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Abstract

Daily data on the German market index return are used to consider multi-
ple issues in a forecasting comparison of ARCH-type specifications. First,
attention is paid to the impact of different sample sizes, different horizons
and fitting of historical versus implied data. Secondly, the issue of volatil-
ity transmission is addressed by modelling French and Germany market
indexes into a simultaneous conditionally heteroskedasticity framework.
Errors obtained by updating the Black and Scholes formula with the dif-
ferent volatility forecasts are compared. The findings support, if no implied
volatility is available, the use of the simplest GARCH specification esti-
mated on short recent sample.



1. INTRODUCTION

Volatility measurement in financial markets is a crucial task for invest-
ment decision and risk management, To this purpose a very extensive lit-
erature has been flowering and there are some extensive surveys summa-
rizing the fundamental results on the arguments focusing on principal as-
pects regarding volatility (Andersen, Bollerslev and Diebold 2002b, Poon
and Granger 2003). The first one is how to define volatility and its rela-
tionships with concepts of risk and standard deviation. In fact volatility is
intended as measure of uncertainty or dispersion of returnsl in such a sense
it distinguishes from risk which is more properly associated with small or
negative returns, moreover, volatility is correctly measured by the standard
deviation only into Gaussian framework, but not all. On the other hand
the research entails principal methodologies for volatility modelling and
forecasting which are time series models and option-based models. Time
series models explicitly specify volatility as a function of the information
set containing past returns and eventually other observable or latent state
variables while option-based models exploit information contents in option
prices and approximate volatility with the so called option implied volatil-
ity basing on the rationale that in option prices the market makes volatility,
which is intrinsically a latent variable, observable.

In recent years option valuation has been an appealing area for volatil-
ity analysis, from both empirical and theoretical point of view. Option are
derivatives financial securities used as speculative assets to gain from ex-
pected price changes or as hedging instruments to insure risky position in
the underlying security. Their diffusion in organized exchange has been
largely growing during last years both in North America and in Europe, as
documented by the Bank of International Settlements Report (table 1).

The plain vanilla option corresponds to the European call option which
gives the investor the right to buy the security, S, at the specified date in
the future, T', paying the strike price, K, agreed at current time { < T.
Since the option payoff could be instantaneously replicated by an underly-
ing and riskless asset portfolio, an option pricing model should be a suitable
instrument either to determine option fair value and, after calculating the
delta Greek, to rebalance the synthetic portfolio to replicate the payoff for



Table 1: Options Traded on Organised Exchanges

Amounts outstanding Tumover
(in billions of US dollars) (in billions of US dollars)

Dec. 1999 Dec. 2000 Dec. 2001  Year 2000 Year 2001
North America 3,377.1 3,884.7 10,292.4 43,996.8 107,677.2
Europe 1,643.6 1,894.9 3,734.6 17,703.4 33,655.4

Source: BIS Quaterly Review, Sept. 2002.

hedging purposes. Just replicating the portfolio dynamics, with arbitrage
arguments, Black and Scholes derived their closed-form model for option
valuation (Black and Scholes 1973). The Black and Scholes European call
option pricing formula states that option price at time ¢ is a function of the
price of the underlying asset, S;, the strike price, K, the risk free interest
rate 7, the time to expiration T and the standard deviation of the underlying
asset over the period from ¢ to 1.

Therefore, option valuation is influenced by the volatility but, unfortu-
nately the actual volatility is unobservable and has to be estimated through
a suitable strategy. The observed option prices can be used to construct the
market’s implicit perception of conditional volatility just inverting Black
and Scholes formula. In fact, given that S;, K, r and T are all observable,
from each option price, through backward induction it is possible to derive
the o which market use to price that option itself.

