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1 Introduction.

This paper is a preliminary version. Throughout this paper, we let N denote the set of
homogeneously regular1 three-manifolds; for a given N ∈ N , we let M(N) denote the set
of complete, embedded, constant mean curvature surfaces in N , and let M denote the
union

⋃
N∈NM(N). We will study the geometry and topological properties of surfaces

M ∈ M. For the sake of simplicity, we will assume that both M and N are connected
and orientable. We will call M minimal if its mean curvature is zero and will call M a
CMC surface if its mean curvature is a positive constant.

Most of the results of this paper deal with the construction of interesting examples in
M and with theoretical results related to the classical question of properness of the surfaces
in M under certain geometric constraints. These results complement our paper [9] where
we prove that certain complete, embedded CMC surfaces in locally homogeneous or in
homogenously regular three-manifolds have bounded second fundamental form. Our first
theorem below generalizes the properness results of Meeks and Rosenberg [7] for bounded
second fundamental form CMC surfaces in M(R3) to certain constant mean curvature
surfaces in other constant curvature three-manifolds.

∗This material is based upon work for the NSF under Award No. DMS - 0405836. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the NSF.

1A three-manifold N is homogeneously regular if it has positive injectivity radius and bounded sectional
curvature.
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Theorem 1.1 (Classical properness theorem) Suppose N ∈ N has constant sectional
curvature δ, M ∈M(N) has locally bounded second fundamental form2, and M has mean
curvature HM . M is properly embedded in N if any of the following four conditions hold:

1. δ > 0;

2. δ = 0 and HM 6= 0;

3. δ = 0, HM = 0, M has bounded second fundamental form and M is not totally
geodesic;

4. δ < 0 and HM ≥ |δ|.

By Theorem 4.1 in section 4, for any H ∈ [0, 1), there exist nonproper, simply con-
nected surfaces inM(H3) of constant mean curvature H and bounded second fundamental
form. Thus, the properness result described in Theorem 1.1 is sharp for δ < 0.

Motivated by our properness results in [9] for CMC surfaces of finite topology in
M(R3) and the similar recent properness result in the minimal case by Colding and Mini-
cozzi [1], it is natural to ask whether every M ∈ M(R3) is properly embedded. In the
minimal case this classical question is referred to as the Calabi-Yau problem for complete,
embedded minimal surfaces in R3. In regards to this question, Proposition 6.1 in section 6
states that there exist disconnected, complete, embedded CMC surfaces in R3 which are
proper in an open slab but not proper in the entire space. The first author has conjectured
that there exist connected, non-proper minimal surfaces in M(R3) (see Conjecture 15.23
in [6]).

This paper is organized as follows. In section 2, we define the notion of a CMC lami-
nation and discuss some related background material. In section 3, we prove Theorem 1.1.
In section 4, we prove that Theorem 1.1 is sharp by constructing for each H ∈ [0, 1),
a nonproper, simply connected surface MH ∈ M(H3) with HM = H. In section 5, we
prove Theorem 5.1 which shows that a necessary and sufficient condition for a properly
embedded, separating CMC surface in M to have a fixed sized one-sided neighborhood
on its mean convex side is for it to have bounded second fundamental form. In section 6,
we construct examples of disconnected, complete, embedded CMC surfaces in R3 which
are contained in a slab.

2 Background on CMC laminations.

In order to help understand the results described in this paper, we make the following
definitions.

2A surface M in a three-manifold N has bounded second fundamental form if |AM | =
p

k2
1 + k2

2 is
bounded, where k1, k2 are the principal curvatures; M has locally bounded second fundamental form if
|AM | is bounded on compact sets of N .
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Definition 2.1 Let M be a complete, embedded surface in a three-manifold N . A point
p ∈ N is a limit point of M if there exist points {pn}n ⊂ M which diverge as n → ∞ to
infinity on M with respect to the intrinsic Riemannian topology on M but converge in N
to p as n → ∞. Let L(M) denote the set of all limit points of M in N . In particular,
L(M) is a closed subset of N and M −M ⊂ L(M), where M denotes the closure of M .

