Universita degli Studi di Bologna

FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI
DoTTORATO DI RICERCA IN MATEMATICA
XVI cicrLo

Some Remarks in Differential and Integral
Geometry of Carnot Groups

Tesi di Dottorato di:

Francescopaolo Montefalcone

Relatore:

Chiar.mo Prof. Bruno Franchi

Coordinatore:

Chiar.mo Prof. Bruno Franchi



INDEX

Introduction ........... 1

1 Preliminaries

1.1 The geometry of Carnot groups........... ..ot 10
1.2 Connections and Curvatures on Carnot groups.............coovevenneo.... 16
1.3 Differential forms and Structure equations. ............ ... ... 21
1.4 HBV and H-Caccioppoli Sets. ... ..o 25

2 Integral geometry in Carnot groups
2.1 A Fubini type Theorem in Carnot groups. ...........c..ceeeuiuueaneenean... 31
2.2 Proofs of Proposition 2.3 and Theorem 2.4 .............. ... . ... ... .... 36

3 Slicing of HBV functions and H-perimeter

3.1 One-dimensional restrictions of HBV functions .......................... 48
3.2 Integral geometric measures, H-normal sets and H-convexity. ............ 54
4 A Santalo type formula and related topics........................... 61

5 Some Remarks about the geometry of hypersurfaces in Carnot groups
5.2 The H-perimeter form o, on non-characteristic hypersurfaces ............ 72

5.2 Geometry of 2-step Carnot groups ..........c..oeeiiiiiiiiiiiiiii i 7

6 Regular non-characteristic hypersurfaces in 2-step Carnot groups

6.1 H-adapted moving frames and structure equations........................ 84
6.2 Gauss-Green type formulae on hypersurfaces ............. .. ... ... ..., 93
6.3 Proof of Lemma, 6.20 ...... ... 103

7 1st and 2nd variation of 0, in 2-step Carnot groups

7.1 PrelImINaries . ..oovuti et et e e e 109



7.2 1st variation of o, in 2-step Carnot groups...................... .. ... 112
7.3 2nd variation of o, in 2-step Carnot groups .................... ... ..., 117

7.4 Addendum: Integration by parts and the 1st variation of o, in k-step Carnot

BLOUDS .« ottt ittt ettt 132
References. ... ... ..o 145
Ringraziamenti.......... ... . 152

i



iii

Al mio Amico Italo



Introduction

Over the last few years the project of developing the methods of Geometric Measure
Theory in very general metric spaces has been carried out along the lines originally
suggested in Federer’s book [33]. In many respects, deep contributions to this
task have been inspired and carried out by the works of Ambrosio & Kirchheim
[3, 4], Cheeger [18], David & Semmes [25], De Giorgi [27, 28, 29, 30], Gromov
[49, 50], Montgomery [77], Pansu [81, 82], Preiss & Tisér [84], just to mention
some examples.

Many of advances are somehow connected with a contemporary development
of a foundational theory of Sobolev spaces in abstract metric settings, culminated
in the paper [52].

Geometries associated with a family of vector fields and Carnot-Carathéodory
spaces are, of course, the main models of this research. On this subject, there
is a wide literature and we shall refer the reader to [9], [14], [23], [36], [37], [38],
[39, 40], [45], [57], [69], [73], [77], [80], [82], [90], [93], [94]. Clearly, this list is far
from being complete, but illustrates fairly well some of the directions followed by
the contemporary research.

The closeness of Analysis and Geometry is here particularly stressed by the
fact that, initially, these questions had arisen in the field of hypoelliptic differential
equations. In this respect, we mention the important paper by Rothschild and
Stein, [85]. We have also to emphasize the special importance of the related
studies on nilpotent Lie groups; as references we would cite the papers of Folland
and Stein [34], [35], [89] and Goodman [47] as regards the analytical aspects,
and, for instance, those of Pansu [81, 82] and Koranyi & Reimann [61] to better
appreciate the geometrical features involved in this kind of problems. See also [53],
[77] and [78] for useful comments and more detailed references.

Finally, we would stress that the mathematical interest for these largely non-
euclidean geometries, at least from E. Cartan’s work (see, for example, [15]), seems
motivated by the fact that they constitute a model for the so-called non-holonomic

physical systems, i.e. non-integrable in the sense of Frobenious theorem. See, for



instance, the very interesting survey by Vershik & Gershkovich in [95], but also [9]
and [49].

The geometric setting of this PhD thesis is that of Carnot groups, also known
in the current literature as non-Abelian vector spaces or subriemannian groups [9],
[49], [73], [77].

They constitute an important class of examples of subriemannian geometries,
and they have become the subject of many papers of geometric analysis. See, for
instance, [14], [45], [41, 42, 43], [49], [66, 67|, [73], [79], [82], [94]).

Roughly speaking, Carnot groups are nilpotent stratified Lie groups endowed
with a one-parameter family of dilations adapted to the Lie algebra stratification.
They are naturally equipped with an mq-planes distribution, constructed by left
translation of the first mi-dimensional step H of the Lie algebra stratification. This
m1-planes distribution, still denoted by H, is a subbundle of the tangent bundle of
the group whose elements are called horizontal vectors. A subriemannian structure
on them is defined whenever the fibres of this bundle are endowed with an inner
product.

The crucial role played by Carnot groups in the theory of Carnot-Carathéodory
geometries, comes from a deep theorem of Mitchell which states that the tangent
cone -in the sense of Gromov-Hausdorff - of any Carnot-Carathéodory space is a
suitable Carnot group, [73]. See also [77] for many clarifying discussions about
this point.

Since Carnot groups are homogenous groups, according to a definition given by
Stein, [89], harmonic analysis and P.D.E.’s on them have been an extensive subject
of research. Furthermore, many classical tools of Calculus of Variations have been
generalized to this context and, in particular, the theory of bounded H -variation
functions and that of H-Caccioppoli sets, [39, 41, 42], [45], [67], [79]. Notice that,
in both these notions, H means horizontal, i.e. they are notions related only to
the horizontal subbundle of the Carnot group. For a specific survey of these results
and for more detailed bibliographic references, we shall refer the reader to [5], [14],

[24], [40, 41, 42, 43], [44], [45], [65], [66, 67], [79], [83].



In the present PhD thesis we shall try to give some contributions to the study
of both integral and differential-geometric properties of submanifolds of Carnot
groups.

The thesis is subdivided into 7 sections, the first of which is foundational and
introduces many of the notions useful for the sequel.

Section 2, 3 and 4 are devoted to illustrate some new results about the Integral
Geometry of Carnot groups.

All the results given in this part of the thesis are contained in the paper Some
relations among volume, intrinsic perimeter and one-dimensional restrictions of
BV functions in Carnot groups, [75].

Section 5, 6 and 7 are mainly concerned with a differential-geometric study of
“suitably regular” hypersurfaces, particularly in the case of 2-step Carnot groups.
This part contains the results of an unpublished preprint Some remarks about the
geometry of non-characteristic hypersurfaces in Carnot groups, [76].

More precisely, in Section 2, our starting point will be a Fubini type theorem
for codimension one H -regular submanifolds (see Definition 1.38). It can be stated

as follows:

Theorem 0.1. Let G be a k-step n-dimensional Carnot group and let S C G
be a H-reqular hypersurface. By the Implicit Function Theorem 1.39 (see [42]),
without loss of generality, we may assume that S = OF globally, where E C G is
an open H-Caccioppoli set with locally C}q boundary. Let X € H, |X|g =1, be
a unit horizontal left invariant vector field which is transverse to S. Let vy, be the
horizontal X -line starting from y € S and let us suppose that ~v,(R) NS = {y}
for everyy € S. Finally, let D C 72%( be a Lebesgue measurable subset of G that is

reachable from S. Then we have
(i) Dy := v, (R) N D is Hl-measurable for |0E|p-a.e. y € S;

(ii) the mapping S > y — HL(D,) is |OF|g-measurable on S and

cw)= [ o)X aoBI) = [ D) dloxBIw)

pr (D)



where |0x E| denotes the partial X -perimeter of E (see Section 1.4).

The proof of the theorem follows by an approximation argument for H-regular
hypersurfaces, after using Proposition 2.3 which proves the result for C'-smooth
hypersurfaces. We would emphasize the fact that the main problem to obtain
these formulae is that of a good choice of projection maps. Here we use, for a
great number of integral formulae, the projections along the integral curves of
horizontal vectors of Lie algebra g, that we shall call horizontal projections.

In Section 3.1, we use this kind of results to work with one-dimensional slices
of functions. We then apply this procedure to state a characterization of the space
HBV (see Theorem 3.7). A similar characterization was proved in [96] for Sobolev
spaces in Carnot groups.

More precisely, this will be done by linking, through a horizontal slicing, the
total H-variation of a function with that of its one-dimensional restrictions. We
refer the reader to Section 3.1 for related definitions and precise statement of the
results.

In Section 3.2, we prove some integral-geometric formulae and one in particular,
which characterizes the intrinsic perimeter measure. We can write the result as

follows (see Proposition 3.14):

Proposition 0.2. [Integral geometric H-perimeter] Let U C G be open and fix
z€G. If D C G is a H-Caccioppoli set, we have then
1
001 (V) | om0 |
Sm1—

a 2/€m —1 X
! Prz. )

vark [1px ((UF) dH" " (y),
(DNU)

where Ky, —1 s the m1 — 1-dimensional Lebesque measure of the unit ball in R
Here, T,(X) denotes the generic “vertical hyperplane” through z € G and vari[](-)

the one-dimensional variation (see Section 3.2).

Afterwards, in Section 3.2, we introduce a notion of horizontal convexity, called
H -convexity, explaining some of its main features.
This notion turns out to be analogous to that recently given in [24] and in

[65]. We then prove that H-convex sets verify an integral Cauchy type formula for
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the H-perimeter (see Theorem 3.21), and then a related inequality, showing, in a
sense, this kind of convex sets to minimize the intrinsic H-perimeter.

Section 4 is devoted to state and prove a horizontal Santalé type formula and
some of its possible applications (see Theorem 4.5). We stress that our result
generalizes to arbitrary Carnot groups a result already proved in Pansu’s thesis,
[81]. This formula is strictly connected with the introduction of a measure on
the so-called unit horizontal bundle of G and with its invariance under a suitable
restriction of the Riemannian geodesic flow. We refer to Section 4 for a detailed
introduction.

We then apply Theorem 4.5 to show a geometric inequality among volume,
H-perimeter and diameter of smooth bounded domains.

As an application to Analysis in Carnot groups, we perform some explicit
computations to find two lower bounds for the first eigenvalue of the Dirichlet
problem for the Carnot sub-Laplacian on smooth domains. This will be done by
adapting some methods of Riemannian geometry inspired by the Crooke’s article,
[21]; see also [17] and [26] for a classical setting.

From now on, we shall illustrate the results of the second part of the thesis,
from Sections 5 until Section 7.

Here, the main task we try to carry out, is that of a better understanding of
how the study of hypersurfaces in Carnot groups may be approached. We shall
tract, with more emphasis, the case of 2-step Carnot groups, since in this case
a Rectifiability Theory, has been developed, due to Franchi, Serapioni and Serra
Cassano [41, 42, 43]; see also [1], [7], [66, 67].

The point of view developed in this thesis seems to be slightly different from
that of the current literature. Indeed, all the geometric structures that we consider
are supposed to be smooth, as is usually assumed in Riemannian geometry. In fact,
since Carnot groups can be regarded as Riemannian manifolds, we shall make use
of some basic tools of differential geometry such as connections, differential forms
and moving frames which allow us to describe the local geometric properties of a
suitable regular hypersurface. For an introduction to these methods and for the

definitions used, we refer the reader to Section 1.1 and 1.2, while a detailed study



of these topics will begin from Section 5.

In this way, we are able to define some local geometric invariants associated
with the H-perimeter measure as, for instance, a suitable notion of horizontal
mean curvature of a hypersurface. We stress that this notion gives the same scalar
invariant used in some recent papers, as that of N.Garofalo and S.Pauls, [44].

Since we will restrict ourselves to consider the case of regular, non-characteristic
hypersurfaces (see Section 5), we shall define a smooth differential form o,, on such
hypersurfaces, that is the horizontal perimeter form, that will play the role of the

H-perimeter measure. More precisely, we give the following;:

Definition 0.3. [H-perimeter form o, | Let S C G be a smooth, non-characteristic
hypersurface with unit horizontal normal v,,. Then the H-perimeter form o, on
S is the differential n — 1-form on S given by contraction with v, of the volume
form Q" i.e.

oyls = (v ] Q)]s (1)

For the case of 2-step Carnot groups, in Section 6.1, we shall develop a basic
differential-geometric formalism using suitable moving frames that turns out to be
adapted to the horizontal tangent space HTS of a non-characteristic hypersurface.
This will be done because we try to study the H-perimeter form o, instead of the
Riemannian area form. We refer the reader to Section 6 for precise statements,
and, in particular, to Definition 6.1, for the notion of H-adapted moving frame.