Of course, this operation implies the drawback of involving not obvious
extra hypotheses on option market efficiencies and the acknowledgment of
the superior Black and Scholes formula (BS), on the other side balanced by
the evidence that nowadays implied volatility is a security itself, priced in
financial markets, and by the relevant forecasting power empirically tested
in the literature (Ederington and Guan 2002). It is widely known that the
principal drawback of BS arises from the strong constant volatility restric-
tion in spite of the opposite empirical facts. Many theoretical papers have
been written to the aim at allowing for a time varying volatility. The most
general setup consists in a two diffusion (or differential in discrete time)
equation system, explaining stock and volatility dynamics. Different diffu-
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sion processes are assumed basing upon alternative restrictions for move-
ments and correlation between stock and volatilityl a closed form solution
for option price is provided by the affine diffusion model (Heston 1993)
in which drift and volatility parameters are assumed linear functions of the
stock and volatility. Alternatively it is proposed the log-volatility process
which, even if does not deliver a close-form pricing formula, is more in line
with standard discrete-time specification of SV as the popular EGARCH
representation for financial series volatility. Recent models further general-
ize adding into the affine framework a jump component to better fit the tail
behavior (Andersen, Benzoni and Lund 2002a, Eraker 1998, Pan 2002) or
two addittonal volatility factors, the first to control the volatility persistence
and the second to explain the tail behavior (Chemov, Gallant, Ghysels and
Tauchen 2003).

In spite of such sophisticated specifications, whose implementation in-
volve many numerical and statistical issues, the operators in the exchanges
continue to use BS to compute option price regularly updating volatility pa-
rameter backing out the market information. For this reason, although it is
proved that there could be a benefit in using SV instead of BS (Bakshi, Cao
and Chen 1997), it is also interesting to investigate alternative approaches
able to provide improvements in forecasting volatility investigating the re-
lation between the two areas therefore alternative strategies to forecast
volatility are examined to the aim of updating BS formula, just like the
practitioners do. Among time series models, in the last decades, many em-
pirical applications have been implemented into ARCH-type framework,
following the publication of the seminal paper by Engle (Engle 1982). In
fact, since then a vast quantity of extensions of the original autoregressive
conditionally heteroskedastic formula have been developed.

The purpose of the paper consists in investigating the forecasting prop-
erties of a wide also if far from being exhaustive class of competing ARCH-
type volatility models, posing insights in statistical issues such as choice of
data, sample periods, horizons, etc. Forecasting power is tested through op-
tion pricing. Then, the paper complements the literature in others aspectsl
it extends analysis to multivariate ARCH-type models, enlarging the infor-
mation set to more securities finally, it provides an application on German
option exchange index (DAX) which is the second largest in the world and



is scarcely analyzed due to prevalence of American literature. An advan-
tage for paper purpose arises from the quotation in this market of an index
based on implied volatilities of options on German market index (VDAX)
computed as linear interpolation of the implied volatilities of the two sub-
indices nearest to 45 days to maturity.

In the following section, we introduce the estimated volatility models
motivating the experimental designl then the empirical results are presented
and discussed. Concluding remarks are given in section 3.

2. VOLATILITY MODELS

Univariate Models
The standard GARCH formulation (Bollerslev 1986), for the DAX rate
of return 7 is given by

Tt =yt
M~ N (0,0'g)
cr? =w+ anf_l + ﬁatz_l (1)

where 7, represents the deviation at time ¢ from the conditional ex-
pectation function y,. The error follows a Gaussian distribution with 0
mean and time varying conditional standard deviation ;. The conditional
variance is modelled as an increasing function of itself and squared error
lagged. The parameter 3 indicates the persistence in volatility and higher
a implies higher conditional kurtosis in GARCH specification (as well as
in ARCH one) to guaranty volatility positivity all the parameters must be
non-negative. It could be useful to note that it consists in an alternative par-
simonious formulation for the conditional variance of a pure autoregressive
process dependent on the magnitude of lagged errors irrespective of their
signs.

Other specifications into ARCH-type class have been analyzedl the
Threshold ARCH (Engle and Ng 1993) formulated to admit asymmetricat
effect of bad information by means of incorporating a component depen-
dent on negative news in the formula of the conditional variance,

of =w+ani_ +ydi1n}_y + B0} (2)

where d;_; = 1if n;_; < 0 and O otherwise, and the Exponential
formulation (Nelson 1991) which allows both asymmetrical information
and no restrictions on parameters through modelling of the logarithm of the
conditional variance, as follows:

ho?=w+a

%th%§+ﬁmaﬁl (3)

Specification (1), (2) and (3) have been estimated for daily index re-
turns respecttvely on two sample periods, the first from January 1995 to De-
cember 2000, the second shorter limited from January to December 2000.
While globally in the first period the DAX exhibits a quite small but positive
rate of returns (0.07%), in the last year 2000 the rate of return falls nega-
tive (-0.03%) in correspondence with a stagnation of world wide exchanges.
Moreover in the last sub-period the index return distribution exhibits neither
skewness, nor kurtosis, nor significant deviation from normality. The an-
nual volatilities computed for the two sub-periods are respectively 21.36%
and 23.72%.

