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Abstract: Ant Colony Optimization (ACO) is a class of metaheuristic 

algorithms sharing the common approach of constructing a solution on the 

basis of information provided both by a standard constructive heuristic and 

by previously constructed solutions. This paper is composed of three parts. 

The first one frames ACO in current trends of research on metaheuristics for 

combinatorial optimization.  The second outlines current research within the 

ACO community, reporting recent results obtained on different problems, 

while the third part focuses on a particular research line, named ANTS, 

providing some details on the algorithm and presenting results recently 

obtained on a prototypical strongly constrained problem: the set partitioning 

problem. 

  

1.  Introduction 

Nowadays companies are facing many real world problems whose nature is intrinsically 

combinatorial. For example, trucks have to be routed, depots or sale points have to be located, 

containers have to be filled, wood or leather masters have to be cut, communication networks have 

to be designed, radio links must have an associated frequency, CPU time has to be scheduled, etc. 

Complexity theory tells us that the combinatorial problem underlying these applications is often not 

polynomial. Actual practice tells us that, unfortunately, the size of the instances met in real world 

applications rules out the possibility of solving them to optimality in an acceptable time. In 

addition, several operational constraints are often imposed to ensure feasibility of the solutions, 

constraints which further complicate the solution process. Nevertheless, these instances must be 

solved and the constraints must be taken into account. Thus, the need to bow down to suboptimal 
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solutions emerges, provided that they are both of acceptable quality and that they can be found in 

acceptable time. 

Several approaches have been proposed for designing “acceptable quality” solutions under the 

“acceptable time” constraint. Besides studying the particular instances of interest, in the hope of 

being in a polynomial special case, one can in fact try to design an algorithm that guarantees to find 

a solution within a known gap from optimality, i.e. an approximation algorithm. Alternatively, one 

can try to design an algorithm that guarantees that, for instances big enough, the probability of 

getting a bad solution is very small, i.e. a probabilistic algorithm. Indeed, one can lower even more 

the expectations and accept an algorithm that offers no guarantees, in front of some evidence that 

historically, on the average, that algorithm has the best record track on the quality/time trade off for 

the problem of interest. This is the area of approximate algorithms, loosely called heuristic 

algorithms. There is a huge amount of literature about how to construct a heuristic algorithm 

(henceforth heuristic), which lately concentrated on the design of so-called metaheuristic 

algorithms, or metaheuristics. A metaheuristic is essentially a basic heuristic with a superimposed 

mechanism to ensure the possibility to escape from local optima. A short list of the most 

representative metaheuristics includes: simulated annealing (Cerny, 1985), tabu search (Glover, 

1989, 1990), guided local search  (Voudouris and Tsang, 1995), greedy randomized adaptive search 

procedures (GRASP, Feo and Resende, 1995), iterated local search (Lourenco et al., 2002), 

evolutionary computation (EC, Fogel et al., 1966), and scatter search (Glover, 1977). 

In this paper, we concentrate on the ACO metaheuristic framework showing how it can be applied 

successfully to many theoretical problems, which are studied as prototypes of real world problems. 

In particular, we will present a detailed result on a very constrained Set Partitioning problem (SPP). 

This is chosen as severely constrained problems usually are very hard to deal with metaheuristics, 

as they limit the effectiveness of the underlying local search or constructive basic heuristic, which is 

at the heart of the metaheuristic. Very often on these problems, and most evidently on the SPP, 

adapted exact techniques provide better computational results than metaheuristics. 

 

The paper is structured as follows. Section 2 and 3 describe the common elements of the heuristics 

belonging to the Ant Colony Optimization class and the results obtained by current approaches on 

different problems. Section 4 concentrates on the ANTS approach, one method of the ACO class, 

describing its essential ingredients. Section 5 presents the Set Partitioning problem as one of the 

more constrained combinatorial optimization (CO) problems. Section 6 shows how it is possible to 

adapt the ANTS approach to solve the SP problem. Finally, Section 7 presents a brief discussion on 

the computational results and Section 8 a brief discussion. 
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2. Ant Colony Optimization 

Colorni, Dorigo and Maniezzo (Colorni et al. (1991) and Dorigo (1992)) initially proposed the Ant 

System method, then structured by Dorigo and di Caro (1999) in the Ant Colony Optimization 

(ACO) framework, taking inspiration from the way ants collect food and coordinate their 

movements. The main underlying idea they extracted from biological studies about ants, was that of 

parallelizing the search of the optimal solution of CO problems by exploiting several constructive 

computational threads, called ants. 

An ant is defined as a simple computational agent endowed with memory, which iteratively and 

independently constructs from scratch a solution for the problem to solve.  

The ant works in a constructive way progressively stacking small pieces of solution. Partial 

solutions are treated as states: each ant moves from a state φ to another one ψ, producing a more 

complete partial solution. This process is iterated until the ant ends in a final state corresponding to 

a complete solution of the problem. 

In order to ensure the feasibility of the final solution, at each step σ, the ant computes a set A(φ) of 

feasible expansions to its current state φ (i.e. a collection of admissible new states), and moves to 

one of these according to a probability distribution specified as follows. 

The probability pφψ of moving from state φ to state ψ depends on the combination of two values: 

1. The attractiveness η of the move, as computed by some heuristic indicating the a priori 

desirability of that move; 

2. The trail level τ of the move, indicating how proficient it has been in the past to make that 

particular move: it represents therefore an a posteriori indication of the desirability of that 

move. 