We stress that our choice to define a such H-adapted frame is motivated by the
fact that we cannot use the usual Riemannian approach (see [63], [16], [87], [88]) in
proving variational formulas concerning the H-perimeter form o, as, for instance,
divergence-type theorems on hypersurfaces or the 1st and the 2nd variation of o, .

In the same perspective, we introduce some affine connections, that turn out to
be naturally associated with a suitable decomposition of the tangent space. One
of them is the so-called horizontal connection as defined in [60] (see Section 1.2, for
these definitions). For this restricted H-connection we show a generalized version
of the classical Gauss formulae (see Proposition 6.17).

Then, the formalism of differential forms on Lie groups and the methods that



we have previously developed, allow us to deduce basic results such as integration
by parts on regular hypersurfaces. This is the subject of Section 6.2 where we
shall prove Gauss-Green type formulas on regular hypersurfaces and consequently,
Green’s type identities; see Section 6.2.

One of the main consequences of our approach is indeed the following;:

Theorem 0.4. [Divergence type theorems on regular hypersurfaces] Let G be a
2-step Carnot group with Lie algebra g = H& Z. Let S C G be a smooth immersed
non-characteristic hypersurface with unit normal vector along S denoted by N. Let
U C S be compact and suppose that the boundary OU is a smooth n—2-dimensional

Riemannian submanifold with outward pointing unit normal . Then

(i) For every smooth vector field X € C*(G, VS) we have

/MdivVSX o, + /a [ ns €0, Pu(X)) (P (N), Po(X)) } 0"

Belz

- / (X, 1) [Par (N) 1 0"
ou

(ii) For every smooth vector field X € C*(S, HTS) we have

. B n—1 __ n—2,
/udIVHTSX oyt /Z:{< Z nzC VH7X>HU _/8U<X’77> |Pr (N) o™

Belz

(iii) For every smooth vector field X € X(S) we have

/u{divvsX - H(X, VH>}UH + /u< Z nﬁcﬁyH?PH(X)>H o1

Bel>

- / (X 1) [Par(N) 1 02
ou



Here, VS denotes the vertical bundle over S, HTS the horizontal tangent bundle
over S, {Cﬁ}ﬁeb denotes a family of linear operators depending on the structural

constants of the Lie algebra. Moreover div,, and div,,, denote, respectively, the

HTS

divergence operators on the vector bundles VS and HTS. Finally, H¢ is the

scalar mean horizontal curvature along U; see Section 5 and Section 6.1.

In Section 7, we shall compute, by using the method of H-adapted moving
frames, the 1st and the 2nd variation of the H-perimeter form o, in 2-step Carnot

groups. The theorem about the 1st variation is the following (see Section 7.2):

Theorem 0.5. Let G be a 2-step Carnot group and let v : U — G be the inclusion
into G of a smooth non-characteristic hypersurface U with boundary OU. Moreover,
let v : (—e,e)xU — G be be a smooth variation of 1, with variation vector field W,
and assume that Uy = 9+(U) is non-characteristic fort € (— €). LetT'(t) = Vo, ,

be a C*° 1-parameter family of n—1-forms onU. If Iyi(o,) := 5 fu then

] Py

/ HE (P (W / HC (Pz (W), Pz(N)) o" !

+ /8 W) [Pa(W)] 0"

For 2-step Carnot groups we then prove a formula for the 2nd variation of
0,, without boundary terms, since in this case we will make use of compactly
supported vector fields. The calculation itself is quite difficult and also the result
has a quite complicated expression, at least in the general case of normal variations
(see Theorem 7.8 ).

The other interesting theorem of Section 7.3 gives the 2nd horizontal normal

variation of o,. Also this formula is stated without boundary terms. The result

reads as follows:

Theorem 0.6. Let G be a 2-step Carnot group and v : U — G be the inclusion
into G of a smooth non-characteristic hypersurface U with boundary OU. Moreover,

let ¥ :(—€,e) xU — G be a smooth normal H-variation of 1, with variation

8



vector field W = wy, € CP(G,H) such that spt(W) NU € U. Assume that
Uy = 94(U) is non-characteristic for t € (—e,€) and let I'(t) = ¥7o,, be a C*
1-parameter family of n — 1-forms on U. If I} (0,,) == % fuf(t)}tzo, then

o) = |

[{ = wlamge s (040 = Iolan) - 080

« U/2 (6% .
P S Vgt €y g Y 1€, B = w0y Lo

a€cls aclz

see Section 7.1. Here 75 = Xo — (Xa, N)N (@ € Iy = {my + 1, ...,n}).

The Addendum of Section 7 is then devoted to prove, by using a different
method, integration by parts theorems on regular non-characteristic hypersurfaces

and the 1st variation formula for o, in the general case of k-step Carnot groups.
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1 Preliminaries

1.1 The geometry of Carnot groups

In this section we recall the main notions about Carnot groups, introducing also
the main geometric structures as connections and differential forms that we will
use throughout this thesis. As a basic references for the topics developed in this
section we cite [9], [20], [53], [54], [59], [49], [64], [71], [77], [92], [95].

Let G be a n-dimensional, connected and simply connected Lie group over
R with group law denoted by e. Let X(G) be the set of all smooth sections
of TG, i.e. X(G) := C®(G, TG). As usual, any z € G defines smooth maps
L., R, : G — G, called left translation and right translation, respectively, by
Ly(y) :=zey, R.(y) :=yex, y€<G. Let g denote the Lie algebra of G, i.e. the
linear subspace of X(G) of all left invariant vector fields of G, endowed with the
bracket operation [-,-] : g x g — g. This algebra is canonically isomorphic to
T.G, i.e. the tangent space at the identity e of G, via the identification of any
left invariant vector field X of G with its value X, at e. Here the isomorphism is
explicitly given by Ly, : T.G — T,G, i.e. the differential of the left translation
by x at e, so that hereafter we will think of g either as the vector space TG with

the rule composition [-,-], as well as the Lie algebra of vector fields of G.

Remark 1.1. Since the tangent space at any point x € G is completely determined
by the structure of the tangent space at the identity e € G, we shall use the following
notation: if K is a vector subspace of g = T.G we denote by K, its corresponding
image through Ly, in T.G and by W the smooth subbundle of TG whose fibre at
the point v € G is K.

For any X € g we shall denote by v, : R — G the one-parameter subgroup of
G generated by X, or equivalently, the integral curve of X starting at the identity
e of G.

Now let exp : g — G denote the Lie group exponential map defined by
exp (X) := 7, (1), for X € g. It is well known that, in general, exp is a diffeomor-

phism of an open neighborhood Og of 0 in g onto an open neighborhood O, of e
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in G, but since G is connected and simply connected, we have that exp is a global
diffeomorphism of g onto G. Therefore we denote by log : G — g its inverse. If
X is a left invariant vector field of G and x € G, then v, denotes the integral
curve of X starting from x. We remark that v, is given by right translation of z
by exp (tX), t € R. Now if {ey,...,e,} is a linear basis of g = T.G, then the corre-
sponding coordinates in G, given by the inverse log of the exponential map, will
be called a system of exponential coordinates in G or also, canonical coordinates of
the first kind. The differential of the exponential map can be described, in general,
as follows [54]:

1 _ e—adX
CadX
Here 1—e~# /A stands for 7 (—A)"/(h+1)!. Moreover ad X denotes the linear
transformation of g given by ad X (Y) = [X,Y].

dexp 5 = d(LeXpX>6 o (X € g). (2)

Henceforth we assume that G be endowed with a left invariant Riemannian
metric. We stress that, fixing some basis {ei,...,e,} of the vector space g, there
is only one left invariant Riemannian metric on G such that the corresponding
left invariant vector fields (X1,..., X,), (where (X;), = (Lz)«ej, j = 1,...,n) are
everywhere orthonormal; see [71]. More precisely, we will fix on G the left invariant
Riemannian metric obtained by left translation of the Euclidean metric (-,-) on g

that makes eq, ...,e, an orthonormal basis, i.e.

(X,Y) = (X.,Y.), VX, YeXx@G). (3)

For each positive integer i, we set g’ := [g, g'"!], where g! := g. We say that
g is nilpotent if g = {0} for some positive integer i; in this case the center of g
contains g~ !. The Lie algebra g is k-step if g"*1 = {0} and g* # {0}; in this case
we say that the Lie group G is k-step.

For a k-step nilpotent Lie group G the group law e is completely determined,
by the Campbell-Hausdorff formula, from the structure of g, [20, 92]. Indeed we
have that

exp(X)eexp(Y)=exp(P(X,Y)) VX, Yeg,

11



where P : g X g — g is defined by the following identity

PX,Y)=X+Y+ %[X, Y]+ %[X, X, Y]] - 1—12[Y, (X, Y]]+ R(X,Y).

Here above R(X,Y') denotes a formal series of brackets of length at least 3 and at
most k — 1.

Remark 1.2. In exponential coordinates, the group law e of G turns out to be a
polynomial function. Indeed, let x, y € G and X =Y " | xie;,, Y = 1" yie; €9
be such that v = exp(X) and y = exp(Y). Then z = x ey if, and only if,
there exists Z = Y ' | zie; € g such that z = exp(Z) and Z = P(X, Y). Now,
setting P(-,-) = exp (P(log(-),log(+))), we get P(x,y) = x o y. Note also that,
in exponential coordinates, the identity e of G is given by e = (0,...,0) and if

r=(21,....,7,) €G, then 271 = (—x1, ..., —x,). Hereafter, we shall set
P(z,y) =z +y+ Qz,y),

where P = (P1,...,Pn) and Q = (Q1,..., Q) are G-valued polynomial functions

on G, written in exponential coordinates, [20], [78].

A k-step nilpotent Lie group G is stratified if its Lie algebra g admits a k-step

stratification, i.e. there exist linear subspaces Vi, ..., Vk of g such that
g=Vie..oV [Vi,Via]=V, fori=2,...,k and Vi = {0}. (4)

In this case we set H := V; to denote the horizontal layer of the stratification of

g. Note that, by iterated brackets, H generates the whole Lie algebra g.

Definition 1.3. [Carnot groups] We say that a finite-dimensional, connected,

simply connected nilpotent Lie group is a Carnot group if its Lie algebra is stratified.
Warning. Throughout the thesis, unless otherwise mentioned, G will denote a n-

dimensional Carnot group with Lie algebra g, and the number k its step.

Any Carnot group can be naturally endowed with a family of Carnot dilations

{0x(21,.. ., 2n) = (A" x1,...,A\*xy) >0 To construct these dilations we first

12



consider the family of linear operators 5 : g — g, t € Ry, which act by scalar
multiplication by ¢* on V; for i = 1, ...,k; then we extend these operators to group

automorphisms by setting
n(x1y.woyxn) = (A2, ..., A% xy,) = exp o s olog : G — G.

Hereafter, we identify g = T,G with R™ and we choose as a basis, the standard
one of R™, denoted by {ey,...,e,}. This basis can be adapted to the stratification
of g as follows. First, we set m; :=dimV; and h; :=my+---+m;, fori =1,...,k,
where hg := 0 and hy := n; then we assume that €hj_1+41y---,€h; IS & basis of V;

foreach j =1,... k.

Remark 1.4. If x = exp (X) (X =Y/, x5 €;), we get

o = 0p(x1, ..., xy) = (t* 21, ...y txy) V2 G, t >0, (5)

where a; € N 14s called the homogeneity of the variable x;, and we have that

aj =1 whenever h;_1 +1 < j < h;. Hence
l=o1=...=am, <am+1=2<..<a,=k

Following [89], we note that G is a homogeneous group with respect to Carnot
dilations. Thus, Q := Zleidim (V,;) denotes its homogeneous dimension.
We have that P; and Q; are homogeneous polynomials of degree a; with respect to
{0t}t>0, de. Pi(dpw, bry) = tYPi(x,y), Qi(0ex, 6y) =t Q;(x,y) for any x,y € G.
Moreover the following items hold, [42, 43], [79]:

(Z) Ql(x>y) == le(l‘,y) =0;

(11) Qj(x,0) = Q;(0,y) =0 and Qj(zx,z) = Qj(xr,—x) =0 for my <j <

n;
(i) Qj(x,y) = Qj(x1,-. s Thy 1 Y1s--- Yn,) f 1<i<k and j<hy

(v) Qj(z,y) is a sum of terms each of which contains a factor (z;y; — x1y;) for

some 1 <i,l < j, whenever j > mj.

13



Starting from the basis {e1,...,e,} of g, a smooth global frame (X1, ..., X,,) for
G, is defined by
(Xj)z = Lysej, VT EG, j=1,..,n. (6)

Note that, putting A(z) := [Ai;(2)]( j=1,..n} (¥ € G), where

87% JC,O
Aij(x) = ;y, )
J

we get that A(z) is the n x n-matrix representing, in exponential coordinates, the

pushforward associated with L.