Besides estimating the expected volatility as an explicit function of ob-
served returns, ARCH models have been estimated on time series of im-
plied variances (IV) obtained by options prices. There is a wide literature
on this topic and generally it is found that implied volatilities are more ac-
curate forecasts of future volatility than GARCH models.

In table 2 parameters estimates with corresponding standard errors in
parentheses of specifications (1), (2) and (3) on the two sample periods, re-
spectively for historical and implied times series are reported. With respect
to historical estimates the overall diagnostics in table 3 indicate that, al-
though more complex models reach higher maximum likelihood, Schwartz
and Akaike criteria suggest to prefer the simplest GARCH specification.
Coherent findings for each specification can be drawn: volatility mean level
is higher (w) and more persistent (3) in the 2000 sub-periodl the parame-
ter « is smaller for shorter and more recent period, indicating scarce con-



Table 2: Univariate ARCH-type Estimates
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Table 3: Univariate ARCH-type Diagnostics

L* AIC  SIC LB(2) L AIC  SIC LB(2)
Gh95 -1.880 0.5981 0.6118 0.370 GhOO -1.786 0.8305 0.8853 1.998
Th95 -1.592 0.5994 0.6165 0.490 ThOQ -1.789 0.8349 09031 3.297
Eh95 -1.591 0.5994 0.6165 0.584 Eh0Q -1.778 0.8406 09031 3.197

* L is the mean log-likelihood AIC and SIC are Akatke and Schwartz information
criteria, not comparable for the two periods because of their dependence on number
of observationsd LB(2) is Ljung-Box statistic with 2 lags.

ditional kurtosis. Negative news has positive effect on volatility, in both
TARCH and EGARCH specifications.

Estimates of implied variances series, computed by seemingly unre-
lated regression, provide similar findings, stressing much stronger persis-
tencell asymmetrical effects of bad news are significant only in EGARCH
95 specification.

Diagnostics for checking alternative ARCH specification are usually
based on testing autocorrelation of squared residuals (Ljung-Box statistic),
or on standard maximum likelihood criteria (Schwartz and Akaike criteria).
Alternative methods are based on forecasting performances in this frame-
work it is possible to see how well different models forecast future squared
residuals or other proxy of future volatility such as the implied volatility.
We chose to asses the usefulness of each specification of the conditional
variance on option prices.

According to existing literature and emulating the practitioners, each
day call prices are computed by means of BS formula on the basis of the dif-
ferent volatility forecasts obtained, regularly updating the information sets,
by ARCH-type models. Option database includes 3009 call prices on DAX
index traded from January 1, through June 30, 2001. Performances were
controlled, on different maturity and moneyness subclasses, through mean
absolute relative pricing error (MARE) and mean relative error (MRE) used
as precision and bias measures. Results are reported in tables (4) and (5).
As benchmark, the errors of the simplest strategy consisting in substituting
the day-back volatility in BS are displayed.
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The errors, both relative and relative absolute, are greatly less for im-
plied than for historical data, respectively around 5-6% versus 16-20% and
16% versus 25-32%. We expect a priori that punctual forecasts can not ex-
plain the volatility surface produced by option prices, but analysis of errors
by maturity and moneyness sub-classes results anyway useful to quantify
the pricing errors. Forecasting performance of implied models does not
seem strongly sensitive to specification neither to sample period moreover
they seem not to be preferred to simple implied volatility substitution ex-
cept for the greater precision in short maturity. The models estimated on
historical data reach the smallest errors, near to implied ones, only for op-
tions with less than 2 months to maturity, that is for short maturity options.
Specifications estimated over the longest period usnally obtain smaller er-
rors than over the shortest one exponential and threshold auto-regressive
conditional specifications perform better than simple generalized in short
maturity which n its turn forecasts better for the medium and long ma-
turity options and as a whole. Since call price increases as volatility in-
creases, positive systematic errors mean underestimation of real volatilities.
The analysis of displacement of errors for moneyness sub-classes exhibits
smirkness behavior for each model, confirming that greater volatility is as-
sociated with downside risk. The implied forecasts distinguish from histor-
ical only, as expected, in the size errors (around 5-6% versus 16-18%)0 no
further insights can be drawn by moneyness analysis.