The attractiveness represents the inclination of the ant, which selects a new state (i.e. a new 

direction toward the food) according to its internal evaluations. 

The trail level, also called pheromome in accordance to the biological deposit of this chemical, 

codifies the memory of the ant or better of all the ants which have been in the same situation. 

Loosely speaking, the trail level is a way, biologically proven in the case of real ants, to enable the 

coordination of a colony of ants without a direct communication. For a detailed description of the 

biological experiments about trail level see the book by Dorigo and Stützle (2004). 

From an operational point of view, trails are updated at each iteration, increasing the level of those 

that facilitate moves that were part of “good” solutions, while decreasing all others. The specific 

formula for defining the probability distribution at each move makes use of a problem-dependent 

knowledge about feasible and infeasible moves. 
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Let us describe how to apply the ACO framework to common problems. 

A CO problem is defined over a set C = {c1, ... , cn} of basic components and a subset S of C 

represents a solution of the problem. F C is the subset of feasible solutions, thus a solution S is 

feasible if and only if S∈F. A cost function z is defined over the solution domain, z : C → R. The 

goal of the algorithm is to find a minimum cost feasible solution S*, that is to find S*: S*

⊆

∈F and 

z(S*) ≤ z(S), ∀S∈F. If the last requirement is not match, the algorithm anyway returns the best 

feasible solution found S . 

 

2.1 Ant System 

The Ant System (AS) (Dorigo et al., 1991) was the first algorithm implementing the ACO 

framework. The idea underlying it was to modify a constructive heuristic so that the ordering of the 

components could be recalculated at each iteration. The procedure takes into account not only the a 

priori expectation (attractiveness), ηi, of the usefulness of a particular component ci, as in standard 

constructive approaches, but also an a posteriori measure (trail level), τi, of the goodness of 

solutions constructed using that particular component. The general framework can be schematized 

as follows. 

AS algorithm 
 
Step 1. (Initialization)  

Initialize τφψ, ∀ (φ,ψ) 
 

Step 2. (Construction) 
for each ant k do 

repeat 
compute η φψ, ∀ (φ,ψ) 
choose the state to move into, with probability pφψ 

 until ant k has completed its solution.  
(optional) carry the solution to its local optimum. 

enddo 
 
Step 3. (Trail update) 

for each ant move (φ,ψ) do 
compute Δτφψ 
update the trail matrix (evaporation, deposit) 

enddo 
 
Step 4. (Terminating condition) 

if not(end condition) go to step 2 
 

Figure 1. Pseudo code for the AS algorithm. 
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Essentially, diversification and intensification are controlled by the τ management policy. A wide-

accepted strategy for the choice of Step 2 is the follow:  

 

• pφψ is equal to 0 for all moves which are infeasible, otherwise it is computed by means of the 

following formula , where α is a user-defined parameter (0 ≤ α ≤ 1): 

  

( )
( )∑ −+
−+

←
feas
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ϕψϕψ
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Parameter α defines the relative importance of trail with respect to attractiveness. After each 

iteration t of the algorithm, that is when all ants have completed a solution, each ant k deposits a 

quantity of pheromone over its trail, fully backtracking the followed path from destination to 

source. Summing the contribution of all the m ants the trail levels are updated following the 

formula: 
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m
k
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1
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where Δτφψ represents the sum of the contributions of all ants that used move (φψ) to construct their 

solution. The ants’ contributions are proportional to the quality of the achieved solutions, that is the 

better an ant solution, the higher will be the trail contribution added to the moves it used. In order to 

avoid an unlimited growth of the trail level, a normalization procedure, called evaporation (as it 

resembles the biological evaporation of the pheromone), is executed before the trail update where ρ 

(0 ≤ ρ ≤ 1) is the pheromone evaporation rate. The evaporation manages the trade-off between the 

importance of the historical paths found (with high trail level) and the need to explore new paths 

(with a low trail level). 

The importance of this original Ant System resides mainly in being the prototype of a number of 

ants-inspired algorithms, which have found interesting and successful applications. 

 

3 An Outline of Current Research 

The first application of AS used the Traveling Salesman Problem (TSP) as a benchmark problem. 

This was because TSP is one of the most studied NP-hard problem, and the ant metaphor can be 

easily applied to it. Several authors built upon this initial contribution. 
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The TSP is the problem faceted by a salesman, who starts from his home and needs to visit all his 

customer’s cities before returning at home. Obviously, he wants to minimize the cost of his trip. 

Exploiting the TSP problem, the basic AS has been improved during years taking into account both 

problem-dependent and performance issues. The main variations regard the trail update strategy and 

the computation of the attractiveness. In the following, we will first show a short collection of state-

of-the-art ACO algorithms, then a list of problems which ants were successfully applied on. 

 

3.1 Ants variants 

Elitist Ant System 

Dorigo (1992) and Dorigo et al. (1991, 1996) made a first improvement of the basic AS, called 

elitist strategy. The idea was to give more strength to the reinforcement of the trail level of the best 

ant, i.e. the ant that provided the best solution. This is accomplished defining a best ant whose 

contribution in the trail level update is: 

 
bestm

k
k

ϕψϕψ
γττ ϕψϕψ Δ+Δ+← ∑ =1

 

 

Where γ is a parameter that defines the weight given to the best-ant. 