Remark 1.5. Each left invariant section of the frame (X1, ..., X,,) have polynomial
coefficients and it can be written as follows, [43], [79]:

Xj(x)=ej+ > Ajx)e; Vji<h, (j=1,...,n) (7)

i>h;

If 5 < hy, we get that
Aij(r) = Agj(21, oy mh,_,), Aijle) =0, Ay(de(z)) =t Agj(x).

Moreover, X; turns out to be homogeneous of degree o with respect to Carnot

dilations, i.e.
Xj(ody)(x) =t X;(p)(6x) Ve CPG), VeeG, t>0.

According to Remark 1.1 we shall denote by H the horizontal bundle for G,
that is, the smooth subbundle of the tangent bundle TG given by H := [],cq Hz,
where H, denotes the horizontal space at the point x € G, i.e. H, = L., H. Here
the bundle projection map 7, : H — G is just the restriction to H of the natural
projection map w of TG. A subriemannian structure on G is given by endowing
each fibre of H with an inner product (-,-)g : H x H — R. In this thesis we shall
assume that (-,-)y := (-,-)|g and we denote by |- |, its associated norm.

A curve v C G is horizontal if its tangent vector < is everywhere tangent to H.
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Definition 1.6. [9] The Carnot-Carathéodory distance of any two points
xz,y € G is given by

1
oo,y i=int [ [0t
0
where the infimum is taken over all horizontal curves 7 : [0,1] — G, joining x to

y, i.e. ¥(0) =z, v(1) =y.

Since the rank of the Lie algebra of vector fields generated by (X1i,...,Xm,)
is n, Chow’s Theorem, [9, 49], implies that the set of all horizontal curves joining
two different points is not empty and hence d. is a metric on G. Moreover, d.
induces on G the same topology as the Riemannian one and is well behaved with
respect to left translations and group dilations, i.e. d.(z @ x,z @ y) = d.(z,y) and

de(0¢(2),0¢(y)) = tde(x,y) for all x, y, z € G, t > 0.

Remark 1.7. Because the special importance of the first layer of the Lie algebra
H(= Vi =2 R™), in the light of what we have said here above, we say that any
fized orthonormal frame (X1, ..., Xm,) for H, is a generating family of G

The following Remark 1.8 says that the metric space (G, d.) can be suitably
approximated by means of a family of Riemannian metrics on G preserving H, as

proved by Pansu, [81].

Remark 1.8. Ift € Ry, let us set

[NIE

1
g = 25)‘@1’ - ,l‘n) = ()\almla .. -7Aanxn)*<'7 > ’

where 0x(x1,...,2Zn) = (A z1,. .., X2 )* (-, >% denotes the pull-back by Carnot
dilations of the metric (,)% on G. Note that {g:}1>0 defines a family of left-
invariant Riemannian metrics on G. We may think of {(G, ¢)}i>0 as a family
of metric spaces. This family {(G, g:) }+>0 converges, in the sense of Gromov-
Hausdorff convergence (see [6], [49], [13], [T7], [81]), as t — 400, to the metric
space (G, de).

Theorem 1.9. Let ¢ : [0,T] — G be an horizontal curve with tangent vector

at each point given, in canonical coordinates, by a = (a1, ...,am,,0...,0). Then
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there exists the metric derivative of ¢ for Ll a.e. t € [0,T] and it is equal to
la| = y/a? + ...+ a2, , i.e.

1C|(t) := liH(l) de(ot " = la(t)| for L' — a.e. t €[0,T).

Moreover, if Var(() denotes the total variation of ¢ with respect to the cc-distance

dc, then T
Var(() = / la(t)| dt > H1(C(0,T7))

and the equality holds if and only if  is injective.
Proof. The theorem follows by Theorem 4.4.1 of [6] and Theorem 1.3.5 of [78]. [

Now let v be an integral curve of a fixed horizontal left invariant vector X € H
and let a = (a1, ...,am,) € R™ (= V} = H) denote the vector of coordinates of X,
i.e.

mi
Xy = E Ly waze;;
=1

since |a| is constant, for all K C 7 compact we have
HE) = [ fa®]de=al £ () ®
7 H(K)

where H! denotes the 1-dimensional Hausdorff measure with respect to the cc-

distance d..

1.2 Connections and Curvatures on Carnot groups

Here below we introduce the notion of connection and that of covariant derivative.

As a general reference for connections we refer the reader to [16], [54], [59], [88].

Definition 1.10. [54] An affine connection on a C> manifold M is a rule V
which assigns to each X € X(M) an R-linear map Vx : X(M) — X(M) called
covariant differentiation with respect to X, such that for all X, Y, Z € X(M) and
all f, g € C®(M) we have:
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(1) VixigvZ = fVxZ +gVyZ;
(2) VxfY = fVxY + (X[)Y.

If M is a Riemannian manifold with metric denoted by (-, ‘>, then V is called the
Levi-Civita connection on M if for every X, Y, Z € X(M), satisfies the following

further conditions *

(3) XY, Z) =(VxY,Z) +(Y,VxZ);
(4) VxY = VyX = [X,Y].

Whenever we shall work with a Carnot group G endowed with the metric (-, >
defined before, we shall denote by V its left invariant Levi-Civita connection. We

explicitly mention that (see, for instance, [54]), if X, Y. € g(= T.G), we have
(Vx,Y)e = Ly (Vx.Y)e.

The next proposition describes the Levi-Civita connection for general nilpotent
Lie groups equipped with a left invariant Riemannian metric, so that it applies as

well to the case of Carnot groups; see, for instance, [71] and [31].

Proposition 1.11. Let G denote any nilpotent Lie group endowed with a left
invariant Riemannian metric denoted by (-,-). Then the Levi-Civita connection V
of G satisfies the following formula
1

(VxY,2) = S (([X,Y],2) = ([, 2, X) +{[Z, X],Y)) (9)
for all left invariant vector fields X, Y, Z € X(G). Moreover, let {e1,...,e,} be an
orthonormal basis of g (= T.G), let (X1, ..., X,) be the associated frame on G, and
let cfj := ([es, €], e) denote the structural constants of g. See also Section 1.3,
equations (15) and (16). Then

(Vx, X, Xg) =

1 A . o
= §(cf] — iy + ) Vi, j,k=1,...,n. (10)

'We stress that, on any Riemannian manifold, there exists one and only one affine
connection V satisfying (1), (2), (3) and (4) (see [54, 59, 88]).
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Notice that the above equation (10) can be rewritten as follows

1 . .
Vi, X; = 5(cfj — +c,’ﬂ)Xk Vi, j=1,..n (11)

If G denote a nilpotent Lie group with Levi-Civita connection V, we remind that,
in general, the torsion T and the curvature R of V are defined as follows:

forx € G, let
T:T,G x T,G — T,G, R: T.G x T,G x T,G — T,G,
denote the multilinear maps defined by

T(fa 77) = VnX - vfy - [Y¢ X]\ac? (12)
RE)C =V VxZ — VeVyZ — Viy.x),. Z, (13)

where £, n, ( € T,G and X, Y, Z are extensions of &, n, (, respectively, to vector
fields on a neighborhood of x. Obviously, since V is the Levi-Civita connection of
G, by item (4) of Definition 1.10 it follows that T is identically 0. Moreover the
curvature tensor R can be explicitly computed in terms of structural constants of
g. This can be done using (11) and the definition of R, as in [71]. This method
allows us to compute also the sectional curvature K(§,n) of two orthonormal vectors
&, n € T,G. For instance, for a nilpotent Lie group G, according to [71], by using
the previous notation of Proposition 1.11, for every ¢, j = 1,...,n, the sectionals

curvatures are given by

n
Lk k ' j Lk j j k ‘ j i J
= [ -3 cl-j( — ¢+ C + c,il) +7 <cij — C + C,7€Z> (cij + Cip — 017”) + cfmc-,’w}
k=1
We now introduce a general definition of restricted connection, as suggested in
[60]. We only mention that such connection was originally defined and used by E.

Cartan in his works on non-holonomic geometries; see [15].
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Definition 1.12. Let M be a Riemannian manifold and let (E, 7, M), (F, 7., M)
be smooth subbundles of TM. An E-connection VEF) on F is a rule which

assigns to each vector field X € C*°(M, E) an R-linear transformation
v e (M, F) — C®(M, F)

such that for all X, Y € C®°(M, E), for all Z € C*(M,F) and all f, g € C*(M)

we have
(1) VW vz = o007z 4 g0 7,
(2) V& py = (vE Yy (x )y

If E = F we shall set VE := VEE) while if E = TM we set DF := V(TMF)

and we call D¥ a full connection on F.

Remark 1.13. The above definition enables us to work with many connections.
We emphasize that, if E = TM, then the definition of full connection DY on F
recaptures the usual notion of connection on a vector bundle (see [72]), with the
further hypothesis that this vector bundle is a vector subbundle of TM. In facts,
the difference between these definitions is that in the latter we may covariantly
differentiate along every curve of M, while in the first one, we may consider only

curves that are tangent to the subbundle E.

Remark 1.14. Note that if (F,m,,M) is a subbundle of TM, then from any
(full) connection ¥V on TM we may get a full connection D¥ on F as follows:

denoting by Pr the projection operator on F, we set
DYY = Pp(VxPr(Y)) VY X,Y € X(M).

Clearly, if we have a decomposition of the tangent space given by TM = EGF,
the previous construction holds as well for both the layers E and F'; see [49], [60].
In the sequel we will use some of these notions to get computations in the setting

of Carnot groups. Now we may give the following:
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Definition 1.15. Let G denote a Carnot group and let H its horizontal subbundle.
Then, using the notation of Definition 1.12, we will denote by V# the H-connection
on H and by D the full connection on H. Moreover if 10 € C*®(G), using the
subriemannian metric on H, (-,-)g, we define the horizontal gradient of 1,
also denoted by the symbol V1), as the (unique) left invariant horizontal vector
field such that (VHY, X)g = dip(X) = Xo (VX € H). Finally, we define the
horizontal divergence of X € H, denoted by div, X, to be the function given
at each point z € G by div, X := Trace(Y — VEX) (Y € Hy).

Note that, with respect to any orthonormal frame (Y7, ..., Yy, ) for H, we have

mi
div, X = (VEX,Yi)p.
=1

In particular, with respect to the frame (X, ..., X, ), by using equation (10) and
the stratification hypothesis on g (see also Remark 1.22 below), we get that

mi miy
div, X = 3" X;(xy), (X =Y X)
=1 =1

Finally, we remind some elementary definitions and results about calculus in
Carnot groups.

We say that a map T': G — R is H-linear if is a group homomorphism of
(G, o) onto (R, +) and if it is positively homogeneous of degree 1 with respect to
the positive dilations of G, i.e. T(0yz) = A\T'(z) for every A > 0 and =z € G. The
R-linear set of H-linear real valued functionals is denoted by Ly; it is endowed
with the norm ||T||z, := sup{|T(x)| : d.(x,0) < 1}. For a fixed left invariant

frame (X1,...,X,) of G, every H-linear map can be represented as follows, [43].

Proposition 1.16. A function T : G — R turns out to be H-linear if, and only
if, there exists a = (a1, ...,am,) € R™ such that, whenever y = (y1,...,yn) € G,

one has T(y) = > a;y;.
Definition 1.17. Let U C G be open and x¢g € U. We say that f : U — R s

Pansu-differentiable at x( if there exists an H-linear map T such that

. f(Lag(0xy)) — f(wo)
Alir& A =T
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uniformly with respect to y belonging to a compact set in G. In particular, T is

unique and we shall write, in the sequel, dg f(xo)(y) := T (y).

Remark 1.18. This definition depends only on G and not on the particular choice
of the canonical generating vector fields. If U C G is open we denote by C}I(U)
the set of all continuous real functions in U such that the map dyf : U — Ly is
continuous in U and by C}{(U, H) the set of all sections ¥ of H whose canonical
coordinates 1; belongs to CL(U) (5 =1,...,m1). We remark that

C'(U) & Cu(U).

In general, the inclusion is strict. We say that f is differentiable along X;
(j=1,...,m1) at zg if the map A\ — f(Ly,(dxre;)) is differentiable at X = 0 where
e; is the j-th vector of the standard basis of g (= T.G = R").

Notation 1.19. For a fized x, € G we set
mi

on (y) = Zyj Xj(mo)
j=1

fory=(y1,...,yn) €G. The map y — Il (y) is a smooth section of H.

Proposition 1.20. [79] If f is Pansu-differentiable at x,, then f is differentiable
along Xj at z, (j=1,...,m1) and

d f(zo)(y) = (V' [, 1la ()1, Yy €G. (14)

1.3 Differential forms and Structure equations

We now introduce the main features of differential forms on Lie groups which can
be found, for instance, in Helgason’s book, [54]; see also [16, 33, 59, 64]. All that
we will state in the sequel for general or nilpotent Lie groups applies as well to the
case of Carnot groups. From now on let A*(G) denote the bundle of alternating

covariant k-tensors on G, i.e.