Multi-step forecasts

For option pricing purpose, a volatility term structure based on multi-
step ahead forecasts is theoretically requested usually for an option lasting
between day ¢ + 1 and T', the forecast of conditional variance at time ¢ is

taken equal to the expected variance of daily forecasts from 1 to T’ — ¢ days
ahead, as follows:

| Tt
Tt kz—:1 By [U f+k]

where each variance k-steps ahead forecast for k = 1,.. T —t is gen-
erated, on the basis of estimated parameters, by:
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To this purpose we examine the performance for multi-periods ahead
forecasts for GARCH specification and the effect of multi-steps versus one-
step forecasts.

Tables 4 and 5 report the result in option prices forecasting for histor-
ical models estimated on shorter period multi-steps forecasts are found to
reach systematic errors in medium and long maturity options minor than
one-step ahead, the opposite happens for historical models estimated on
longer period. Multi-steps forecasts obtained by implied models get worst
both absolute and relative errors than one-step.

Bivariate Models

Despite of the success of the research on transmission of volatility in
others financial application as asset pricing, portfolio selection and risk
management, not much is known about its out of sample performancel here
the forecasting power of volatility transmission is controlled and compared
to univariate information.

We choose to model volatility transmission between the German and
the French market indexes for which the observed correlations of squared
returns are pgy gy = 0.624 and pgy ;v = 0.202, excluding correla-
tions of larger magnitude such as with American S&P500 squared returns
(Peruss = 0.324 and pgy g1 = 0.350) since affected by non syn-
chronous trading hours. To asses the importance of French and German
markets interdependence and volatility interaction the bivariate specifica-
tion corresponding to the BEKK model of Engle and Kroner (Engle and
Kroner 1995), has been estimated,

Ty = g+ 1y
L [ N (Ovﬂt)
H; = C'C+ A,nt—ln;—lA + B’Ht_.lB

which corresponds to a generalization of the univariate GARCH model.
The maximum likelihood estimates of the models are reported in table 6.

13



7L000 REI00-  PSOOD- 9200 PEOL'D | 98600 IOEI0  ZTILO  SRILD  LTITO | Al
26700 86100 ZEFO'O0 SO0 OLIE0 | TIZIO  BELI0  6SRIQ LOSTO  61LVD ooud
SPSO0  FPSO0 99010 €070  IEZFO | $660°0  ¥TYI0  LLSIO  R¥TTO 0S9Y0 | WOOUd
€6E0°0  66Z0°0  L6POD  FPEO'0  SSSTO | TEOI'D  ILST0  TPSI0 TERID  065T°0 ceud
$160°0 88400 8T600 1ZL10 SSIE0 | Ob60'0  OZETD  66EL°C  GI6EO  OT9E0 [ tuceud
98€0°'0  86T0°0  6990°0 SOFPI'0  L69T0 | 9680°C OITI'D  SOTIO  QI9I'0  €61€0 | WOOID
90L00 99/00 06¥1'0  SSLTO0  LISSO | BZOI'O  BSFI'0  I6L1°0  SOBTO  LBBSQ | WSGID
6ZEO0  PEZO'0 O[O0 YEGD'D  6SS10 | ORGO0  LSTI'O €611°0  LIYEQ  €TETO | WOOUD
CPO0  OSPO'0 66800 LISI'0  9BSE0 | 656000  LLEI'D  9SKI'0 600T0  OIOVO | VISEUD
78000 $ZIOO-  SE00°0-  TETO0  ZIN10 | Z860'0  ®GZI'D 19110 I9IFD  B6OZTO O0LL
1200°¢  QTI00~ SI00'0-  SEE0°0  60T1'0 | 88600 ¥OLT'0 €210 PLIEO  LBITO GolL
PLOOO  9E10°0-  PSOO0-  TOTOO0 69010 | S8600  COET0  BEIUD  LSIFQ  BLOTO oot
8000°0  SFIO'0-  6900°0-  I¥Z0'0  SE€01'0 | 8860°0 POEI'0  ITITO  LSTVO  0L0TO Sod
78000 ¢TI0~ 8ZOO'O-  10£0'0  GZINO | 18600 #6TI'G  SIELQ  8SIT0  T01TO 00D
180000 L1100~ LIDO'O-  ZESO0  +OTIC | 6860°C  SOEID  €TITO  SLITO  981TOQ goID
600 LSTO0  O£900  6¥FI0  FREE'0 | SLOI'Q  SSST0 ¥ESI'0 SBITO  £9I¥0 [EILAR
o100 ¥800'0  90£0°0  8ZOI'C  T96ZO | 06110 9ELT'0  LPRI'0  B0STO  L6SFO SoulL
96100 03000  69€00  9601'C  T9.70 | 8TOI'D  ISFI0  TUPLO  TOI'0  EPLEDC [EILE
9PI0°0 69000 LS00  6ZZI0  9I1TCO | OTIT'O 79910  16LI0  TESTO  EOLFO SoUH
9600 PSE00 SI90'0  PEITO  LOLZ'O | 6YO10  [ISI'0  ¥LPT'O €610 69L0 004yo
91200  S¥I100 EEE00 L5600  T8BT'O | TITI'Q  T9L10  ¥S8I'0  £8¥T0  OPSHFO SouD
£6¢ 0te 08¢ L8t 61G1 £6£ 0cE 08E L3E 6181 u
Wi 901501 £Q1-L60  LEDFED  vE0> 901< L0 EUI-L60  L60HED  PEO>
SSAUAIVOWN SSAUAUOA
HIN TAVIN