Definition 2.2 A CMC lamination L of a three-manifold N is a collection of immersed
surfaces {Lα}α∈I of constant positive mean curvature H called leaves of L satisfying the
following properties.

1. L =
⋃

α∈I{Lα} is a closed subset of N .

2. For each leaf Lα of L, considered to be the zero section Zα of its tangent bundle
TLα, there exists a one-sided neighborhood N(Zα) ⊂ TLα of Zα such that:

(a) the exponential map exp: N(Zα) → N is a submersion;

(b) with respect to the pull-back metric on N(Zα), Zα ⊂ ∂N(Zα) is mean convex;

(c) exp−1(L) ∩ Zα is a lamination of N(Zα).

The reader not familiar with the subject of minimal or CMC laminations should think
about a geodesic on a Riemannian surface. If the geodesic is complete and embedded (a
one-to-one immersion), then its closure is a geodesic lamination of the surface. When this
geodesic has no accumulation points, then it is proper. Otherwise, there pass complete
embedded geodesics through the accumulation points forming the leaves of the geodesic
lamination of the surface. The similar result is true for a complete, embedded CMC
surface of locally bounded second fundamental form (curvature is bounded in compact
extrinsic balls) in a Riemannian three-manifold, i.e. the closure of a complete, embedded
CMC surface of locally bounded second fundamental form has the structure of a CMC
lamination. For the sake of completeness, we now give the proof of this elementary fact,
see [8] for the proof in the minimal case.

Consider a complete, embedded CMC surface M of locally bounded second funda-
mental form in a three-manifold N . Consider a limit point p of M , i.e., p is a limit of a
sequence of divergent points pn in M . Since M has bounded curvature near p and M is
embedded, for some small ε > 0, a subsequence of the intrinsic ε-disks BM (pn, ε) converges
to an embedded CMC disk D(p, ε) ⊂ N of intrinsic radius ε, centered at p and of constant
mean curvature HM . Since M is embedded, any two such limit disks, say D(p, ε), D′(p, ε),
do not intersect transversally. By the maximum principle for CMC surfaces, we conclude
that if a second disk D′(p, ε) exists, then D(p, ε), D′(p, ε) are the only such limit disks
and they are oppositely oriented at p.

Now consider any sequence of embedded disks En of the form BM (qn, ε
4) or D(qn, ε

4)
such that qn converges to a point in D(p, ε

2) and such that En locally lies on the mean
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convex side of D(p, ε). For ε sufficiently small and for n, m large, En and Em must be
graphs over domains in D(p, ε) such that when oriented as graphs, they have the same
mean curvature (for a proof of this fact see the proof of item 1 of Theorem 5.1). By the
maximum principle, the graphs En and Em are disjoint. It follows that near p and on the
mean convex side of D(p, ε), M has the structure of a lamination with leaves with constant
mean curvature HM . This proves that M has the structure of a CMC lamination.

3 The proof of the classical properness theorem.

In this section, we prove Theorem 1.1 in the introduction.
Proof. Suppose M and N satisfy the hypothesis of the theorem. Since M has locally
bounded second fundamental form in N , its closure M is a minimal or a CMC lamination
of N with leaves of constant mean curvature HM . In the special case that condition 3
holds, after lifting the minimal lamination M to the universal cover Ñ = R3, the result
claimed in the theorem follows from the statement of the Structure Theorem for minimal
laminations of R3 (Theorem 1.6 in [8]). This proves that M is properly embedded if
condition 3 holds.

The proof of the Structure Theorem for minimal laminations of R3 demonstrates that
if M were not proper in N , then M has a limit leaf L whose universal cover L̃ is stable in
the following sense: There exists a positive function u : L̃ → R such that ∆̃u + |AeL|2u +
Ric(ñ)u = 0, where ñ is the unit normal vector field to L̃.