A (G) = [] AH(T.G).

zeG
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The sections of A¥(G) are called differential k-forms. We say that a differential

form w on G is left invariant if Liw = w for all z € G. Here the map
Ly T,G— T7 G, (yeG)

denotes the pullback associated with the left translation L,. The right invariant
differential forms are defined analogously. Moreover, a differential form is called
bi-invariant if it is both left and right invariant.

A smooth global coframe (w1, ...,w,) for G is determined by the condition
wi(Xj) = 63 for i,5 =1,...,n, where (X1, ..., X;,) is the smooth global frame for G
defined before, and 5{ denotes the Kronecker delta. By the previous definitions, it
follows that this coframe (wy, ...,wy,) for G, automatically, turns out to be adapted
to the stratification of g. Now let g* denote the dual space of the Lie algebra g and
let {e},...,e} } denote its basis. Obviously, g* = T¢G = span{ej, ..., e} } and using
Cartesian coordinates (z1, ..., z,) of g with respect to the basis ey, ..., e,, we may
notice that e/ = dz; (i = 1,...,n). Moreover, let cfj (i, 4, k = 1,...,n) denote the

structural constants of the Lie algebra g, defined by
n
e, €] := Zcfjek. (15)
k=1
Notice that the structural constants cfj satisfy the relations:

n
(i) cf;+cf; = 0; (i) > et + el + cigel, = 0. (16)
j=1

The following proposition introduces the so-called Maurer-Cartan equations (see

59, 54)).

Proposition 1.21. Let wy, ...,w, be the global coframe for a Lie group G uniquely
determined by requiring that w;(X;) = (52‘7 (i,j =1,...,n), where X1, ..., X,, is the
global frame for G. Then

1 n
dwy, = —3 'Zl cfj wi A wj. (17)
=
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Remark 1.22. [The case of Carnot groups] In the case of Carnot groups, the
stratification hypothesis on the Lie algebra g implies that, if e; € V. and e; € V,
then

les, €5] € Viyps.

Therefore
cZ;. 7&0:>h7‘+5_1 <k<h’!’+8+1 VZ’ j, k:L...,n.

In particular, c,fj = czjj =0 Vi, j=1,..,n. Moreover let k be such that

hi_1<k< hl+1.

Then cfj # 0 only if, for any i,j such that hy—1 < i < hyy1 and hs—1 < j < hgt1,
we have that | = r+s. This means that, in the above formula (17), we may rewrite

the summation as

dwy, = —% lgnghll cfj wi ANw;  whenever hi_1 <k < hyyq. (18)
Remark 1.23. The 1-forms w; can explicitly be determined in terms of structural
constants on any Lie group, [54]. More precisely, let (x1,...,x,) be the Cartesian
coordinates of g with respect to the basis {e1,...,e,} and let X = 37" | x;e; (note
that (x1, ..., xy) is the n-tuple of the exponential coordinates of x = exp (X) € G).

Then, there exist functions
Blh(l‘) :Bih(l‘l,...,l‘n) € COO(Rn) (i,h: 1,...,1’L)

such that (w;)e = > p_1 Bin(z)dzp, and

Baa) = (@ia(dexpx(en)) = (i)e (o (en))
—ad X

1-—e
= d (7 e )
i ad X (en)
For nilpotent Lie groups, and thus for Carnot groups, the formal series of linear
operators 1 — e~24X /ad X have only a finite number of non 0 terms, so that it can

be explicitly computed. This will be done for the case of 2-step Carnot groups in
Section 1.3.
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Notation 1.24. Throughout the thesis, if h > 0, then H" will denote the h-
dimensional Hausdorff measure associated with the Riemannian metric of G, while
HP and S will denote, respectively, theh-dimensional Hausdorff measure and the
h-dimensional spherical Hausdorff measure, obtained from the cc-distance d. using
Carathédory’s construction, [33]. We also denote by LP (p € N) the standard

p-dimensional Lebesgue measure on RP.

The following remark explain what is the canonical volume measure on Carnot

groups. This construction holds as well for nilpotent Lie groups.

Remark 1.25. [Volume measure on groups| Since G is a k-step nilpotent Lie group
equipped with exponential coordinates, it follows that, if x € G, left translations L,
and right translations R, are maps whose jacobian determinants are identically
equal to 1. Moreover, the exponential map exp : g — G takes Lebesgue measure
on g to a left invariant (Haar) measure dV™ on G. This measure turns out to
be also right invariant (see [20, 64]). Therefore, Carnot groups equipped with the
measure dV"™ are unimodular. Since G is naturally identified with R™, throughout
the thesis we shall use indifferently the symbol dV™ or that L™ to denote the volume

measure on G.

We may restated the previous remark in terms of left invariant differential
forms. Indeed, the left invariant volume element of G is just the differential n-
form defined by

Q" :=w A ... Awy € A(G), (19)

so that Q" turns out to be a bi-invariant n-form, usually called the Haar volume
form on G. We explicitly remark that Q" is the Riemannian volume element with
respect to the chosen Riemannian metric (-,-) on G. From now on we shall either
use the notation d V"™ or 2" to denote the volume form of G. Note also that a deep
theorem of Mitchell [73] states that the Hausdorff dimension of a Carnot group

with respect to the cc-distance d. equals its homogeneous dimension Q.

Remark 1.26. We stress that since SCQ - i.e. the Q-dimensional spherical Haus-

dorff measure of G- is a Haar measure of G and since, up to scale, there is only

24



one Haar measure on locally compact Lie groups, we must have
dvV"LB=k,-S¢LB VDBeBG), (20)

where kg, is an absolute constant. Hereafter B(G) will denote the family of Borel
subsets of G.

We finally introduce a specific notation for the class of hyperplanes which
are, in a sense, orthogonal to the horizontal distribution, the so-called wvertical
hyperpanes. These hyperplanes will be very useful in some mean integral formulae

stated in the sequel.
Notation 1.27. If z € G and X € H, we set
T.(X) = La(exp (X)) = L{y € G : (Tle(y), Xe)m, = 0}, (21)
where X is the orthogonal complement of X, in g. Explicitly, if X, = 27:11 aje;j,
mi
.(X) = {y €G: Z[yj —zjla; = O}.
j=1
We call Z,(X) vertical hyperplane through = and orthogonal to X and we

denote by V, the family of all vertical hyperplanes through x, i.e.

V, = {IZ(X) : X e H}

1.4 HBV and H-Caccioppoli sets

For the classical theory of BV functions and Caccioppoli sets we shall refer the
reader to [2], [32] and [97], while many generalizations to metric spaces as Carnot-
Carathéodory ones or Carnot groups we may cite [1], [3], [4], [14], [39, 41, 42, 43],
[45], [73], [78], [79]. We shall make now a quick overview of main definitions and

properties that will be used later on.

Definition 1.28. Let U C G be open and f € L'(U). Then, f has bounded

H -variation in U if

IV FI(U) = sup { /deiVH (¥)dL" - ¢ € Cy(U, H), |y] < 1} <oo,  (22)

25



where |VH f|(U) is called H-variation of f in U. We denote by HBV (U) the
vector space of functions of bounded H-variation in U and by HBV 1,.(U) the set
of functions belonging to HBV (U) for each open set U € U.

Theorem 1.29. [Structure of HBV functions] If f € HBV(U) then |VH f| is
a Radon measure in U and there exists a |VH f|-measurable horizontal section

of: U — H such that |o¢| =1 for V¥ f|-a.e. x € U and

/fdivH<w>d£"=/<¢,of>HdVHfr v g € CY(U, H). (23)
U U

Moreover VE can be extended as a vector valued measure to functions in HBV

setting
Vi f = —ap LIV = (= @ LIV o —(o)m LIVAS]), (24)

where (o¢); (j = 1,...,m1) is j-th component of the vector valued measure oy,

with respect to the horizontal frame.

The next results hold for general Carnot-Carathéodory geometries associated

with vector fields as proved in [39], [45].

Theorem 1.30. [Lower semicontinuity] Let f, fi € L'(U), k € N, be such that
fx — f in LY(U); then

(V4 FI(U) < Timinf [V £ (U). (25)

Theorem 1.31. [Compactness] HBV 1o.(G) is compactly embedded in Lj, (G) for

1<p< %, where () denotes the homogeneous dimension of G.

Definition 1.32. Let U be an open subset of G; then a measurable set E C G
has finite H-perimeter in U, or is a H-Caccioppoli set in U, if its characteristic
function 1g belongs to HBV ,.(U). In this case we call H-perimeter of E in U

the (Radon) measure given by
|OE|p := |Vi1g| (26)
and we call generalized inward G-normal along OF in U the vector valued measure

VE = —01,. (27)
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Remark 1.33. The H-perimeter measure is invariant under group translations,
1.€.
|0E|n(B) = [0(LeE)|g(LeB) V2 eG V BeBG) (28)

indeed div,, is invariant under group translations and the Jacobian determinant
of Ly is 1. Moreover the H-perimeter is (QQ — 1)-homogeneous with respect to the

intrinsic dilations, i.e.
0(0:B)|1(0,B) = t97"0E|u(B) ¥ B € B(G). (29)
This fact can be easily proved by a change of variables in formula (22).

Proposition 1.34 ([14]). Let E be a H-Caccioppoli set in U having C'-smooth
boundary. Then

0E| 5 (U) = VX1, N2+ ..+ (X, N)2dH" L, (30)
OENU

where N is the unit outward normal along OF. In this case we have

(VE) _ (<X1m7N£E>7"'a<Xmlz?Nm>)
S VX N ot (Xony,, Ni)?

VeeodENU.

The regularization technique of convolution with mollifiers enables us to obtain
approximation results for both Sobolev and HBV functions in Carnot groups as
well as in more general contexts; see [39], [45]. To this end we introduce a family
of spherically symmetric mollifiers J. (¢ > 0) by J(z) = e "J(e 'z), where
J e CPR™),J >0,spt(J) C{zeR":|z| <1} and [, JdL" = 1.

Lemma 1.35. Let U C G be open and f € HBV (U). If UeUis open and
|V f|(8U) = 0, then

lim [V (J x [)|(U) = V7 F|(U). (31)

Theorem 1.36. [Density for HBV functions] Let f € HBV (U); then there exists
a sequence {fj}jen C C®(U) N HBV (U) such that

lim (4= fly =0 end lim [VEGI0) = [9UF©). (32)
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The following coarea formula for HBV functions is a key tool to understand
the interplay between HBV functions and H-Caccioppoli sets. For a proof see [45],
39, 41], [67], [79].

Theorem 1.37. Let f € HBV(U) and set E; := {x € U : f(z) > t} fort € R.
Then

(i) E; has finite H-perimeter in U for L1-a.e. t € R;
(it) [V fI(U) = [23 [0E|(U) dt.

(iii) Conversely, if f € L*(U) and fj;o |OE:|(U)dt < oo, then f € HBV(U) and
(ii) holds.

As in R™ a C'-smooth hypersurface can be regarded as the zero set of a function
f + R® — R with non-vanishing gradient, in Carnot groups we must follow the
same approach in defining the so-called H -regular hypersurfaces; see [41, 42, 43].
This choice is motivated by the fact that it is not possible to follows Federer’s

approach to rectifiability (see [4], [41, 42, 43], [67]).

Definition 1.38. [42/ S C G is a H-regular hypersurface if for every z € S
there exist a neighborhood U of x and a function f € C}{(U) such that

(i) SNU ={yeU: f(y) =0};
(ii)) Vif(y) #0  VyeU.

The following important Implicit Function Theorem was proved in [42].

Theorem 1.39. [Implicit Function Theorem] Let 2 C G be open such that 0 € Q;
let f € CL(Q) be such that f(0) =0 and X1 £(0) > 0. Put

E={xzecU: f(z)<0}, S:={zeQ: f(z) =0}
and for h, 6 > 0 set Jp, :== [—h, h] and
I={6=(&,....&) eR" G <6,j=2,...,n}.
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If € € R and t € J), we denote by ’y(lo e)(t) the integral curve of the horizontal
left invariant vector field X1 € H at the time t issued from

(0,) € {(0,n) eG:ne R},
i.e. 7(10 o (t) = exp[tX1](0,€). Then there exist 6, h > 0 such that
n—1 1

is a diffeomorphism of a neighborhood of Jp x I5 onto an open subset of R™ and
denoting by U € Q the image of Int{Jy x Is} under this mapping the following

statements hold:
(i) E has finite H-perimeter in U;
(ii)) OENQ=SNU;

(iii) if vg is the generalized inner unit normal of E then

Vi f(x)
ve(x) Y f@a Ve SN, lvelm, for |OE|g—a.e.x € U.

Moreover there exists a unique continuous function ¢ = ¢(&) : Is — Jp, such that,
setting ®(&) = 7(10,5)@5(5)) for € € Is, we have

(iv) SNU ={x €U :x=®), € Is};

(v) the H-perimeter has the following integral representation:

VI XS @)
oEn) = | = e

We end this subsection with the definition of partial perimeter along an hori-

de.

zontal direction, while in the next Lemma 1.41 we explicitly characterize it.