 

Max-Min Ant System 

Stützle and Hoos (1997, 2000) and Stützle (1999) introduced Max-Min Ant System (MMAS), a 

modification of Elitist Ant System. The authors explicitly introduced in the algorithm two 

parameters, a maximum and minimum trail level, whose values are chosen in a problem-dependent 

way in order to restrict possible trail values to the interval [Tmin, Tmax]. Moreover, MMAS 

controls the trail levels (initialized to their maximum value Tmax), only allowing the best ant at 

each iteration to update trails, thus providing a feedback on its results. Trails that do not receive any 

or very rare reinforcements will continuously lower their strength and will be selected more and 

more rarely by the ants, until they reach the Tmin value. The Tmin and Tmax parameters are used to 

counteract premature stagnation of search, maintaining at the same time some kind of elitist 

strategy. When applied to TSP, MMAS performs better than AS. 

Rank-Based Ant System 

Bullnheimer et al. (1999) proposed yet another modification of AS, called ASRank, introducing a 

rank-based version of the probability distribution to limit the danger of over-emphasized trails 
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caused by many ants using sub-optimal solutions. The idea is the following: at each iteration, when 

all solutions are completed the ants are sorted by solution quality (that is, tour lengths in the case of 

the TSP) and the contribution of an ant to the trail level update is weighted according to the rank of 

the ant, considering only the w best ants. 

 

Ant Colony System  

Gambardella and Dorigo (1995) merged AS and Q-learning, a well known reinforcement learning 

algorithm from Artificial Intelligence, into an algorithm called Ant-q. The idea was to update trails 

with values that predicted the quality of solution using the edges to which the trails were associated. 

Even though showing a good performance, Ant-Q was abandoned for the equally good but simpler 

Ant Colony System (ACS) algorithm (Dorigo and Gambardella, 1997a,b), that uses a constant value 

instead of the mentioned prediction term. In this algorithm, the trail values are added offline, at the 

end of each iteration, only to the arcs belonging to the best tour from the beginning of the search 

process, while ants perform online step-by-step trail updates to favor the emergence of solutions 

other than the best so far. Each ant uses a pseudo-random proportional rule to choose the next node 

to visit. This is a decision rule based on a q0∈[0,1] parameter that permits to modulate the 

exploration behavior, concentrating the system activity either on the best solutions or on the entire 

search space. ACS also uses a data structure associated to vertices called candidate list, which 

provides additional local heuristic information. The candidate list associated with a vertex contains 

only the cl vertices nearest to the one in subject, and the ants choose the next move scanning the 

candidate list instead of examining all the unvisited neighboring vertices. 

 

Hyper-cube Framework for ACO 

An alternative strategy to manage and update the pheromone values, called Hyper-Cube Framework 

(HCF) for ACO has been proposed by (Blum, 2004; Blum and Dorigo, 2003; Blum et al., 2001). 

The main characteristic of this approach is that pheromone values are bounded between 0 and 1, 

with associated changes to the standard equations used to deal with pheromone. This idea is similar 

to that of MMAS with the difference that in this later case the maximal pheromone value is not 

bounded to one, but derived from the problem being solved. The idea underlying HFC is to model a 

CO problem by means of binary (i.e.{ ) decision variables. While in the standard AS pheromone 

information is typically used with problems where the decision variables appear to have several 

possible values, in this case each individual pheromone value actually relates to a single solution 

feature which a solution may or may not exhibit (from which the 

}1,0

{ }1,0  value).  In this sense, a 
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solution is one corner in a hyper-cube of dimension n, where n is the number of components. In 

order to generate lower bounds for the CO problem, the HCF admits that the pheromone can 

assume values in the range [0,1]. In this case, a feasible solution corresponds to a convex 

combination of components. 

Blum (2004) suggests that the HCF approach is more robust across problems with different 

objective function values, and that it allows for improved implementation of intensification and 

diversification. These techniques allow to intensify a search around particular solution features and 

to diversify a search into new spaces of solutions respectively. 

 

3.2 Problems  

In the past years, since ACO has been applied to a broad variety of problems and it is difficult to 

track every application. However, in the following we will present some of the most relevant 

problems from both an historical perspective and current trends. As reported in Table 1, current 

works on ACO are devoted to exploit the implicit parallelism of the algorithm in order to speed up 

the computation on modern multi-core processors. While these studies are focused on particular 

problems, we can recognize common strategies aimed at splitting the problem (Ouyang and Yan, 

2004), exchanging information among colonies (Ellabib et al., 2007), and deploying the best 

implementation (Delisle et al., 2005). In the following, we will outline some of the most relevant 

applications.  

3.2.1 ACO approaches to QAP 

The quadratic assignment problem (QAP) is the problem of assigning n facilities to n locations so 

that a quadratic assignment cost is minimized. QAP is a NP-hard optimization problem (Sahni and 

Gonzales, 1976), it can be considered one of the hardest CO problems, and it can be solved to 

optimality only for comparatively small instances (n=36). For this reason, historically QAP was 

chosen as a second benchmark for ACO. 

Basic AS was of limited effectiveness when applied to QAP but it was the first evidence of the 

robustness of AS-QAP. 

An extension by Maniezzo and Colorni (1999) makes use of a well-tuned local optimizer, obtaining 

good results. In fact, while the process of an individual ant will almost always converge very 

quickly to a possibly mediocre solution, the interaction of many feedback processes can instead lead 

to convergence towards a region of the space containing good solutions, so that a very good 
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solution can be found (without however being stuck on it). In other words, the ant population does 

not converge on a single solution, but on a set of (good) solutions; the ants continue their search to 

improve further the best solution found. The results obtained showed the Ant System's competitive 

performance on several test problems.  