If L̃ were a sphere, then, after possibly lifting to a two-sheeted cover of N , L would
likewise be a sphere. But if L were a sphere, then since it is a compact, simply connected
limit leaf of the CMC lamination M , one can lift it to nearby leaves of L in M . This means
that M would be a sphere which implies M is proper. Hence, assume L̃ is not a sphere.
If HM = HeL > |δ| or δ > 0, then, by the Lawson correspondence [5], L̃ isometrically
immerses into some constant curvature three-sphere as a stable minimal surface. But this
result contradicts a theorem of Fischer-Colbrie and Schoen [4] that any complete three-
manifold with Ricci curvature bounded from below by a positive constant does not contain
any complete, simply connected, stable minimal surfaces. In particular, it now follows that
M is properly embedded if conditions 1, 2, or 3 hold and that case 4 holds if HM > |δ|.

It remains to prove the theorem when HM = |δ| and δ < 0. In this case, L̃ isometrically
immerses in R3 as a stable minimal surface via the Lawson correspondence. A classical
result is that this stable minimal immersion of L̃ into R3 is a plane (see [3, 4, 10]). It
then follows from the Lawson correspondence [5] that L̃ has a unique isometric immersion
into H3(δ) with constant mean curvature HM = HeL and the image of L̃ is a horosphere in
H3(δ). The upshot of this observation is that, after lifting the CMC lamination of M ⊂ N
to a CMC lamination L of H3(δ), the set of limit leaves of L are horospheres in H3(δ).

We now check that M is not a limit leaf of M . If it were a limit leaf, then our

4



discussion above implies that its lifts to H3(δ) are horospheres. In this case, one easily
obtains a contradiction. Hence, M is proper in N −L(M), where L(M) is the set of limit
leaves of M .

Let L be the lamination of H3(δ) obtained by lifting the CMC lamination M of N
to its universal cover. Let L(L) be the nonempty set of limit leaves of L, which can be
identified with the sublamination of L consisting of lifts of limit leaves of M ; note that
L(L) is a sublamination of L consisting entirely of horospheres. Let M(L) denote the set
of nonlimit leaves in L − L(L) and note that M(L) consists of the lifts of M to H3(δ).

We first claim that no leaf L of M(L) lies on the mean convex side of any of the
horospheres in L(L). Arguing by contradiction, suppose that L lies on the mean convex
side of some horosphere H in L(L). Let W be the component of H3(δ)−L(L) that contains
L; note that W lies on the mean convex side of H. Clearly, W is simply connected with
one or two horospheres as boundary components. Since L is properly embedded in W and
W is simply connected, L separates W . If L were not properly embedded in H3(δ), then
there exists a sequence of compact disks Dn ⊂ L which are normal graphs over a compact
disk D on one of the horosphere components of ∂W , say H ′ ⊂ ∂W . After orienting the
leaves of L by their mean curvature vectors and noting that, by the separation property
of L in W , the disks Dn can be chosen to have the opposite orientations of D, we obtain
a contradiction to the fact that the disks Dn converge smoothly to D. This contradiction
implies L is proper in H3(δ). A result in [2] states that given two, disjoint, properly
embedded, constant mean curvature one surfaces L1, L2 in H3(δ) such that L1 lies on the
mean convex side of L2, then L1 and L2 are parallel horospheres. Thus, since L is proper
in H3(δ), L is not a horosphere and L lies on the mean convex side of the horosphere H,
we obtain a contradiction to our assumption that L is not a horosphere. This proves that
no leaf of M(L) lies on the mean convex side of a horosphere in L(L).