Definition 1.40. Let ) be open and let X € H. Let E' be a Lebesque measurable

subset of G such that L"(ENQ) < oco. Then we say that E has finite X -perimeter

|0x E|(2) := sup {/ 1p XedL": p € CHQ), |p| < 1} < o0 (33)
Q
and we call this quantity the X-perimeter of E in Q ; see also [39], [14].
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We will see in Section 3.1 that this notion agrees with that more general of
X-variation of a L' function; see, for instance, Definition 3.1 and Remark 3.2

below.

Lemma 1.41. Let ) be open and let X € H. If E is a H-Caccioppoli set in €,
then

OxEI(®) = [ (X,vi)u] d 0E] .
Q
Proof. Firstly, putting ® := ¢ X € H, where ¢ € C}(Q2), |¢| < 1, we get

/1EXg0dC":/1E<VHg0,X>HdC":/1EdivH¢dC”
Q Q Q

:_/Q<<I>,VE>deaE|H:_/QSO<X,VE>deaE|H,

Since for every x €  we have ¢ (X,vp)g < |[(X,vg)n|, from Definition 1.40 it
follows that

0% E|(9) < / (X, v} | OB .
Q

Now we shall prove the reverse inequality. Let ¢ > 0 and set

Je * (1Q€sign(X, VE>H)

27
\/62 + (J6 * 1o, sign(X, I/E>H)

where, as above, J, is a Friedrichs’ mollifier. Using standard properties of mollifiers
we get that (. € C5°(Q), || < 1, and (¢ — 1gsign(X,vg)y for L -ae. z € G,

as € — 0. Finally, from Definition 1.40 together with the previous computations

1
Qe = {l‘ € Qx| < —, dist(z,00Q) > 6}, Ce =

€

and Fatou’s Lemma we get

0 E|(Q) > nmionf/ X, vp) i d|OE|n
€—> Q

>/limi(§1f (E<X,1/E)Hd|8E]H:/ (X, ve)n|d|OE|g.
Q ¢ Q
O

Remark 1.42. From Lemma 1.41 and the regularity of the measures |OF|g and

|0x E|g one gets equality of measures, i.e.

OxE|LB = |(X,ve)u| - |10E|gLB ¥ B € B(G).
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2 Integral geometry in Carnot groups

2.1 A Fubini type Theorem in Carnot groups

Let S C G be a fixed C'-smooth hypersurface. By the classical Implicit Function
Theorem we may assume that S = OF where E C G is an open H-Caccioppoli
set. Moreover let us choose a horizontal left invariant direction X € H which is

globally transverse to S, i.e.
<XyaNy> 750 vyes? (34)

where N is the euclidean unit inward normal along S. We explicitly notice that
if X € H is a horizontal left invariant vector field and S C G is a C'-smooth

hypersurface we have that
(X,vE)m, #0 <= (X, Ny) # 0 VyelbS.
Indeed by Proposition 1.34 the inward unit H-normal along S = OF is given by
(VE)y _ Z;n:11<(Xj)y’ Ny>(Xj)y
\/Z;ﬁ:lﬂ(Xj)ya Ny>2
and if X =" a; X; we get
= 2o (X Nyaj (X,N) .
VIR N2 [ (G, )2

Condition (34) is therefore equivalent to require that X, € HG, \ TS for y € S.

Vyes

<X>Z/E

Consider now the following Cauchy problem
{ Y(t) = X(v(1)),

0)=yeSs
There exists a unique smooth solution of this problem which is defined on all of
R and, throughout this section, we shall write v, (t) = exp[tX](y) for ¢t € R and
y € S. If X € H is fixed, we shall remove the apex just writing 7,. Notice that
Vx, (t) =yeoexp(tX) = P(y,exp(tX)). Following [69], we call such a trajectory
a horizontal X -line, or simply horizontal line. Now let us consider the family of

horizontal X-lines starting from .S.
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Notation 2.1. We shall denote by ng( the subset of G reachable from S by

means of horizontal X-lines, i.e.
Ry = {x €G:3yeS, FteR st.x= eXp[tX](y)}.
From now on we assume that S enjoys the following further property:
wR)NS=y V{ytes (35)

Since X is transverse to S, from the uniqueness of the solutions of the Cauchy
problem and the hypothesis (35) it follows that any subset D of Ré( has a natural
projection on S along the horizontal direction X. More precisely we may define
a mapping pry : D C ng( — S as follows; for z € D and y € S we set
y = prg (x) if, and only if, there exists ¢ € R such that x = exp [tX](y). Using this
projection every subset D of ng( can be foliated with one-dimensional leaves that

are horizontal X-lines. In fact, setting D, := v,(R) N D, one has:

D = H D, and yl#yg:DylﬂDw:(Z) Vyhygeprg(D).
yepry (D)

Remark 2.2. We remark that if S is a C'-smooth closed hypersurface without
boundary and globally transverse to X € H one can prove, by applying the Tubular
Neighborhood Theorem (see [56]), that any integral curve of X cut S in at most

one point and hence (35) is automatically verified.

In many subsequent integration formulae we shall adopt the so-called wvertical
hyperplanes (see Notation 1.27). We emphasize that every subset of G is reachable
from any vertical hyperplane. We would also stress that, although this projection
turns out to be useful in many integral formulas, it is not Lipschitz with respect
to the Carnot-Carathéodory distance d. and so one cannot to assimilate it to an
euclidean orthogonal projection. For more details, see [61].

We may state our first result of this section:
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Proposition 2.3. Let S C G be a C' smooth hypersurface and X € H, |X|g =1,

be a unit horizontal left invariant vector field which is transverse to S, i.e.
(X,ve)a, #0 Vyes.
Let v, be the horizontal X -line starting from y € S, i.e.
YR G, (1) = expltX](y) for y € S,
Moreover we assume that
WR)NS={y} Vyes

Let D C Ré( be a Lebesgue measurable subset of G that is reachable from S by
means of horizontal X -lines. Since locally S = OF, for a suitable open set E C G,
without loss of generality we may assume that S = OE globally, where E has locally

finite H-perimeter. Then we have
(i) Dy := v, (R) N D is Hl-measurable for |0E|p-a.e. y € S;

(i3) the mapping S >y — HL(D,) is |0E|g-measurable on S and
£0) = [ HAD,) X vehn, | L)
prg (D)
= [ wHip,)dloxEl
pr§ (D)

where pr§ (D) C S is the horizontal X -projection of D on S.

This proposition may be generalized to H-regular hypersurfaces and, more

precisely, we can state our main theorem as follows:

Theorem 2.4. Let S C G be a H-regular hypersurface. By Theorem 1.39, without
loss of generality, we may assume that S = OFE globally, where E C G is an
open H-Caccioppoli set with locally C}q boundary. Let X € H, |X|g = 1, be a
unit horizontal left invariant vector field which is transverse to S. Let v, be the
horizontal X -line starting from y € S and let us suppose that v,(R)NS = {y} for
every y € S. Let D C Rg( be a Lebesgue measurable subset of G that is reachable

from S. Then we have:
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(i) Dy :=7,(R) N D is Hl-measurable for |0E|g-a.c. y € S.

(ii) the mapping S >y —— HL(Dy) is |0E|g-measurable on S and
) = [ D)X e, |410E]u ()
prg (D)

_ / HL(D,) d|0x E|(y).

% (D)

The proof of this results will be given in the next subsection. Nevertheless we

can state a first useful consequence.

Corollary 2.5. Let S C G be a H-reqular hypersurface and assume that S = OF
globally, where E C G is a suitable open H-Caccioppoli set. Let X € H, |X|g =1,
be a unit horizontal left invariant vector field which is transverse to S and denote
by vy the horizontal X -line starting from y € S. We assume that v,(R)NS = {y}
for everyy € S. Finally let D C Rg( be a Lebesgue measurable subset of G that is
reachable from S by means of X -lines. Then, for every function v € L*(D) the

following statements hold:

(i) Letyp, denote the restriction of 1 to Dy := v, (R)N D and let us define the
mapping
Uy (DY) CR— R, gy(t) = (o) (1),

Then 1y, is L'-measurable for |0FE|g-a.e. y € S. Equivalently, we have that

the restriction p, is HL-measurable for |0E|g-a.e. y € S.

(i) The mapping defined by
S>yr— Q,Z)dHi:/ 1y () dt
Dy 'Yy_l(Dy)

is |OE|g-measurable on S and the following formula holds:

/ pdLr = / pH! doxE|(y)
D pr& (D) JDy

= [ Ly 08 v 40Pl
P Ty Py
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Proof. Having at our disposal Theorem 2.4, is enough to use a standard argument
of measure theory to approximate the function ¢ with a finite linear combination

of characteristic functions, as for instance in Theorem 3.2.5 of [33]. O

Till now we have used the intrinsic H-perimeter as a measure for hypersurfaces
in G but also different measures can be considered. In fact, the comparison of
different surface measures is a one of the main problems of the Geometric Measure
Theory in Carnot groups and in general Carnot-Carathéodory spaces. In particular
an interesting problem for Carnot groups is that to compare the H-perimeter
with the the (@ — 1)-dimensional Hausdorff measure associated with either the
cc-distance d. or with some suitable homogeneous distance on G, in the case of
euclidean smooth hypersurfaces (see [7], [42, 43], [67]).

The following result for general Carnot groups is proved in [67].

Remark 2.6. Let S be a C'-smooth hypersurface and let assume that S is locally
the boundary of an open set E. Then

OBy LB =k, (vg) HO 'L (S N B) V¥ B € B(G) (36)

where the measure 'Hg_l is the spherical 2 (Q — 1)-dimensional Hausdorff measure

associated with the cc-distance d. and k s a function depending on vg, called

Q-1
metric factor (see Definition 2.17 of [67]).

By means of this result, we may reformulate Proposition 2.3 using Hausdorff

measures with respect to the cc-distance. We have, more precisely, the following:

Corollary 2.7. Let S C G be a C!-smooth hypersurface andlet X € H, |X |y =1,
be a unit horizontal left invariant vector field which is transverse to S. Let vy, be the

horizontal X -line starting from y € S and assume that v,(R)NS = {y} for every

2Notice that HE™1(S) = lims_, o+ H?gl(S) where, up to a constant multiple,

HEH(S) =inf { 3 (diamc(Bi)>Q

i

sc B diam.(8,) < 5}

and the infimum is taken with respect to closed d.-balls B;.
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y € 5. Finally, let D C ng( be a Hg- measurable subset of G that is reachable

from S by means of horizontal X -lines. Then
(i) Dy := v, (R) N D is Hl-measurable for HI ae. ye 8.
(ii) The mapping S >y — HL(D,) is HE ™ -measurable on S and

qu(VE)

HID) = [ MDY (X | " a2 )
pry (D) Q
where kg, is the constant defined in Remark 1.26. Moreover
Q 1 kal(VE) Q-1
D p?“fg( (D) Dy Q

Proof. We have already observed in Remark 1.26 that Lebesgue measure £™ and
@-dimensional spherical Hausdorff measure HCQ coincide up to the constant k.
Thus, using Proposition 2.3, Corollary 2.5 and the identity of measures stated in
(36) the thesis follows. O

2.2 Proofs of Proposition 2.3 and Theorem 2.4

This subsection is entirely devoted to prove Proposition 2.3 and Theorem 2.4.
The proof of Proposition 2.3 relies mainly on the next Lemma 2.9 and on the
classical change of variables formula with some non trivial computations. The proof
of Theorem 2.4 follows from Proposition 2.3 using an approximation argument
inspired by a recent work of Franchi, Serapioni and Serra Cassano about an implicit
function theorem in Carnot groups (see Theorem 1.39 or [42]).

We begin by stating two technical lemmas. For the notation used in the sequel
we refer the reader to Section 1.1. We just recall here that the group law e on G
is also denoted by P(x,y) = x +y+ Q(z,y) for z,y € G, where P;(z,y) = z; +y;
for 1 <j <my(=dim Vi) and Pj(z,y) = zj + y; + Qj(z,y) for j > m;.

