-
erator, OuLC gets

/[P (z;0,m] " [Retr {p(,1) pem(z)}]” ulda).
(8)

By means of Cauchy-Schwarz inequality based on Hilbert-Schmidt
inner product (A4, B) = tr {AH B} A, B € 'H, Braunstein and
Caves [3] derived th@ mformatlon inequality

(g M) < I{9). (9)

Equality in (9) holds if and only if the two following conditions
are fulfilled

Imir {p(¢,n) m(2)p;/p} =0 (10)

m? (w){k(x;é,n)%l—f’/w} pt (61) = =

where I and 0 are the identity and null operator respectively and

tr{p(¢,n) pom () ?//as}
tr{p{o,m)m(z)}

is a real quantity (see Luati [7]}). By expressing the opera-
tors p(¢.n}. p, .. m{x) with respect of the orthonormal basis

{1,101} where [1) = [ (n,¢)) and |1} = |[¢ (7 ~n,7+9))
Barndorff-Nielsen and Gill [1] showed that the upper bound can

be attained if the measurement is of the form

m (z) = |£ (z)) (£ ()] (12)

k(z:g.m) =

with

€ () = en (@) 1) + () [1) (13)

and
ay(z), 0y (r) € R. (14).

Writing the components of the vector 1€ (x)) as functions of
oy (x) and aj (x), Barndorff-Nielsen and Gill [1] showed that
the vector |£ (x)) depends on ¢. This implies that m (z) is not
constant with respect to ¢ and therefore that the bound cannot
be uniformly achieved for ¢.

In the following section we provide a detailed proof of this
statement.

3 Non-Uniform Attainability

Rather than cousidering the components of the vector |£ (z)}
as functions of «) (x) and as (z), we consider a4 {x) and a3 (z) as
functions of the components of the vector [£ (z}): to satisfy at-
tainability condition (14), non-constancy of |€ (x}} with respect
to ¢ naturally arises. It evidences that some particular values
can be found such that (14) holds and |£ (z)) is constant.

The vector £ (x)) = oy () |T) + a2 () |]) can be written in
matrix form as

€ {x)) = ¥la () (15)
where
_ | alz)
o (2)) = [ (2 ] (16)
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and

cos (1) e*% sin (2) e~(5+%)

¥ = 2) = 2 . 17
sin () eif  cos (4) ¢(3+3) (17)

is the matrix whose columns are the vectors of the ordered basis
{I1),11)} - As that basis is orthonormal, the matrix ¥ is unitary
and relation (15) can be written as

o@) =" e(@)) (18)

where U¥ is for the Hermitian transpose of ¥. Now let the vector

. '!61
me
e = | i | 19
be such that its components are represented in polar coordinates
r1,72 € R, 61,82 € [0.2n[. Therefore relation (18) can be explic-
itly written as

oy (z) = re? cos gei% + rye® sin ge_i% (20)

az () = re?sin g—el(%+%) + rye®2 cos ge—i(%+%). (21)

We have now all the elements to state and prove the following
proposition.

Proposition 1 Non-uniform atteinability in a spz'n—% system.

With the above notations, let (12) and (19) with

r,ry € R—{0} (22}
6,8, € [0,27]

be constant with respect to
¢ e [0.2n] - {-26,} .

Then, the system of equations

Im{a; (z)} = 0 (23)

Im{as ()} = 0 {24)
where o (2} . &, (2} are given by equations (20) — (21) is impos-
sible.

Proof of Proposition 1.