An immediate consequence of the fact that no leaf L of M(L) lies in the mean convex
side of a horosphere leaf of L(L) is that two distinct horospheres of L(L) are disjoint. In
particular, each component of H3(δ)− L(L) is simply connected. Let W be a component
of H3(δ)−L(L) with Σ = M(L)∩W nonempty. Since a leaf L of Σ is proper in W and so
separates W , an argument in the previous paragraph implies L is proper in H3(δ). Hence,
after possibly replacing W by a different component of H3(δ)−L(L), we may assume that
there exists a sequence of disks Dn in Σ which are normal graphs over a disk D contained
in a horosphere H ⊂ ∂N , which lie on distinct leaves of Σ and which converge smoothly
to D. Since these leaves do not lie on the mean convex side of H by the claim proved in
the previous paragraph, we see that H lies on the mean convex side of some leaf L of Σ.
Since L and H are disjoint properly embedded surfaces with constant mean curvature one
and H lies on the mean convex side of L, the previously mentioned theorem in [2] implies
L is a horosphere, which is a contradiction. This contradiction completes the proof of
Theorem 1.1. 2
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Remark 3.1 With small modifications, the arguments in the proof of Theorem 1.1 gen-
eralizes to prove the following general result: Suppose X is a complete Riemannian three-
manifold and M ⊂ X is a complete, embedded surface with constant mean curvature
HM and locally bounded second fundamental form. If X does not contain any complete
surfaces of constant mean curvature HM which are stable and nonspherical, then M is
properly embedded.

4 Examples of nonproper simply connected surfaces inM(H3).

In Theorem 1.1, we proved that if M ∈ M(H3) has locally bounded second fundamental
form and HM ≥ 1, then M is properly embedded in H3. The next theorem shows that
this properness result is sharp.

Recall that a surface M ∈ M(H3) is stable if there exists a positive Jacobi function,
that is a function u : M → R such that ∆̃u + |AeL|2u + Ric(ñ)u = 0, where ñ is the
unit normal vector field to M . Sometimes this notion of stability is referred to as strong
stability.

Theorem 4.1 For each H ∈ [0, 1), there exists a simply connected surface MH ∈M(H3)
satisfying the following statements:

1. MH has mean curvature H.

2. MH is stable and has bounded second fundamental form.

3. MH is not properly embedded in H3.

Proof. For the constructions that we carry out in the proof of this theorem, we will use
coordinates that arise in the ball model B(1) ⊂ R3 of H3 with respect to the induced
spherical coordinates (θ, φ, r) of R3, where r ∈ [0, 1) and θ is well-defined up to multiples
of 2π.

Now fix an H ∈ [0, 1). For such a value of H, there exist properly embedded, pairwise
disjoint, stable, constant mean curvature H annuli AH , BH ∈ M(H3), which are surfaces
of revolution around the x3-axis and which are invariant under reflection in H3 across
the horizontal plane φ = π

2 ; assume AH lies outside of BH as in figure 1. These surfaces
have asymptotic boundaries which are circles S+(AH), S−(AH) and S+(BH), S−(BH),
respectively; see figure 1. We can chose the surfaces AH , BH such that the nonsimply
connected annular region RH between them is foliated by similar annuli of revolution
around the z-axis, with the same constant mean curvature H. In particular, the leaves of
this foliation are stable constant mean curvature surfaces, with positive Jacobi function u
given by taking the inner product of the variational vector field of the product foliation
with the unit normal field on the leaf.
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For r ∈ (0, 1) sufficiently close to one, AH(r) = AH ∩ B(r) and BH(r) = BH ∩ B(r)
are annuli of revolution. Define embedded curves ΓH,r(t) = (t, φr(t), r) ⊂ ∂B(r) with
0 < φ′r(t) < 1 which vary smoothly in r and such that limt→∞ φr(t) = φ(S+(AH)) and
limt→−∞ φr(t) = φ(S+(BH))). Let −ΓH,r(t) = (t, π − φr(t), r) be the related reflected
curves with limt→∞ φr(t) = φ(S−(AH)) and limt→−∞ φ(t) = φ(S−(BH)). Furthermore,
we choose these embedded curves ΓH,r to converge C1 to a similar embedded curves ΓH,1

on S2 = ∂B(1) with limit set being corresponding asymptotic boundary circles of AH , BH