 

Table 1. An overview of ACO applications. 

 
Problem type Problem name Main references 
Routing Traveling salesman Dorigo, Maniezzo, and Colorni (1991) 
  Dorigo (1992) 
  Gambardella and Dorigo (1995) 
  Dorigo and Gambardella (1997a,b) 
  Stützle and Hoos (1997, 2000) 
  Ouyang and  Yan (2004) 
 Vehicle routing Bullnheimer, Hartl, and Strauss (1999a,b) 
  Gambardella Taillard, and Agazzi (1999) 
  Reimann, Stummer, and Doerner (2002) 
  Ellabib et al., (2007) 
 Sequential ordering Gambardella and Dorigo (1997, 2000) 
Assignment Quadratic assignment Maniezzo, Colorni, and Dorigo (1994) 
  Stützle (1997b) 
  Maniezzo and Colorni (1999) 
  Maniezzo (1999) 
  Stützle and Hoos (2000) 
  Wiesemann  and Stützle (2006) 
 Graph colouring Costa and Hertz (1997) 
 Generalized assignment Lourenco and Serra (1998) 
 Frequency assignment Maniezzo and Carbonaro (2000) 
 University course Socha, Knowles, and Sampels (2002) 
 timetabling Socha, Sampels, and Manfrin (2003) 
Scheduling Job shop Colorni, Dorigo, Maniezzo, and Trubian (1994) 
 Open shop Pfahringer (1996) 
 Flow shop Stützle (1998) 
 Total tardiness Bauer, Bullnheimer, Hartl, and Strauss (2000) 
 Total weighted tardiness den Besten, Stützle, and Dorigo (2000) 
  Merkle and Middendorf (2003) 
 Project scheduling Merkle, Middendorf, and Schmeck (2002) 
 Group shop Blum (2003) 
Subset Multiple knapsack Leguizamon and Michalewicz (1999) 
 Max independent set Leguizamon, Michalewicz and Schutz (2001) 
 Redundancy allocation Liang and Smith (1999) 
 Set covering Hadji, Rahoual, Talbi, and Bachelet (2000) 
 Weight constrained graph tree partition Cordone and Maffioli (2001) 

 Arc-weighted k-cardinality tree Blum and Blesa (2003) 
 Maximum clique Fenet and Solnon (2003) 

 

 

In addition, several other systems previously introduced were adapted to the QAP. For example, 

two efficient techniques are the MMAS-QAP algorithm (Stützle (1997b), Stützle and Hoos (2000)) 

and Hybrid AS (HAS-QAP) (Gambardella et al. 1999). Both of them consider the problem 

instances classified in two categories: randomly generated problems without any structure and 

structured real-life problems. As the performance of heuristic approaches is strongly dependent on 
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the type of considered problem, they analyse the obtained results respect to the best performing 

methods in the corresponding category. 

Comparisons with some of the best heuristics for the QAP have shown that HAS-QAP is among the 

best as far as real world, irregular, and structured problems are concerned. On the other hand, on 

random, regular and unstructured problems the performance resulted to be less competitive. 

MMAS-QAP seems to be one of the most promising approaches for the solution of structured real 

life QAPs. 

 

 

3.2.2 ACO approaches to VRP 

 

Vehicle Routing Problems (VRPs) are CO problems in which a set of vehicles stationed at a depot 

has to serve a set of customers before returning to the depot, minimizing the number of vehicles 

used and the total distance traveled by the vehicles (Toth and Vigo, 2001). Capacity constraints are 

imposed on vehicle trips, plus possibly a number other constraints coming from real-world 

application, such as time windows, back-hauling, rear loading, vehicle objections, maximum tour 

length, etc. The goal in the VRP is to find a collection of routes that minimizes the total travel time 

such that each costumer is server by exactly on vehicle, the route of each vehicle starts and ends at 

the depot, and the total demand covered by each vehicle does not exceed its capacity.  

The VRP can be considered as a generalization of the TSP, in fact the VRP reduces to the TSP 

when only one vehicle is available. Some of the most successful applications of ACO heuristics to 

VRP are the following. 

A direct extension of AS based on the algorithm is AS-VRP, an algorithm designed by Bullnheimer 

et al. (1999b). They used various standard heuristics to improve the quality of VRP solutions and 

modified the construction of the tabu list considering constraints on the maximum total tour length 

of a vehicle and its capacity. The results obtained on some problem instances were sufficiently 

interesting to justify a more detailed study. 

Gambardella et al. (1999b) also faced the VRP, adapting the ACS approach to define MACS-

VRPTW, and considering the time window extension to VRP, which introduces a time range within 

which a customer must be serviced. 

This approach has proved to be competitive with the best-known approaches in the literature. 

Recently, some authors (Ellabib et al., 2007) proposed a novel strategy to exchange information 

among ants suitable for optimized parallel implementations. 
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3.3 ACO approaches to FAP 

The Frequency Assignment Problem is the problem that arises when a region is covered, for 

wireless communications, by cells centered on base stations and transmitters scattered around the 

region want to connect with the antennas of the base stations. Each connection, or link, between a 

transmitter and a base station can be made on a frequency supported by the antenna. However, the 

frequency concurrently operated by overlapping cells must be separated in order to minimize the 

interference on the communications, taking place in the cells. 