Lemma 2.8. If X € V| and j > mq, then
Qj(y, exp ((t1 +t2) X)) = Q;(y, exp (t1.X)) + Q;(P(y, exp (t1X)), exp (t2X)) (37)

whenever y € G and t1,t2 € R.
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Proof. First, by Remark 1.5 we get that if X € 1}
P(exp (t1.X), exp (t2X)) = exp (t1X) + exp (t2X) V t1,t2 € R. (38)

Now, starting from the associativity property of the group law and using (38), it

follows that
P(P(y, exp (t1.X)), exp (t2X)) = P(y, P(exp (t1.X), exp (12X)))
and so
Pj(P(y, exp (t1.X)), exp (t2X)) = Pj(y, P(exp (t1.X), exp (t2X))).  (39)
Moreover the following identities hold
Pi(P(y, exp (t1X)), exp (t2 X)) = Pj(y, exp (t1X))+Q;(P(y, exp (t1.X)), exp (t2X))

=y; + Qj(y,exp (t1.X)) + Q;(P(y, exp (t1.X)), exp (t2.X)); (40)

Pj(y, P(exp (11.X), exp (12X))) = y; + Q;(y, P(exp (t1.X), exp (t2X)))

=y; + Qj(y, exp ((t1 + t2) X)). (41)

Thus the claim easily follows by substituting (40) and (41) in (39). O

Lemma 2.9. If X € V] we have that

D p(y,esp (1) =

aayP(y, exp (tX))] X(y) VteRVyeG.  (42)

Notation 2.10. In some of the following formulae we shall write
0
jyp(y7 Z) = 87:‘/7)(3/72) (fO’f’ Y,z € G)

Proof. We prove this lemma by components. First, we assume that X = Z;n:ll a;e;
so that
exp (tX) = (tay, ..., tam,,0, ..., 0).
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If 1 < j < my we have that Pj(y, exp (X)) = y; + ta; and since we may easily
prove that
(| TyP(y; exp (tX))| X (), ¢5) = aj,

in this case the thesis follows. Now if j > mq, we have to show that

Oy exp (1)) = (V0. exp (X)), X (1),

Since (exp (tX)); = 0, we have that P;(y,exp (tX)) = y; + Q;(y, exp (tX)). Now,
note that the following identities hold

2Py, exp (X)) = 20y, exp (£X)); (43)
(9,Ps(y. xp (1)), X)) = (X)) + (V4 Qs exp (43, X)) (44

Therefore, by (43) and (44) we have to prove that

05, exp(1X)) = (X)) + (V4 Q. exp (1)), X (1) Y1ERY y .

(45)

Now, by differentiating both sides of (37) of the previous Lemma 2.8 with respect
to t1 at the time ¢; = 0 and putting o = t, we get that

aatl tlonj(y’ exp ((t1 +t)X))
- (9at1 tl:OQj(y, exp (t1X)) + Ern tl:OQj(P(y, exp (11 X)), exp (tX))
B (fh‘tl—opj(y’e}{p (th))+<vaj(P(y’O)’eXp (X)), [88751 oo P exp (X)) )
= (X(y)); + (VyQ;(y,exp (tX)), X (y))
that is nothing but (45). u

Proof of Proposition 2.3. Let S, be an open neighborhood of pr (D) on S. Of
course, with no loss of generality, we may think S, to be globally parameterized
through a smooth map ®,, where ®, : U, C R* ! —— S, and ®, € Cl(Ua, G). In
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the general case we shall use a partition of unity related to an atlas {(Sa, V) }aca
of S, where ¥, := ®;! for a € A and (S,,¥,) is a coordinate chart on S.
However, for sake of simplicity, we omit the index « from U,, ¢, and S, just
writing U, ® and S. Let us consider the map S xR 3 (y,t) — v,(t) € G given by
vy(t) = exp [tX](y). The last one enables us to carry out the parametrization of D
we were looking for. Indeed, more precisely, starting from the parametrization of

S, we may put
Voo (1) = exp [tX](D(E))

whenever ¢ € U and t € R. For simplicity, we shall drop the dependence on the
variables and we denote this mapping just by «,. This one enjoys an important

property that we summarize in the next lemma.

Lemma 2.11. The Jacobian matriz of the mapping v, with respect to (§,t) € UxR
satisfies the following identity

= |(xom)
Hs

where we have set

SIS

‘ det [‘7@@74

<Z<Xj(c1>), N(<I>)>2> e AL ADe |, (46)

09

P, = 5

for he{l,...,.n—1}.

Proof of Lemma 2.11. We have to compute the expression of the Jacobian matrix
of 7,, i.e.

0%, 07
JienTs = [ a¢’ ot

By definition we have that v, ., (t) = P(®(£), exp (tX)) and so we get

_ 97, O7p O
9€, T DE, L ot |

9% 9 0P
= |— xp (X)) | =—.
¢ lay e W e (¢ ))] ¢
We have then
0 oo 0
*7(g,t)7<1> = llay y:fb(g)P(% exp (X)) 875’ E’P(‘I)(g),eXp (tX))] (47)
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and, for sake of simplicity, we will set

0
A - [ay Pl (m)],
b = DP@(E), exp(iX))

So we get

’det [J@,t)%} = ‘det [Ag?, b”

‘2?, AA‘lb”.

Now we may notice that |det A | = 1. Indeed, in general, one has

- ‘det [A

0 0
%P(yv Z) - I’rL + %Q(ya Z)

whenever y, z € G, where 1, is the nxn identity matrix and % Q is anxn nilpotent
matrix, because it is lower triangular with the entries in the main diagonal all equal
to 1. Furthermore, by Lemma 2.9 we infer that

X(y) =

-1
;@/P(y, exp (tX))] %P(yv exp (tX))

whenever y € G and t € R and so, in particular, we get that A~'b = X (®(¢)).

Therefore
|det [T 7] | = IdetA ]| det [g?, A~'b]|
— et [ Gz x(@(©)]|
~ det[gz,...,aij)l, (@©)]|
_ <§§ZA...A$,X(¢(§))>‘
= [(V(@©), X (@) |@e A A B, |

Here above we have used two standard properties of Linear Algebra and, more

precisely, the following identity

det [al,ag, ...,an,l,b] = <a1 Nas A ... A an,l,b> Y ap,as,...,a,_1,b € R",
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and the fact that
det |Aby, Abg,...,Ab, | = det A - det [bl,bg, ...,bn]

for any invertible n x n matrix A. Notice also that in the last line, we have used
the explicit expression of the euclidean unit inward normal along a parametric
hypersurface.

Now, keeping in mind that, whenever S = OF is smooth, we have
(<X1ya Ny)y SRR <Xm1ya Ny))
1
(E;n:ll <ij’ Ny>2) ’

for every y € S, we get the thesis observing that

ve(y) =

mi

) <Z<ij7 Ny>2)é-

(O "

O

Starting from this lemma we carry out the proof of Proposition 2.3 by means of a
partition of unity {(Wa,0a)}aca related to the atlas {(Sa, Ua)}aca for S, where
Wa = spt{oa} € S,. Indeed, by the classical change of variables formula

£M(D)
-/ Gao2)©] [ | et [T v o (0] ] e
aeA I Va(pry (D)NSa) Vou(e) Poae)
(48)
where
Do, () = Voo (R) N D
and

7ot (Dane) = {t ER:v,. ()N D # (2)}.

Then, by (46) the right-hand side of (48) is equal to

(00 0 ®a)(€)x

acA /I/a(prfq( (D)NSa)
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[NIE

<[ (X VBt 0| [0 (X5 (@a(€)), N(@al©))?] *|(@a)e, A - A@a)g | dt d
Voo () Poa(e) ;

Jj=1

~ [y L1005

= [ D) K v | 105l
PTg

— [ i) dloxEw)
pr3 (D)
where we have used Theorem 1.9, Proposition 1.34 and Remark 1.42. O

Before the beginning of the proof of Theorem 2.4 we recall the basic statements
of Implicit Function Theorem 1.39. We assume, by hypothesis, that S is a H-
regular hypersurface and so for every z € S there exist an open neighborhood U
of ¥ and a real valued function f € CL(U) such that SNU = {z € U : f(z) = 0}
and V74 f(z) # 0 for all x € U. Thus S is locally the boundary of £ = {x € U :
f(x) < 0} and without loss of generality we assume that X f(z) > 0 for z € U.
Let now h, § > 0 and set

Jn=[~hh), Is:={&=(&,...,6) eR" 1§ <6, j=2,...,n}

If ¢ € R*"! andt € J), we denote by fy(lo o (t) the integral curve of the left invariant
horizontal vector field X; € H at the time ¢ issued from (0,¢) € {(0,n7) € G:n €
R"~1}. Then Theorem 1.39 states that there exist &, h > 0 such that the mapping

Rx R 3 (€) — 1l (1)

is a diffeomorphism of a neighborhood of Jj, x I5 onto an open subset of G. In what
follows we denote by U the image of Int{.J, x Is} through this mapping. The set
FE has finite H-perimeter in U and if vg is the generalized inward unit normal of
E we have

Vi f(x)
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Furthermore there exists a unique continuous function ¢ = ¢(§) : Iy — Jp such

that, setting ®(&) = 'y(lo {)(qb(f)) for £ € Iy, we have
SNU={x€U:z=9(¢), << Is}

and the H-perimeter has the following integral representation

> | X f(@(6)?
0E| (U /1\/ . de. (49)

X1f(@(6))

Let now J, be a Friedrichs’ mollifier; putting f. = f * J. by the continuity of f we
have that fo — f as € — 0 uniformly in ¢/ and analogously (X;f) * Jo — X, f
as € — 0 uniformly in U (for j =1,...,m). Arguing as in [40], p. 90, we obtain

Xife=(X;f)xJe = (X;f)*xJe — Xjfe) forje{l,...,m}

and also
(Xjf)*Je_Xjfe — 0

uniformly in U as € — 0. We note that starting from the regularization of f by
the classical Implicit Function Theorem we get the existence of a smooth function
¢e : Is — Jp, such that ¢ — ¢ as € — 0 uniformly in /5. Thus we may construct
a family {S¢}e>0 of smooth hypersurfaces which uniformly converges in U to SNU
as € — 0. Moreover every hypersurface S, is the boundary of a smooth open set
FE. which also converges in U to ENU as ¢ — 0. Here an explicit parametrization
of S, is given by the mapping @, : [ — G, ®.(§) := '7(10@(@56) for £ € Is. Finally,

we have that ®. — & uniformly for £ € I5 as € — 0. To see this, notice that

2€) = 2O = I (066D 7 o (GO
»(&)
[ a0 a

IN

and that d.(exp[tX1](0,€),(0,£)) < |t| < h. So if K is a compact subset of I;

exp [tX1]((0,8)) € Kj :={z € G :d.(2,{0 x K}) < h},
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and, keeping in mind that ¢ — ¢ as € — 0 uniformly in 15, we get the claim

observing that

[@c(6) = (&) < [@c(&) — A(E)] - max [ Xy ()]

Proof of Theorem 2.4. The proof will be divided in some claims and we shall use
notation and statements of Theorem 1.39. From now on we assume that the
hypersurface S is globally parameterized by a unique map ® as above and, more
precisely, we may suppose that there exists § > 0 such that S is the image of
O : Int{Is} — G, where ®(¢§) = 'y(loyg)(gb(ﬁ)) and Is = {£ € R"! : €] < §}. So
we have

S={yeG:y=2(), {cls}={ycG: f(y) =0}

where f € C}(G) is an implicit function which defines S such that X7 f > 0 near S.

Claim 1. Let o € L*®(G) N C*>(G) be such that a > 0. Then we have

A}adﬁ”:/s[/R(aoyy)(t)dt}d\(‘)XEKy).

Proof. More explicitly, we note that the right-hand side is equal to

// & 07 (8) [{X, vg) 1, | dt d|OE | 1 (y)-

To prove this claim, we first set

1::/5[/R(aoyy)(t)dt}d|aXE|(y).

By (i7i) and (v) of Theorem 1.39 we get

[(X(D(E)), VI F(P(E))) Hape)| (@00 V) )(E)
- / Xi/(@() s
Now we shall prove that
), VI fe ool (@0, )t
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Indeed, if (50) holds we get the claim observing that

I:lim/ / a0 7y) (&) (X, v}, | dt OB 1 (y)

e—0

and that from Corollary 2.5 we have

/adﬁ" / /ao*yy (X, vE)n,|dtd|OE|H(y).

To prove (50) notice that, as we have seen above, ®(§) — ®(§) uniformly in Is
as € — 0 and so, keeping in mind that V# f. — V¥ f uniformly on compact sets,
we get

VI [e(@e(§)) — VI [(2(E)) (51)

as € — 0 for & € Is. Thus, by (51) and by the continuous dependence of the
Cauchy problem on the initial data, the integrand in (50) tends to the integrand
of I. On the other hand ®.(§) lies in a fixed compact neighborhood of ®(I5) so
that, by Weierstrass Theorem and our assumptions on «, the integrand in (50) is
bounded by a constant for (¢,t) € I5xR and (50) follows by Dominate Convergence
Theorem. O

Claim 2. Let Q C Rg( be a compact, rectangular n-box. Then

[ Hie® @ doxE < £(Q)
Proof. To prove this we may consider a sequence of functions {ay, }ren such that

lim ap(z) =1g(z) VzeG.

h—o00

For y € S we set vy_l(Q) = {t eR: y(t) € Q}. So ap(yy(t)) — 1%_1(Q)(t) for
all (y,t) € S x R as h — oo. Therefore we get the claim observing that

/H%MMHQM@EM)ZL// @D dtdloxE(y)
// hm ap(1y(t)dtd|Ox El(y) < liminf//ah(’yy(t))dtd|8XE(y)
R S JR

h—oo

i ap(z)dL(z) = L(Q).
— 00 G
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Claim 8. Let F C RY be a measurable subset of G such that L™(F) = 0. Setting
So = {y €S: Hi(*y;(R) NF)> 0},
we have that [0E|p(So) = 0.