(see figure 1).
We claim that for each r close to 1, there exists a complete, embedded, stable simply

connected CMC strip Wr ⊂ B(r) diffeomorphic to [0, 1]× R such that:

1. ∂Wr = ΓH,r ∪ −ΓH,r;

2. the limit set of Wr is AH(r)∪BH(r) and such that Wr ∪AH(r) ∪BH(r) is a CMC
lamination of B(r);

3. each Wr is a multigraph over its θ-projection to the disk Dr = RH ∩ B(r) ∩
{(x, y, z)|y > 0}.

Let Dr × R → RH ∩ B(r) define by (p, t) → (p, t mod 2π) .
After choosing a subsequence, the strips W1− 1

n
converge to a simply connected stable

surface MH ∈M(H3) with mean curvature H and with limit set AH∪BH . This completes
the proof of the proposition. 2

The proof of Theorem 4.1 generalizes to prove the following similar theorem in H×R.
One of the outstanding conjectures in this subject is: A surface M ∈ M(H × R) with
constant mean curvature HM ≥ 1

2 and with locally bounded second fundamental form is
properly embedded in H × R. The next theorem show that if the conjecture holds, then
it is sharp. We prove in [9] that under the stronger hypothesis HM > 1, M is properly
embedded.

Theorem 4.2 Let H be the hyperbolic plane. For each H ∈ [0, 1
2), there exists a simply

connected surface MH ∈M(H× R) satisfying the following statements:

1. MH has mean curvature H.

2. MH is stable and has bounded second fundamental form.

3. MH is not properly embedded in H3.
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5 The existence of one-sided regular neighborhood.

Meeks and Rosenberg [7] proved that a CMC surface M ∈ M(R3) of bounded second
fundamental form has a fixed size regular neighborhood on its mean convex side. In other
words, for such an M there exists an ε > 0 such that for any p ∈ M , the normal line
segment lp of length ε based at p and contained on the mean convex side of M , intersects
M only at the point p. An immediate consequence of the existence of such a regular
neighborhood is that the surface is properly embedded and for some c > 0, the area of the
surface is at most cR3 in any ball of radius R. The next theorem generalizes this result to
CMC surfaces in other homogeneous three-manifolds. Actually, the theorem generalizes
easily to show that a connected, codimension-one submanifold with nonzero constant mean
curvature and bounded second fundamental form, of a homogenously regular n-manifold
N , have a fixed one-sided regular neighborhood on its mean convex side.

Theorem 5.1 (One-sided regular neighborhood theorem) Suppose X ∈ N with
absolute sectional curvature bounded by a constant S0 and with injectivity radius at least
I0. Suppose M ⊂ X is a separating, properly embedded CMC surface with mean curvature
H0 and with |AM | ≤ A0. Then the following statements hold.

1. There exists a D ∈ (0, I0), depending on A0,H0, I0, S0, such that M has a regular
neighborhood of width D.

2. There exists a c > 0 such that the area of M in ambient balls of radius 1 is less than
c.

Proof. We will first prove the existence of a one-sided regular neighborhood of M in X
with width D ∈ (0, I0). The uniform bound |AM | ≤ A0 implies that there exists an ε > 0
sufficiently small so that for any p ∈ M , every component of BX(p, 2ε)∩M is a graph over
its projection to the disk of radius 3ε in TpM ; here we are considering the tangent plane to
be a plane in normal coordinates and for the orthogonal projection map to be well defined
in these coordinates. Moreover, we can choose ε sufficiently small and a smaller positive
δ such that if a component of BX(p, 2ε) ∩Mn intersects BX(p, δ), then such component
contains a graph over the disk of radius ε in TpM , denoted by D(p, ε). Also, we may
assume that in our coordinates, these graphs all have small gradient.