Bv (20) and (21), systemn (23) — (24) becomes

T & T @ )
Im {J"lt‘ml COS %e'i + 1e™ sin %e‘zi} = 0 (25)
. T, .4 . e
Im {mr—-’g‘ sin ée*’(ﬁ*i) + roct® cos gf’—l(%-‘-?)} = 0. (26}

By collecting the exponential terms and hy developing them ac-
cording to the Euler formula e = cosw + isinw

P

win [cos (6, + 2) +4sin (6, + %)Q]) cos 44
+7 [(:os (92 — 5) —+ isin (92 - ~ﬂ Sing

n

2

2
Im{ iy [('os (91 + g) + i sl (91 + %) sin

+
—irg [cos (6, — %) +isin (0, — 5)] cos 4

which is true if and ounly if (see appendix)

71 sin (91 + g) cosg + r28in (92 - g) Sillg = 0 (29)
T COS (91 “+ %) Sing— — 79 COS (92 - —g) (‘osg = 0. (30}
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Let now:

The system of equations (29) — {30) becomes then
ary+bry = 0 (35)

d'l“l—}-f’n‘"g = 0 (36)

that for a # 0 a.t.b.h.! becomes

no= —-n (37)
(af—bd)w _ (38)

—a

which admits a non-trivial solution if and only if

af —bd = 0. (39)

If condition (39) is fulfilled, then equation (38) is true for any
constant value of ry. Supposing for the moment equation (39) is

Ya.t.b.h. stands for always true by hypothesis.
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meaningful (i.e. the upper bound can be achieved), then equa-
tion (37) becomes

12 (40)

o a
Replacing the values (31) — (32), equation (40) becomes
™ A Sin (92 — %) -
— = —tan (| - ) ———+. 41
Ty (2) sin (0, + %) (41)

According to the hvpothesis of constancy of r; and r, |, the ratio
71 should be constant with respect to ¢, but equation (41) tells
that for fixed 8,685 and n, % depends on ¢, as in general

S

sin (92 - "'2)

L)

sin (6, - %)
0, # ¢, = —tan (g) " 2/ # — tan (E)

sin (91 + %1) 2/ sin (91 + %2)
(42)

This contradicts the hypothesis of constancy of r; and ry and
proves that it is impossible to uniformly achieve the bound for
any fixed value of the constants #;,6, and . W

4 A Special Value for Uniform Attainability

We showed that in general it is not possible for expected
Fisher information to equal its maximum, quantum information,
uniformly in ¢. However, by equation (41) it is immediate to
argue that particular values of 61,8, and n could exist such that
the ratio 2 does not depend on ¢. We will now state and prove
the main result of this study.

Proposition 2 A condition for uniform attainability in a spin-
% system.
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With the above notations, let

ry € R-{0}.r(0) e R- {0}
#:,62 € (0,27
n € ]0,7[,6€®=[0.2n] - {(m~201); (26, — 7); —20,}.

Then
(¢ M) =I(¢), Yo € @ o g - % and 8; = —0,.  (43)
Proof of Proposition 2.

"To prove Proposition 2 it is sufficient to show that the system

ar; + b’f'g = (44)
dri+ fro = 0 {45)
d
-_— = (¥ $
admits the unique ¢-independent solution for #; = —#, if and

only if n = Z. Recall that equations (44) and (45) represent the
condition for attainability, while equation (46) represents the
condition for uniform attainability.

By (38) and (37), system (44) — (46) reduces to

af —bd = 0 {47)
d
Equation {39) is fulfilled if and only if (see appendix)
o) 7
tan ((9] + 5) = — tan? 5" tan (92 - g) : {49)
12

Equation (46) is satisfied only for (see appendix)

tal (H; + g) = — tail (62 - g) . (50}

Systemn (47) — (48) becomes then

¢ . 27 ¢ -
tan (91 -+ 5) = —tan 5 tan (92 — 5) (51)
tan (91 + ?22) = —tan (92 - g) (52)
which admits the unique ¢-independent solution
0, = —0, (53)
if and only if
tan?g =1, ie 5= 1; (54)

We define = § a special value for uniform attainability. W

We have just derived a special value of 5 allowing uniform
attainability according to a good choice of #; and 82, under some

conditions imposed by the derivation itself. We now examine
what happens if some of such constraints are not fulfilled.

e d=-20=cos{f;+%)=0=a=0.