The current state of development of the research on FAP does not provide efficient lower bounds. 

Maniezzo and Carbonaro (2000) developed one, which is not very tight but is efficient to compute, 

and included it in the ANTS algorithm (see next Section). Computational results were obtained on 

three well-known problem datasets from the literature. They show that the ANTS heuristic is 

competitive with the best approaches so far presented. 

 

4 Approximate Nondeterministic Tree Search (ANTS) algorithm 

Approximate Nondeterministic Tree Search (ANTS) is an extension of the Ant System proposed in 

(Maniezzo, 1999), that exploits ideas from mathematical programming. ANTS algorithm specifies 

some underdefined elements of the general ants algorithm, such as the attractiveness function to use 

or the initialization of the trail distribution. This turns out to be variations of the general ACO 

framework that make the resulting algorithm similar in structure to tree search algorithms. In fact, 

the essential trait which distinguishes ANTS from a tree search algorithm is the lack of a complete 

backtracking mechanism, which is substituted by a probabilistic (non-deterministic) choice of the 

state to move to and by an incomplete (approximate) exploration of the search tree. This is the 

rationale behind the name ANTS. In the following, we will outline two distinctive elements of the 

ANTS algorithm within the ACO framework, namely the attractiveness function and the trail 

updating mechanism. 

 

4.1 Attractiveness 

 

The attractiveness of a move can be estimated effectively by means of lower bounds (upper bounds 

in case of maximization problems) to the cost of the completion of a partial solution. In fact, if a 

state t corresponds to a partial problem solution it is possible to compute a lower bound (LB) to the 

cost of a complete solution containing t. Therefore, for each feasible move ( ψϕ → ), it is possible 
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to compute the lower bound to the cost of a complete solution containing it: the lower the bound the 

better the move. Since large part of research in CO is devoted to the identification of tight lower 

bounds for the different problems of interest, good lower bounds are usually available. Their use 

has several advantages, some of which are listed in the following. 

 

• A tight bound gives strong indications on the opportunity of a move. 

• When the bound value becomes greater than the current upper bound, it is obvious that the 

considered move leads to a partial solution which conclusion can not be better than the 

current best one. Thus, the move can therefore be discarded from further analysis. 

• If the bound is derived from Linear Programming (LP) and dual cost information is 

therefore available, it is possible to compute reduced costs for the problem decision 

variables. These permits to a priori eliminate some variables, when compared to an upper 

bound to the optimal problem solution cost. The result is a reduction of the number of 

possible moves, therefore a reduction of the search space. 

• A further advantage of LP lower bound is that the primal values of the decision variables, as 

appearing in the bound solution, can be used as an estimate of the probability with which 

each variable will appear in good solutions. This provides an effective way for initializing 

the trail values, thus eliminating the need for the user-defined parameters. 

• The use of LP bounds is a very effective and straightforward general policy, every time tight 

such bounds have been identified for the problem to solve. 

 

4.2 Trail update 

 

A good trail updating mechanism avoids stagnation, the undesirable situation in which all ants 

repeatedly construct the same solutions, making impossible any further exploration in the search 

process. This derives from an excessive trail level on the moves of one solution, and can be 

observed in advanced phases of the search process, if parameters are not well tuned to the problem. 

The algorithm evaluates each solution against the last n ones globally constructed by ANTS. As 

soon as n solutions are available, the algorithm computes the moving average z of their cost. Now, 

the cost of each new solution znew is compared with z  and then used to compute the new moving 

average value. In the case znew is lower than z , the corresponding trail levels are increased, 

otherwise decreased, following the formula: 
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where LB is a lower bound to the optimal problem solution cost and ϑ  a prefixed parameter. In 

particular, if the new solution is better of the moving average (i.e. newzz > ), the trail level is 

increased by a quantity newzz −  normalized by a value that is proportional to the phase of the 

optimization. If the algorithm is far from the estimated lower bound the improvement ϕψτΔ of the 

solution is diminished (i.e. LBz −  is high), otherwise if the algorithm is approaching the lower 

bound the improvement is amplified. 

In the case of a new solution worse than the moving average, the trail level is decreased following 

the same dynamic normalization. 

This use of a dynamic scaling procedure permits to discriminate small achievement in the latest 

stage of search, while avoiding focalizing search only around good achievement in the earliest 

stages. This mechanism implicitly performs the pheromone evaporation, which in fact is not 

explicitly formulated. Learning method based on this idea are called reinforcement comparison 

methods; they are able to compare the solution values respect to a reference measure varying during 

the construction of the solution. One of the more difficult aspects to be considered in reinforcement 

learning algorithms is the trade-off between exploration and exploitation. To obtain good results, an 

agent must prefer actions that it has tried in the past and found to be effective in producing desirable 

solutions (exploitation): but to discover such actions, it has to try actions that it has not selected 

before (exploration). Neither exploration nor exploitation can be pursued exclusively without failing 

at the task: for this reason, ANTS system uses this stagnation avoidance procedure to facilitate 

exploration and attractiveness mechanism to determine the desirability of known moves. 