The theorem will follow from the observation that two disjoint graphs, u1 and u2 over
D(p, ε) of constant mean curvature H0 which are oppositely oriented and such that u2 lies
on the mean convex side of u1, cannot be too close at their centers (the difference of the
graphs is a positive function and the Laplacian of this difference is bounded from above
by a negative constant). Let p ∈ M and let u1 ⊂ M be the graph over D(p, ε) containing
p. Let δ1 ∈ (0, δ) and suppose that BX(p, δ1) ∩ M contains a connected component
different from u1 ∩ BX(p, δ1) and which lies on the mean convex side of u1. Let u2 ⊂ M
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be the graph over D(p, ε) which contains such a component. We conclude that, by our
observation, when δ1 is chosen sufficiently small, u1 and u2 when oriented as graphs have
the same mean curvature. However, by the separation hypothesis for M , if u2 were to
exist, then there would be another graph u3 ⊂ M between u1 and u2 that, when oriented
as a graph over D(p, ε), has oppositely signed mean curvature which is impossible by the
same observation. Hence, when δ1 is sufficiently small, BX(p, δ1) does not intersect M on
the mean convex side of u1. Letting D be such a small δ1 proves item 1.

Let N(M, δ) be the one-sided regular neighborhood of M in X given by item 1. For
a domain E ⊂ M , let N(E,D) ⊂ N(M,D) be the associated one-sided regular neighbor-
hood. Note that there exists a constant K such that the area of any compact domain E
on M is less than K times the volume of N(E,D). Since the volumes of balls in N of
radius 1 are uniformly bounded, the area of M in such balls is also uniformly bounded.
This proves item 2, and thus completes the proof of the theorem.

2

Our proof of the Dynamics Theorem for CMC surfaces in [9] uses the following corol-
lary to Theorem 5.1. For this application, we need to allow the CMC surface M in its
statement to be almost-embedded in the sense that there exist arbitrarily small C1 pertur-
bations of M which are embedded; in particular, such surfaces only intersect tangentially.
Although we did not state Theorem 5.1 for properly immersed CMC surfaces which are
almost-embedded, its proof can be easily modified to this more general situation.

Corollary 5.2 Suppose X is a complete, simply connected three-manifold with absolute
sectional curvature bounded by S0. Suppose M ⊂ X is a properly immersed CMC surface
which is almost-embedded, has constant mean curvature H0 and satisfies |AM | ≤ A0 for
some A0 ≥ 0. Then:

1. M has a fixed size regular neighborhood on its mean convex side.

2. There exists a c > 0 depending on A0,H0, S0 such that the area of M in ambient
balls of radius one is at most c.

6 The existence of CMC surfaces in M(R3) which are not
properly embedded.

Proposition 6.1 There exists a properly embedded, constant mean curvature one, doubly-
periodic surface Mn in R3 which is contained in the slab {(1

2)n+1 < x3 < (1
2)n}. Hence,

M∞ =
⋃

n∈N Mn is a complete, embedded CMC surface in the slab {0 < x3 < 1
2} which is

nonproper in R3.
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Proof. In 1970, Lawson [5] constructed an example of a properly embedded surface M ⊂
R3 of constant mean curvature one contained in a horizontal slab. Furthermore, M is
invariant under a square lattice ΛM = {(ma, na, 0) | m,n ∈ Z}, for some a > 0 and the
quotient surface M/ΛM is compact with genus two. Using a modification of Lawson’s
construction, we will construct a family Ms, s ∈ (0, 1) of properly embedded, constant
mean curvature one surfaces in horizontal slabs Ss ⊂ R3 which are invariant under square
lattices Λs and such that Ms/Λs has genus two. We note that as in Lawson’s examples,
each of the surfaces Ms in this family are invariant under reflection in the (x, y), (x, z), (y, z)
and x = y planes. We will prove that as s goes to zero, the widths of the slabs Ss converge
to zero which will prove Proposition 6.1. 2
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