By equation (35) and (36) a = 0= b=0 & 92? = 8y =

r = rpcot g (55)

13



Equation (55) implies that -‘3 = 0 = -0, is an optimal point in
the parameter space ® as the bound is attainable and it is pos-
sible to construct a measurement whose elements do not depend
on ¢, but it has to be stressed that it is a local optimal point as
the constancy of the so constructed measurement does not hold
olobally i $.

co=F =W d=0= f=080=2-7
i, =«

i
T = rofan 5 (56)

Once again ¢ = 7 — 26, = 20, — 7. is a local optimal point.
5 Discussion

We summarise and comment the previously stated results:

1. it 1s not possible for Fisher information to ¢-uniformly
aftain the upper bound of quantum Fisher information for any
value of the constants 6,6, and 7. In fact, in general, any at-
taining measurement turns out to depend on the parameter of
interest and since Fisher information depends on such a mea-
surement, uniform attainability is not possible;

2. 1t Is possible however to uniformly achieve the bound for a
special value of the constant parameter n, namely for n = 7 .and
according to a special choice of the constants 8,85, i.e. 8, = —8,.
hl tllib case. & coustant measurement calx be constructed such
that equality in (9) holds for all ¢ in ®;

3. for some fixed optimal points in the parameter space,
such as ¢ = —26, and ¢ = 7 — 26,. it is possible to construct
an attaining measurermnent which does not depend on some other
values of ¢.

The relevance of these results lies on the fact that only for the

special value nn = § of quantum Fisher information is a metric

14
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tensor which can be used to define a statistical distance on the
space of density operators acting on 2-dimensional systems. The
problem of finding conditions for attainability for n-dimensional
quantum svstems. or equivalently for spin-j svstemns. with n =
27 + 1, 18 still completely open.
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Appendix

Proof of cauations (29} and (30) .
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Im{a;(z)} = 0 Proof of equation (49).

Im{ay(x}} = 0 By equatlom (31) - (34) ,af =bd
&~ ros? (3)sin (#, + ¢ )(OH(H.Z O):

o1t 1 N BT B . sin (2)8111( 5 )cos( .
Im{ Cosoez+r€ 511126 2} = & for (91+ )# ot bh ( %) £ Zatbh,
Iin {rle""gl sin 5}6 i(3+3) + e cos ge":(%*g)} = 0 tan (91 + %’) = - tan2 '—g tan (9 %’)
Tt
Proof of equation (50).
n i(6 i
Im{ 6:+%) Cos—+re 2-%) —} = 0
2’ 2 ;;ﬁwo B o (—tr) =0
Im{rle o +3% +%)Slng+7'(3 92 2 2J(‘o -722} = { ¢(—E)-Oﬁa’bzb’a,a;&ﬁa.t.b.h..
By equations (31) - (31) and for
_ . L4 z _¢® z
Inl{r1e=(91+%)cosﬁ Hzez(ez_s;)smg} _ 0 (61+3) # Fatbh, (0, —§) # Jatbh.
2 2 it becomes
Im {T]Fi(é‘ﬁ%)gi% sim g + ,vzp’?(%—%)e—i% Cos g} = 0 %sin (g) cos (-'21) cos (91 + g) sin (92 — 922) =
2 ~ = -don () o (3)an 01+ s (02—
: : that is just equation -
Im {rlet('gl*%)cosg —l—rgel(B?_%)sing} = 0
Im {irlei(‘gﬁ%) sin 2 — iryet(#2=%) cosﬂ} = 0
2 2

- { r [(‘OS (91 + £ )_@+ i sin (91 + %)@1 (:os‘g—; } _ 0

+75 [(05 (92 - ) + ¢8in (9 — —2—)] sin %
I ir) [(‘os (91 (—3) ~+ 7 sin (91 -f—%)j Sing+ — 0

—iry [cos (03 — £) + 4sin ( 2 = 5)] cos 1

rysin (91 + g) cos 5 + 7o 8in (92 - —) sin 5 = 0

rl(‘os(ﬁl-i-g)smg—fzcos( )Cosg = 0
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