 

Based on the described elements, the ANTS algorithm is reported in Figure 2.  It can be noticed that 

the general structure of the ANTS algorithm is closely similar to that of a standard tree-search 

procedure. At each stage the algorithm obtains in fact a partial solution which is expanded by 

branching on all possible children. A bound is then computed for each offspring and the current 

partial solution is selected among that associated to the surviving offspring on the basis of lower 

bound considerations. By simply adding backtracking and eliminating the Montecarlo choice of the 

node to move to, we revert to a standard branch and bound procedure. An ANTS code can therefore 

be easily turned into an exact procedure. 
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ANTS algorithm 
 

Step 1. (Initialization) 
Compute a (LP) lower bound to the problem to solve 
Initialize τφψ , ∀ (φ,ψ) as a function of the primal variable values 

 
Step 2. (Construction) 

for each ant k do 
repeat 

Compute η φψ, ∀ (φ,ψ) as a lower bound to the cost of a complete  solution 
containing ψ 
Choose the state to move into, with probability given by (1) 

until ant k has completed its solution 
carry the solution to its local optimum 

enddo 
 
Step 3. (Trail update) 

for each ant’s move (φ,ψ) do 
Compute ϕψτΔ  
Update the trail matrix by means of (4) 

enddo 
 
Step 4. (Terminating condition) 

if not (end-test) go to step 2 

Figure 2. Pseudo code for the ANTS algorithm. 

 

5 The Set Partitioning problem 

 

The Set Partitioning problem (SP) is the problem of partitioning a given set of elements into 

mutually independent subsets, chosen from a given collection, minimizing a cost function defined 

as the sum of the costs associated to each of the eligible subsets. Its importance derives from the 

fact that many actual situations can be modeled as SP. For example, many combinatorial 

optimization problems (crew scheduling, vehicle routing, project scheduling, warehouse location, 

etc) can be modeled as SP with maybe some additional constraints. 

A specific problem that needs to solve SP instances arises in the context of logical design of Data 

Warehouses (DW), namely the Vertical Fragmentation Problem (VFP). DWs are foremost systems 

for improving the support given to company internal decision processes and data analysis 

procedures. A DW enables executives to retrieve summary data, derived by those present in 

operational information systems. An essential feature of a successful DW is a fast query response. 

DW design follows three main phases: i) conceptual, ii) logical, and iii) physical design. VFP is a 
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part of logical design and has the objective of minimizing the query response time by reducing the 

number of disk pages to be accessed. VFP problem details are rather intricate, and we refer the 

interested reader to Golfarelli et al. (2002) and Maniezzo et al. (2001) for problem details. While 

the specific formulation elements are not important for this paper, we point out that a substantial 

number of constraints are actually SP constraints; thus it is possible to solve problem VFP only if an 

effective means for solving SP is available. 

The Set Partitioning problem can be modeled as follows. Let xj, j = 1,...,n be a binary variable 

denoting whether or not the jth subset is part of the solution. A cost cj is associated to each subset j. 

Let A = [aij], with i = 1,...,m and  j = 1,...,n, be a { }1,0  coefficient matrix whose columns correspond 

to the subset and whose rows to the set elements. If aij = 1 the ith element is a member of the jth 

subset. 
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Figure 3. Matrix representation of the SP problem. 

 

A mathematical formulation of SP is the following: 

 

(SP)    min       (5.1)   ∑ =
n
j jj xc1

s.t. ;  1
1

=∑ = j
n

j ij xa ∀ i = 1,…,m  (5.2) 

{ }1,0∈jx ;    ∀ j = 1,…,n   (5.3)   

 

By applying a Lagrangean relaxation of the constraints (5.2) we obtain the following problem: 

 

(LSP)    min  ( )∑ ∑ ∑= ==
+−

n

j

m

i i
m

i jijijj xxc
1 11

λαλ   (6)  

s.t. { }1,0∈jx ;   j = 1,…,n 
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Now, the bound to the original SP problem can be obtained by posing: 
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The value of the solution found is a lower bound for the original SP. By associating dual variables 

αi to each constraint (5.2) and relaxing constraints (5.3), the dual problem DSP becomes: 

 

(DSP)    max        (8) ∑
i

iα

s.t.     j = 1,…,n ∑ ≤
i

jiij ca α

   unboundediα    i = 1,…,m 

 

The Linear programming relaxation of the SP formulation usually gives a good lower bound to the 

problem. It is worth recalling that for the SP problem, efficient polynomial neighborhoods contain 

few solutions, and local search is of very limited use. Indeed, even finding a feasible solution is 

extremely difficult. 

In the last years, the SP problem has been studied extensively because of its important applications. 

A detailed survey of SP applications and solution methods can be found in Balas and Padberg 

(1976). For instance, Marsten and Shepardson (1981) and Hoffman and Padberg (1993) have 

applied very successfully SP-based algorithms to airline crew scheduling problems. In both cases, 

an LP based branch and bound algorithm has been used to solve large-scale instances of the SP 

problem. To the same aim, Fisher and Kedia (1990) presented a dual ascent algorithm, Chu and 

Beasley (1995) introduced a genetic algorithm while Wedelin (1995) exploited a Lagrangean dual 

approach with cost perturbations. Atamturk et al. (1995) proposed other effective heuristics. 

 

5.1 ACO approaches to SP 

 

The first implementation of an ACO algorithm for the SP was proposed by Maniezzo and Milandri 

(2002), called BE-ANTS. They noticed that a direct implementation of the basic ACO framework is 

incapable of obtaining feasible solutions for many standard test set instances. The approach 

advocated by that paper included in a standard ANTS algorithm elements taken from bounded 
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enumeration procedures. They are tree search procedures where the number of nodes, which can be 

expanded at each tree level, is limited from above by a parametric constraint k. Greater value for k 

entails a bigger search space to explore, where k unlimited makes the algorithm become a complete 

enumeration procedure. In the case of SP, each level of the search tree is associated with one 

constraint. Level 0 corresponds to empty solution; level 1 considers the first constraint, and so on. 