15822103 dNSHNW SHLIIPUI W 4(000T=00 ‘000Z:5661=56) pouad ajdwes i) saredpur A4 (pardiui=I ‘[ea1I0IS1Y=1])
BIEp 23 SOIPUL P !N FA=9 ‘HOYVDOI=T ‘HOYVL=L ‘HOYVD=0) UoLroy123ds 3y) S1ea1pul § :SMOJ[O] SE PEa1 3q 0) Sty WAApS

ssaufauopy £q sioaag Sudpg ¢ |G0J

8€50°0  BOBOOD  0S€O0 19800 16000 _ O1°0  OILT'0 OLST°0 94910 69L1°0 _ Al
TSBI'0  LLLTO TOPI'O €8TTO  €9L0°0 | BEEE'D ¥SIVO  ZSIE0D  LEPEC  €VBICQ oovd
STLT'O  IBLE'0  £LST0  0I9T0  P980°0 ; 801€C  ST8EC  180EG  SSIE0  STBIQ | wooud
ELST°0 e9PT0  OITI'O0  £e61°0  I¥B0'0 [ S65T0 950 0SET0  0eLl0 10810 coud
66070 TT8T0 OBGI'0  920T0  SOBOO | ESST'0  TEBI'O  PTSTO  LPSTO  69L1°0 | wWoeud
PRL10  99PT0  $691°0  S0SL'0  6PSO0 | ZTHITO  SLSTO  VLTTO  LVOTO 08SI°0 | wWOOID
BSTE'0 88050  6ELEQ0  TVITO  FTLOO | 616D S60S0 TEIFD  ¥96T0  LEDIQ | WSEID
PCOT0  SSEI'0  0£800  #ZE10  OFPBOO | TBLL'O 06910  6ILIQ0  £90T0  9ZLI'0 | WOOUD
QIETH  T60E0  BLITO  TOETO  LLLOO | 98LT0  L9IE'0  SZLTO 16870  FBLIC [ wWSOHD
9S00 6£80°0  LLEQ'D  GBBOO  TOEQO | I¥OI'0 S0L1'0 BOSI'G ¥891'Q vRSLO 00LL
EZO00  1060°0  SPF0O'0 8LGDD  TLEDD | 06010 ¥OLID  STSID  TTLT0 ISSID SolL
££50°0  TOBO0  SKFEO0  ¥SBOD  QSE00 | TEOL'D L6910 GSSI0 69910  1FSI0 00
OI€00  SLL00 OZEO'0  #E80'0  OFPEOO | 6Z91°0  S691°0  LSS1Q0  €£9910  OFSIOD seq
€LS0°0 TS8O0 16800 68300 99L0°D | THOI'0 90L10  OLSTQ €890 £¥E10 00D
61900 L6800  I¥PO'Q 920070  1L20°Q | 06910  +9LI'0  #T910  TCLI'O  1SSI0 61D
LSOT'0  E£9Z°0  LSBI'D  ILPZ'0  BIB00 | 8P6TO ZIFE'0 9FBT0  650€0  6FL1O O0UL
TOOL'0  99TT0  PvIPI'D £EZTO  9190°0 | L8Z€0 OTOVO  $SIC0  S6ZC0  SOLIQ SouL
L1910 06120 OTFLQ  ES6I'0 LLSO'O | PLOTO  SPOL0  #T9T0 6970 €991°0 00ud
SC81'0  BESTO  1£9T'0  #STT0 0TSO0 | OZECH  I8BE0  PLIEQ  T9E€°0  ¥ILID soud
8010 SI¥PTO  TSELQ  LL0T'0 #7600 | 9ISTO  TOOE'G  L6ZTO €90 9081°0 0oud
65910 00LT0  FPIET0  €TTTO  TO900 | 95T€0  090F0  TLOE0  #LZE0 tOBIO SoUD
600¢ 60L biad! 609 Lre 600¢ 60L bz ads 609 L¥T u
10 Al< AUW9 W9 We> 10 Al< ALWG  WN9T Wz >
Aumep Aanyepy
HdN HAVIA