Proof. Indeed let € > 0 and {Q;} jen be a countable family of compact, rectangular,
n-box such that

FclJ@, D Lv)<e
Jj=1 J=1
We have then

/S H(y(R) N F) d|0xE|(y) < /S S H (7 (R) N Q) d[ox B(y)
j:

_ /Shm ZH 7(R) N Q;) d|0x El(y)

k:—>oo

< Y /S HL (7 (R) N Q;) d|0x Bl (y)

k—o0 —

IN

> Hi(v(R)N Q) d|0xE|(y)
j=17%

D> L)) <e
j=1

IN

Therefore
/S H (v, (B) O F) - |(X, v 1, | d1OE 1 (y) = 0

and since (X, vg)p, # 0 for any y € S, we get the claim observing that
Hi(y(R)NF) =0 for |0E|y —a.e.y € S.
O
At this point we can achieve the proof of the theorem in the following way. Let

Je be a Friedrichs’ mollifier and put «, := 1p * J.. Since a, € L*®(G) N C>®(G)

and e — 1p in L} . up to a subsequence, we may assume that

loc?

lima,=1p for L"—ae. 2e€G.

e—0
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Now setting
F:i=D\ {x € D lim oy, (x) = 1D(:r;)}
and
So := {y €S :H(yR)NF) > O}

by Claim 3 we get |0E|g(So) = 0. Moreover by Claim 1 we obtain

/ aedL"”
G

/ / (0 09 (1) dt d 0x B ()
S JR

_ / / (e 0 7 (t) dt d |9 E| (y).
S\So /R

Therefore ae(vy(t)) — L1 (t) for L' —ae. t €R and |0E| —ae. y € S as
e — 0. Thus we get the thesis by letting € — 0 in (52). O
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3 Slicing of HBV functions and H-perimeter

3.1 One-dimensional restrictions of HBV functions

We introduce the concept of wvariation along a horizontal direction of a locally
summable function in a Carnot group G and we summarize its main properties.
Afterwards, we define the notion of X -variation along a horizontal line and we
consider the space of functions of bounded variation along a fixed horizontal line.
Then, in Theorem 3.7, we establish a link between the notion of variation of a
function along a horizontal direction and that of variation of the restrictions of
such a function to a family of horizontal lines. Finally, we generalize to Carnot
groups a well-known characterization of the usual space BV by means of one-
dimensional restrictions of its elements. These topics in the classical setting can
be found in [2] or in [32], while, for many other results about function of bounded
variation in Carnot-Carathéodory spaces, one can see [1], [5], [14], [39, 40], [45],
[79] [78], [96].

Definition 3.1. Let U C G be open and let X € H be a horizontal left invariant
vector field. We say that f € L*(U) has bounded X -variation in U if

XA1W) = sup{ [ £XpaL s o€ CYU). el <1} <o

we refer to the quantity | X f|(U) as the X -variation of f in U and we denote by

BV x(U) the vector space of bounded X -variation functions in U.
In the next remark we summarize some well-known properties of the variation:
Remark 3.2. Let U C G be open and let X € H. Then the following items hold:
(i) let f, fr, € LY(U) for k € N be such that fr, — f in L*(U) as k — oo. Then

X FI(U) < liminf |X | (©7);

(ii) if f € BVx(U) then | X f| is a Radon measure in U and

/Uszodcnz—/UsowXﬂ Vo € CR(U);
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(iii)
XFI(U) = /U Xfldcr Y f e C\(U);

() if f € BV x(U) then there exists a sequence {f;}jen C C*(U)N BV x(U)
such that

Jim [y = fley =0 and  lim [X(0) = |X/|(0).

From now on, let U denote an open subset of G and let f : U — R. Moreover
let us fix a horizontal direction X € H and let us denote by v : R — U the
corresponding horizontal X-line. Theorem 1.9 implies that, if a = (a1, ...,am,) is
the vector of the canonical coordinates of 7, then for all compact set K C « one

has

H(K) = / la] dt,
7 H(K)

where |a| is constant (la| = |X|g). Therefore, if f oy € L'(y1(K)), putting
|X |z = 1, we get that the integral of f along the horizontal X-line ~ is

/ fam! = / (f o)1) dt (52)
K ¥~ HEK)

for every compact K C . In the sequel, if U C « is an open subset of v, we shall
denote by L'(U, dH.L v) the space of all Hl-summable functions defined on U.

Proposition 3.3. Let X € H, | X|g =1, and let vy be a horizontal X -line starting
from x € G, i.e. y(t) = exp[tX](z) for t € R. If U is an open subset of v and
f € LYU, dHLL ~) the following two statement are equivalent:

(i) foy € BV(y'(U)):
(ii)
ID(fon)|(vH(U)) = Sup{ Lfdw, Y e Cy(U), | <1 } < o0.
Moreover, setting
var [f](U) = sup { /foade; cp € CLB), |¢| <1, BC Gopen s.t.ANB=U }
we get that var[f)(U) = [D(f o y)|(y (V).
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Remark 3.4. Here above we have used the usual definition (see [2], [32]) of total

variation for real functions of one variable. We remind that, whenever
h:ICR—R, heLYI),

the total variation |Dh|(I) of h in I is given by

|DhI(1) :=sup{/h“jfdt pechn, o<1}

Also, BV (I) denotes the space of functions belonging to L'(I) and of finite total

variation in I.

Proof of Proposition 3.3. Since

d
[ra=[Gomgwena

it follows that (i) is equivalent to (ii) because if ¢ € C}(U), [¢| <1, we may put
¢=(por oy=1on,

where ¢ € C}(R), spt(¢) C v~ 1(U), |¢| < 1. To prove the last statement we notice
that, for any ¢ € C§(U), [¢| < 1, we may find ¢ € C}(R") such that ¢ = Plys
spt(¢) Ny = spt(¢) and |p| < 1. Thus the following chain of equalities holds:

sup{/fd¢:wecg(U),|¢yg1}

Y

=sup{/fdsorsoecé(R”%spt(cp)ﬁch lp] <1
Y

zsup{/ﬂg(fov)i(soov)dt:sOGCé(R"), spt(p) Ny C U, \90!<1}
zsup{/R(fow (), Vo(y(t))) dt : ¢ € Co(R™), spt(p) Ny C U, \s01<1}

= sup {/ fXpdH!: o e C{(U
where (53) follows by tacking an open set B C G such that yN B =U.
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Definition 3.5. Let X € H, | X|g =1, and let v be a horizontal X -line. If U is
an open subset of v and f € LY (U, dHLL ) we call vark[f](U) the X -variation
of f along v and we define BV}((U) as the space of functions of finite X -variation
in U C .

Proposition 3.6. Let X € H, | X|g = 1; let v be a horizontal X -line. Then for

every Hl-measurable set £ C v one has

vark[lel(v) = |DL,-15)|(R) (54)
= wark[lr,e](Lyy) VyeG

where y~1(E) = {t eR:~(t) € 5}; moreover
varx[1e](v) = 2 (55)
and equality holds if and only if v~1(€) is a bounded interval of R.

Proof. Equalities (54) follow from Definition 3.5. Moreover, using the first identity
of (54) we get that var [1¢](v) is equal to the euclidean one-dimensional perimeter
of y71(€) in R. Thus, using the one-dimensional isoperimetric inequality of [91],

page 103, section 3.6, we get (55). O

It seems interesting to find some results that reduce the study of HBV functions
to that one of their one-dimensional restrictions, being this one a very useful
approach of Calculus of Variations (see [2], [46]). Here below we state a theorem
modeled on an analogous euclidean result (see [2], [32]). A similar theorem has
been proved in [96] for Sobolev functions in Carnot groups and in [19] in the case

of vertical planes in “rototranslation groups”.

Theorem 3.7. Let S C G be a H-reqular hypersurface and assume that S = OF
globally, where E C G is a suitable open H-Caccioppoli set. Let X € H, |X|g =1,
be a unit horizontal left invariant vector field which is transverse to S and denote

by vy the horizontal X -line starting from y € S. We assume that v,(R)NS = {y}
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for every y € S. Finally let U C Ré( be a Lebesgue measurable subset of G that is

reachable from S by means of X -lines. Then
XA = [ wark(£,)0) dloxElw) (56)
pry (U)
where f, = oy, and Uy :=~, NU.

Proof. Using (ii) of Corollary 2.5 we get

d
[ xeaer= [ [ (on) e, dtdloxElw)
U prif(U) Yy~ (Uy)

< / vark £, )(Uy) d|0x B|(y),
pry (U)

whenever ¢ € C}(€2). In a similar way we obtain the equality if f € C*(U). Now
let us set

Ut .= {x eU:|z| < %, dist(z,0U) > h}
and choose h > 0 such that |X f|(OU") = 0. Notice that this can be done for
Ll-a.e. h >0, as for instance in [2], Example 1.63. Therefore, using Lemma 1.35,

we get that
lim |(f = Je) — fldL"

e—0 Jyhn

= lim ICf * ey = fyllr g, —2(wm), ) 410x El(y) = 0,

=0 Jprx 1)

and so we may choose a sequence {¢;} ey such that

lim |(f *Je;)y — fyldt =0 for |OxE| — a.e. yEpr)S((Uh).
I Sy = (UM),)

By the lower semicontinuity of the X-variation (see (i) of Remark 3.2) we get

/ vark [, ((U™),) d|0x E|(y)
pr¥ (UM)

IN

/ lim inf vark [(f Je; )y, J(U™)y) d|0x E|(y)

rX(Uhy J00

timinf [ k(75 0, J(0"),) dlox EL)
pra (UM)

IN

j—o0
= lim [X(f*J,)|([U")
Jj—oo

= [XfI(U") <|XfI(U)
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and the claim follows letting A — 0. O

We would stress that for any j = 1,...,mq, the following inequalities hold
my
X f1(U) < VL) < D 1XG 1)
j=1

for f € HBV (U), where { X1, ..., X;n, } is the fixed generating family vector fields of
the group, i.e. a fixed orthonormal frame for H. This easily follows from Definition

1.28 and Definition 3.1 and, using Theorem 3.7, it allows to state the following.

Corollary 3.8. [HBV functions and 1-dimensional slicing] Let {X1, ..., Xm, } be
any generating family of vector fields for G. Let S; C G (j = 1,...,m1) be a
H -regular hypersurface such that S; = OE; globally, where E; C G is a suitable
open H-Caccioppoli set, and suppose that X; M S; (i.e. X is transverse to S;).

Denoting by 'yZ the horizontal X;-line starting from y € S;, we assume that

75 (R) N S; = {y}
for every y € S;. Finally let U C R{qj be a Lebesque measurable subset of G that
is reachable from each S; by means of X;-lines. Then, f € HBV (U) if, and only
if, f%J!- € BV}(]_ (Uy) for |0Ex,|-a.e. y € prfgj(U) and

J
Y

/_ vark [, (U9 d|0x, Bl(y) <00 ¥ j=1,.my.
préj(U)

, . , .
[Here: pr]S]_(U) = prg’ (U), Uj:=U," ]

Remark 3.9. Let Z.(X;) the vertical hyperplane through the identity e € G and
orthogonal to X; (see Notation 1.27), we may assume that S; = L.(X;) for j =
1,...,m1. For such hypersurfaces the hypotheses of Corollary 3.8 are automatically
verified, since each subset of G is reachable from any vertical hyperplane.
Thus, every U C G can be U foliated by a family of horizontal X;-lines (j =
1,...,my) starting from Z.(X;), and hence the previous characterization of

HBV(U) can be reformulated by means of vertical hyperplanes.
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3.2 Integral geometric measures, H-normal sets and
H-convexity

In this subsection we give some applications of the previous results. To this end,
we introduce a measure on UH, i.e. unit horizontal bundle on G (see also Sections
4 for further results), that we need to state some integral geometric formulae for
volume and H-perimeter. Afterwards, we give a definition of H-normality with
respect to a vertical hyperplane that generalizes the euclidean one ([27], [91]).
Then we formulate an intrinsic definition of convexity, named H-convezity (see
Definition 3.16), that seems to be natural from a geometric point of view. Indeed,
by this definition, we state a Cauchy-type formula and a related inequality which
says that, in some sense, among all sets containing a fixed H-convex set, this
one minimizes the H-perimeter. See Theorem 3.21 and Corollary 3.22 below and
also [17] and [86] for the classical results. We would emphasize that equivalent
definitions of convexity in Carnot groups has been introduced recently in [24] and

in [65]; see also [8] and [51] for some further developments.