The order according to which constraints are considered in successive tree expansions greatly 

affects the algorithm performance. As the presented paper follows this approach, it will be 

explained in details in the next section. 

Recently, an enhancement of the original AS and ACO algorithms has been proposed by Crawford 

and Castro (2005) for solving the SP problem. The authors presented a hybrid technique that merges 

AS and ACO with Forward Checking (FC). Instead of performing arc consistency to the 

instantiated variables, FC performs a restricted form of it to the not yet instantiated variables. This 

reduces the search tree and the overall amount of work done. However, they noted that FC does 

more work when each assignment is added to the current partial solution. Forward Checking allows 

selecting columns if they do not produce any conflict with respect to the next column to be chosen. 

However, FC checks only the constraints between the current variable and the future variables. To 

overcome this problem, the authors introduced a full arc consistency, called Full LookAhead (FLA), 

which further reduces the domains and removes possible conflicts. The main advantage of FLA in 

respect of FC is that it detects also the conflicts among future variables and therefore allows 

branches of the search tree that will lead to failure to be pruned earlier. Regarding the SP problem, 

ACO with FLA techniques experimentally showed interesting performances demonstrating that the 

hybridization improves the search process, mostly with respect to success costs instead running 

times. 

 

6 ANTS approaches to SP 

 

The algorithm presented in this paper, called SP-ANTS, builds on the experience of the BE-ANTS 

heuristic for SP presented in Maniezzo and Milandri (2002). 

The SP-ANTS algorithm and the standard ACO algorithm, differs mainly for the following issues:  

i) the trail laying policy; 

ii) the synchronization step among ants after each expansion. 

 

Trail is not leaved directly on the components, which build up a solution (the subsets), but on the 

couplings (component/element), that is equivalent to the couple (variable/constraint). A high trail 
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value τij indicates that a particular variable j  demonstrated to be a good choice for covering 

constraint . Thus the same variable i j  may have different attractiveness, depending on the 

particular choice (which variable to use for covering constraint ) an ant has to take. i

A synchronization step is implemented after each ant expands its partial solution, in order to define 

the different possible further expansions. 

Essentially, the number of ants is equal to the value of parameter k. At each level, one ant anti is 

assigned to each of the k branches to be expanded and computes its possible expansion set Ei. Then 

all expansion sets are united, ordered by non-decreasing cost, and the k of them, if so many exists, 

are chosen for further expansion. 

Three cases make a branch non-eligible for further expansion: 

i. The partial solution associated with the branch is infeasible. 

ii. The partial solution associated with the branch has a cost already greater than that of the best 

one already found, thus it cannot lead to an improvement of the best solution found. 

iii. The partial solution associated with the branch is not among the k ones chosen for the 

expansion of the level. 

We recall that a branch, which can be expanded, is a valid branch. The SP-ANTS algorithm for SP 

problem is as follows: 

 

SP-ANTS algorithm 
 
Step (Initialization) 

1. i=1. The first constraint to be covered is chosen. The set E of feasible expansions is 
initialized with all feasible expansions of the empty solution. 

 
Step (Construction) 

2. The value ( ) iij ηαατ −+ 1  is computed for each Ej∈ , where α, τ and η have the usual 
ACO interpretation. The partial solutions are accordingly ordered. 

 
3. k valid branches in E are selected, by means of the usual ant probability selection formula 

(1), and one ant is assigned to each of them. 
 

4. i=i+1. Each ant j decides the constraint (element) to cover at level i and accordingly 
computes the expansions Ej of its current partial solution. U j jEE =  

5. if i < m goto Step 2. 

Step (Trail update and Terminating condition) 
6. if (end condition) then Stop else update trails, goto Step 1. 
6b. if (end condition) then Stop else update trails, perform one subgradient iteration, goto Step 1. 

Figure 4. Pseudo code for the SP-ANTS algorithm. 
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In order to specify completely the algorithm, it is necessary to define how to compute the η and the 

τ values. These are problem-specific elements, which in the case of the SP we implemented as 

follows. 

The desirability ηi of a column j can be set equal either to the sum of the dual variable values of the 

still uncovered constraints which are covered by column j or simply to the number of still 

uncovered constraints which are covered by column j (we tested both possibilities). Thus, columns 

covering the most difficult (or the greater number) of uncovered constraints are preferred. Trails are 

updated by means of the formula introduced in Maniezzo (1999). Notice however that trails are laid 

on the coupling (i,j), that is, we explicitly increase or decrease trails stating how proficient it was to 

cover constraint i with variable j. 

As a last comment to the implementation of SP-ANTS it is worth saying that the lower bound to the 

SP was computed by means of the Lagrangean relaxation of the problem and that SP-ANTS was 

intertwined with a subgradient optimization routine, so that Step 6b is chosen. 

 

6.1 SP-ANTS at work 

 

In Table 2, we propose as an example a simple SP instance while Figure 5 shows a trace of the 

execution of our code on this case. Figure 6 depicts a graphic representation of the tree search on 

the same instance. 