Koy q S10447g Sudlg F 3qoL

15

14



Table 6: Bivariate BEKK Etimates

€11 @2 e c2 o o1z az o2z By B Par Bae

Bh95 | 0.163 -0.101 -0.033 0.531 0.203 0.325 0.140 -0.024 0.929 0.213 0.022 0.701
(0.163) (2353) (0715) (0451) (0.050) (D.044) (0.067) (0.059) (D.066) (R091) (D083} (0.1i4)

BhOOQ |-0.003 -0.063 0.031 0.5% 0.023 0.359 0207 -0.083 0913 0.154 0077 0.731
0124y (1429) (0.208) {0.275) (0.144) (0.127) (0.111) (QI31) (O.118) (0.146) ((138) (0.196)

The model estimated over the 1995-2000 period present all the coef-
ficients (excluding az2) in matrices A and B statistically significant, sug-
gesting that time varying volatilities across the two series are highly cor-
related over time. There is transmission with respect to both innovations
and past volatilities. Coefficients estimated on year 2000 are no more glob-
ally significant, but transmission of information is again detectedl in fact,
both coefficients explaining cross effects of innovations (orj2, as1), and
own volatilities (3;, 355) remain significant. Therefore there is evidence
of transmission of volatilities across European market to the purpose of
confirming the finding, it could be interesting to investigate transmission
forecasting power on option pricing. Bivariate GARCH forecasts display
less bias if one-step ahead than multi-steps but are relatively less accuratel
moreover they work better if based on longer sample estimates.

3. CONCLUDING REMARKS

Assets volatility measurement is central in financial markets for invest-
ment decision and risk management. After the seminal paper by Engle
many competing ARCH-type models have been implemented to filter fi-
nancial volatility and the goodness of fit is well documented. There is
notwithstanding less evidence on forecasting performance. In recent years
option valuation has been an appealing area for assessing competing volatil-
ity forecasting models. Through option valuation, the paper investigates
the forecasting properties of a quite large class of competing ARCH-type
volatility modelsll forecasting power is tested by means of comparison of er-

16

rors obtained by updating the Black and Scholes formula with the different
volatility forecasts. We fit the univariate models to different in size sample,
both to historical and to option-based data, producing multi-step versus one
step ahead forcasts and investigating out-of-sample performance of volatil-
ity transmission. Some findings can be drawn: implied fitted models per-
form better than historical ones, but they do not overcome implied volatility
itself. Among historical models the best performance is reached by shorter
period estimated GARCH model with multi-steps forecasts. Surprisingly,
multistep forecasts get worst than one-step if computed on parameters esti-
mated on fonger sample. Volatility transmission significantly explains co-
mouvements of index returns but seems not to have relevant forecasting
power in option valuation.
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