 
 

Table 2. Example SP instance (first line: costs; first column: indices, other cells: constraint matrix). 

 
 

 

 

 

 19



Table 3. Step 1 of the SP-ANTS algorithm. 

    
    

SP-ANTS starts choosing first the row 2 (see box in Table 3), as it has the fewest 1s (i.e. 2). We see 

that columns 1 and 2 can cover it (see grey marks in Table 3) constituting the set E of feasible 

expansions. According to the maximal number of branches k (fixed to 2), the attractiveness function 

controls the choice of the branches in a probabilistic way. 

 
Table 4. Step 2 of the SP-ANTS algorithm. 

 
 

If the ant chooses column 1, the next row to face is row 3, as it can be covered by the smallest 

number of columns. In fact, columns 2, 3 and 6 can cover row 3 but columns 2 and 3 intersect (see 

cells (1,2) and (1,3) in Table 4) with column 1 thus resulting non-eligible for further expansion. 

Therefore, only column 6 is available. 

If the ant chooses column 2, the next row to cover is row 4 (see box in Table 4), which can be 

covered by two columns (i.e. columns 4 and 5). 

This collectively gives rise to three possible expansions ( , , ), but only two are 

further explored since k is fixed to 2. 

61→ 42 → 52 →
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Table 5. Step 3 of the SP-ANTS algorithm. 

 
 

 

Assuming that the least-cost ones are chosen (i.e. , ), being the stochastic case 

straightforward but cumbersome to describe, the remaining of the process is clear. As soon as a 

branch covers all rows, it is not further expanded (see Table 5 the final result). 

42 → 52 →

 

 

NumCols:11 NumRows:7 NumElem:20 
 
First row: 2 
Elem:1 Cost:1 
Elem:2 Cost:2 
*Branch:0 NextRow:3 TotCost:1 \----> 1 
*Branch:1 NextRow:4 TotCost:2 \----> 2 
 
Next level 
Elem:4 Cost:6 Branch:1 
Elem:6 Cost:7 Branch:0 
Elem:5 Cost:7 Branch:1 
*Branch:0 Next Row:6 TotCost:6 \----> 4 2 
*Branch:1 Next Row:5 TotCost:7 \----> 5 2 
 
Next level 
Elem:7 Cost:14 Branch:1 
Elem:8 Cost:14 Branch:0 
Elem:9 Cost:15 Branch:0 
Elem:10 Cost:17 Branch:1 
*Branch:0 Next Row:null TotCost:14 \----> 8 4 2 
*Branch:1 Next Row:null TotCost:14 \----> 7 5 2 

 

Figure 5. Trace of the execution of our code on the instance.  
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Figure 6. Graphic representation of the tree search. Dashed circles are not admissible nodes. 
Bold circles are expanded nodes. Numbers in the rectangles are the cost for the relative node. 

Rectangles on the left count the iterations. 

 

 

7 Results 

 

The algorithms described in the previous sections were implemented in Visual C++ .NET2005 and 

run on a 1.86 Pentium Centrino machine with 1 GB of memory. Tests were made on a common 

benchmark set, downloaded from OR-LIB, which was used in Chu and Beasley (1998) for 

validating the genetic algorithm. We selected a representative subset of difficult problems.  

The results obtained on SP instances are presented in Table 6. Columns represent problem identifier 
(Problem), optimal solution by relaxation cost of Linear Programming (LP opt), optimal solution by 
Integer Programming (IP opt), ACO best solution (out of at most three runs) obtained by ANTS 
(ANTS), mean ANTS CPU time (seconds) to find the solution (CPU sec), and best solution 
obtained by the GA of Beasley and Chu (1999) (BCGA). 
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Table 6. Computational results on SP instances. 

 

Problem LP opt IP opt ANTS CPU sec. BCGA 
NW01 114852.0 114852 n.f. - n.f. 
NW02 105444.0 105444 115929 1747,81 108816 
NW03 24447.0 24492 24492 271,58 24492 
NW04 16310.7 16862 16978 295,32 16862 
NW06 7640.0 7810 7810 7,30 7810 
NW17 10875.7 11115 11133 682,86 11115 
NW18 338864.3 340160 349958 558,66 345130 
AA02 30494.0 30494 36812 981,13 30500 
AA04 25877.6 26402 33231 1167,47 28261 
KL01 1084.0 1086 1096 187,88 1086 

KL02 215.3 219 229 410,62 219 
  

 

 

As a comment to Table 6, on the bad side we may notice that the performance of ANTS is still 

inferior to that of BCGA, though not much so. On the good side, we must notice that standard ACO 

(which also we implemented) is not capable of finding a feasible solution for any of listed instances, 

whereas ANTS already has a performance comparable with that of state of the art solution methods. 

Moreover, as mentioned, the computational results are still preliminary and we expect that, with a 

correct parameter setting and with a reasonable number of test repetitions, ANTS results will further 

improve. 

 

 

8 Conclusions 

 

This paper presented a new algorithm, named ANTS, designed for solving any combinatorial 

optimization problem in general, and very hard, tightly constrained instances in particular. The 

methodology includes in a standard ACO framework ideas taken from bounded enumeration search. 

Ants loose their identity, as at each step a partial solution is assigned to each ant, but the resulting 

framework can be applied also to problems for which the standard ACO framework is very 

ineffective. The computational results on instance of the very constrained Set Partitioning problem, 

albeit very incomplete, testify the viability of the approach. 
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