Definition 3.10. [Unit horizontal bundle] Let us set H=H \{0x}, where O is
the zero section of H. Denoting by UH the quotient of]if by the positive dilations
we obtain a bundle structure on G, called unit horizontal bundle on G, whose
projection map on the base space G, m,, : UH — G, is given by 7, (2;Z) = 2
for (z;Z) € H. Notice that each fiber UH , of m,, can be identified with the unit
sphere S™~1 of R™1. Roughly speaking, UH , is the subset of H, of all unit vectors

with respect to the norm |- |g on the fiber.
We define the volume form on UH to be the differential n + m; — 1-form
Q" Nom,—1 € A (UH),

where Q" = w1 A... Awy, is the bi-invariant volume form on G defined in Section 1.3
and 0,y,, 1 is the canonical volume form on the unit sphere S™ ~! of R™ identified
with the generic fiber of UH. We denote by po the measure on UH obtained by

integration of Q™ A o,,,—1 and if x € G we denote by dug, the measure on UH,
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obtained by integration of o,,, 1. Explicitly, for f € L'(UH), one has

o X) e X) = [ dL@) [ FlasX) dpo, (X).
UH G UH .,
Notation 3.11. If D is a subset of G, then UH D will denote the restriction to D

of the bundle structure UH i.e.
UHD := {X € UH : m,,(X) € D}.

We also remind that, if z € G and X € UH, then Z,(X) denotes the vertical
hyperplane through z and orthogonal to X while V, the family of all vertical
hyperplanes through z. Finally, Vx, denotes the horizontal X-line starting from
y € T.(X) (i.e. 7y, (1) = exp[tX](y), t € R) and if D C G we set

Dy =1y, (R)ND.

Notice that, if Xe = > 7" aje;, then Z,(X) can be regarded as the boundary of
the half-space

I, (X):= {y €G: i[yj - zjla; < 0}
j=1

and so

vi-x)W) = (a1, .,am,) e R™ = H  VyeL.(X).

So we get that the H-perimeter of 7 (X) is just the n — 1-dimensional Hausdorff
measure H" ! on the vertical hyperplane Z,(X) and from Proposition 2.3 we

deduce the following;:

Corollary 3.12. Let D be a Lebesgue measurable subset of G and fix z € G. Then

po(UHD) = [ duo) [ D)) R
UH. ¥ @)
or, equivalently,

)= g [ ) [ HUD) ),

X
I x) (D)

where Op,,—1 denotes the (mj—1)-dimensional surface measure of the sphere S™ 1
of R™.
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Proof. From Proposition 2.3 we have that

L"(D) :/ He(Dy )dH" *(y) V X € UH. (57)
¥ 0P
Then we get the claim by integrating both sides of (57) over X € UH ,. O

Corollary 3.13. Let U C G be open and X € UH. Assume that D C G is a
H-Caccioppoli set, then

oxol) = [ oy M) AP ) (58)

T2(X)
Proof. This follows using Lemma 1.41 and Theorem 3.7 and observing that, for
the half-space Z7 (X)), we have

0x I, (X)|(B) = K" Y(BNZ.(X)) V B e B(G).

As application of the last corollary we may establish the following:

Proposition 3.14. [Integral geometric H-perimeter| Let U C G be open and fix
z€G. If D C G is a H-Caccioppoli set, we have then

1
0D (U) = / d 1. (X) / vark (1 J(UX) dH"(y),
26m—1 Jun. prX  (DAU) v

I2(X)

(59)

where Ky, 1 is the my — 1-dimensional Lebesque measure of the unit ball in R™ 1,

Proof. Starting from Corollary 3.13, we integrate both sides of (58) over X € UH ,.
Thus

| | vark[Lpx | (UF) dH" ()
UH . prX _ (DNU)

Z2(X)

_ / 0D (U) d 0, (X)
UH .

:/ dﬂoz(X)/ (X, vp)i|d|0D]n
UH , DU

=/ 410D|y / (X, vp) 11| d -1 (X) = 2iam,1|OD | (U),
DNU UH .
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where we have used Fubini’s Theorem and spherical coordinates to compute the

integrating of the last line. O

We now give the notion of H-normality with respect to any vertical hyperplane.

Definition 3.15. [H -normality in Carnot groups] If z € G and X € H, let Z,(X)
denote the vertical hyperplane through z and orthogonal to X. We say that D C G
is pointwise X-normal with respect to Z,(X) if for every y € Z,(X) we have
that 'y;yl {'yXy (R)N D} is the empty set or a connected subset of R or, equivalently,
if Vx, (R) N D is either empty or a connected subset of Vx, (R). Moreover, we say
that D is X-normal with respect to Z,(X) if D is L'-equivalent to a subset of
G that is pointwise X -normal with respect to I,(X).

Usually, we term this property pointwise H-normality (resp. H-normality) with
respect to a vertical hyperplane. As already observed, for any point z € G and
for any horizontal direction X € H there exists a unique horizontal X-line passing
from x. This implies that H-normality is invariant under group translations, as
left translations send a vertical hyperplane orthogonal to X € H into a vertical
hyperplane which is still orthogonal to X. Let now z € G and consider the family
V., of vertical hyperplanes through z. The invariance under group translations
of the notion of H-normality allows to see that the following two conditions are

equivalent:

(i) D C G is pointwise H-normal with respect to any vertical hyperplane Z,(X)
Of Ve

(ii) D C G is pointwise H-normal with respect to any vertical hyperplane Z,(Z)
where z € G and Z € H.

We emphasize that the notions introduced above generalize that corresponding
euclidean because, if (G,e) = (R",+) they coincide, as it can be easily proved.

Moreover the analogy with the euclidean case suggests the following.
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Definition 3.16. [H-convezity] We say that D C G is H-convex if, for every
x € G and every X € H, we have that *y;ml{*yxz (R) N D} is the empty set or a

connected subset of R or, equivalently, if v (R)ND is either empty or a connected

subset of v_(R).

Also in this case, if the Carnot group reduces to (R",+), these definitions
coincide. Moreover, H -convezity turns out to be invariant under group translations
and it is stable under intersection, i.e. if Dy, Do C G are H-convex sets, then also
Dy N Dy is a H-convex set.

We refer the reader to [24] and [65] for some different, but in fact equivalent,
definitions of convexity in Carnot groups. See also [8] for a detailed discussion on

this topic.
Remark 3.17. Notice that, H-convexity turns out to be equivalent to condition
(i), i.e.

(x) D is H-convex if, and only if, D is pointwise H-normal with respect to every

vertical hyperplane.

Clearly, if D is just H-normal with respect all of vertical hyperplanes of G, then it

is L'-equivalent to a H-convex set.

To better explain the meaning of H-convexity we make use of the horizontal
fibers, thought as family of moving mi-planes on G. More precisely, if z € G, we
identify the horizontal fiber H, at z with the left translated by z of the m-plane
exp (H.) C G, i.e.

H, = L.{exp(H.)} (z € G),

and so H, is viewed as the horizontal mi-plane through z of all horizontal lines

starting from z.

Proposition 3.18. If D C G, we have that D is H-convex if, and only if,
log(L_,{H, N D}) is starshaped in H, with respect to the identity 0 € g for all
z € D. In particular, if for every z € D we have that log(L_,{H, N D}) is a
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euclidean convex in He, then D is H-convex. Finally, if z € exp (Vi), where Vi is
the center of the Lie algebra g, then any horizontal plane H, through z is an affine’
mq-dimensional affine plane in G =cy, R", and we get that, if D is H-convex,

then H, N D is starshaped in H, with respect to z for every z € exp (Vi).

Proof. Obvious from the previous definitions. O

Remark 3.19. [H-convexity in 2-step Carnot groups] If G is a 2-step Carnot
group, then its horizontal lines are also euclidean lines. This is a straightforward
consequence of the group law that is completely determined by Campbell-Hausdorff
formula, as we have seen in Section 1.1. Thus, from the definition of H -convezity,
it follows that euclidean convex subsets of G are H-convex sets. In general, the

converse it is not true, as proved in the next example.

Example 3.20. [ A H-convex set in H! that is not euclidean convex] Let
us consider the Heisenberg group, here defined as follows: H' = (R? =2 C x R, ),
where (z,t) % (2',t') = (2 + 2/, t +t' + 23(22')). Then, the truncated cone of width
a > 0, given by

Ca:{(z,t)ECxR:|z|§a|t|, 2] <1, a|t|§1}

is an H'-convex set for any oo > 2 but it is not convex. This easily follows observing
that the maximal slope of the horizontal lines having initial data in the cylinder

{(z,t) € H' : |2] < 1} is 2 so that any such a line intercepts C,, in a segment line.

This definition of H-convexity can be used to generalize the Cauchy’s formula

for the area of euclidean convex sets. For the statement of this classical theorem
see [13], [17], [86].

Theorem 3.21. [Cauchy type formula] Let D be a H-convex subset of G and
z € G. Then
1

Kmi—-1 JUH,

9D]1(G) = H = (prX (D)) dpo.(X) (60)

3Since G is identified with R™ via exponential coordinates, it makes sense the notion

of affine p-plane (p =1, ...,n).
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where Km,—1 s the m; — 1-dimensional Lebesgue measure of the unit ball in Rm™-1,

Proof. Using Proposition 3.6 and Proposition 3.14 we get the thesis observing that,
since D is H-convex, then fuar%([lDf](yXy) =2 for H" l-ae. y € prfz<x)(D) for

any X € UH,. O

The above theorem, analogously to the euclidean case, allows to see that, in one
sense, H-convex sets minimize the H-perimeter; indeed, as immediate consequence,

we have the following.

Corollary 3.22. If D C G is a H-convex set, then for any open set U containing

D we have
0D| 1 (G) < |0U | (G).

Proof. Fixing z € G, the claim follows by the previous Theorem 3.21 observing

that, for every X € H, one has prf(m(D) - p@((x)(U). O
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4 A Santalé type formula and related topics

Throughout this section will be discussing some result about the integration on
UH, i.e. the unit horizontal bundle of a k-step Carnot group. The results here
exposed rely on the definition of a canonical measure dug on the unit horizontal
bundle UH. We stress that this measure is just that defined in Section 3.2. We
shall then prove its invariance under the action of the horizontal flow, i.e. the
flow generated by restriction to H of the Riemannian geodesic flow. The measure
dpo generalize to Carnot groups the classical notion of Kinematic density; see, for
instance, [10] and [16]. More precisely, an integral formula is given in Theorem
4.5, which generalizes the well-known Santal6 formula [86]. We emphasize that, in
the case of the Heisenberg group H', a Santalé-type formula was proved by Pansu,
[81]. We then give some applications of Theorem 4.5. In particular, in Proposition
4.10 and Theorem 4.11, we find two lower bounds for the first eigenvalue of the
Dirichlet problem for the Carnot sub-Laplacian Ay on smooth domains.

In the tangent bundle TG we use coordinates given by

(;X) = ((z1, ooy xn); (a1, .oy an)),

where (1, ..., ;) are the exponential coordinates of x € G and (ay,...,a,) are the
coordinates of X in the Lie algebra g (= T.G), i.e. X = Y i | aje;. We remind
that g is endowed with an inner product denoted by (-,-) that is just that usual
in R™. This uniquely determines the left invariant Riemannian metric on G, also

denoted by (-,-), that is defined by setting
(X,Y) = (X.,Y,) VX,Y e TG.

The energy function of X € X(G) associated with (-,-) is given by

n

E(X):= %(X, X) = % > a.
=1

Moreover we denote by « the canonical 1-form on the cotangent bundle T*G, which

is given, in this notation, by a := )" | a;w;. Following Besse, [10], we call geodesic
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vector field on TG the solution of the equation
T|doa=—dE. (61)

We remind that, if X € TG, then X | : A*(G) — A*"1(G) denotes the interior
product with X, i.e. the linear map defined by ([54], [64]):

X YY1, Y1) = 9(X, Y1, 00, Vi),

The geodesic flow is then the flow generated by T" and we may explicitly com-

pute it. We have

= 1 « o) o)
— i ‘G ) g R
T = Z aZXz 9 Z a; aj Cjk ((51] 8ak 5lk 8aj>'
=1 l,i,j,k=1
To prove this is enough to use the definitions of o, ' and T" and the above equation
(61). The result then follows by applying Proposition 1.21. Now we shall prove
that the restriction of the canonical 1-form « to the unit horizontal bundle is
invariant under the geodesic flow, i.e. the Lie derivative by T of « is equal to O.

Indeed, using Cartan’s identity (see [64]) we get

n
Lra=T]da+dT] a=—dE+2) a;jda; = dE.
i=1

Now, since we consider unit horizontal vectors, the thesis follows observing that
a; = 0 for any ¢ = my + 1,...,n, and that > "} a? = 1. Therefore, denoting by
ap := oy the restriction of « to the unit horizontal bundle UH, we then get that
o is invariant under the restriction of 7' to the horizontal bundle. From now on
we denote this vector by Tp, i.e. Ty = Tjy, and we call horizontal flow the flow on
H generated by Tp.

We want to show that there is a canonical measure on the unit horizontal
bundle UH which turns out to be invariant under the horizontal flow. To this end
we make use of the volume form on UH given by 2" Ao, —1, where Q" = wiA...Awy,

is the bi-invariant volume form on G and o,,,—1 is the volume form on the unit

sphere S™ ! (< R™) identified with the generic fiber of UH (see Section 3.2).
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We stress that if (z;X) € UH (X, = (a1, ..., Gy, 0, ..., 0)), then

Uml—l(X) = XJ dai A ... Ndam,

mi1—1
= Z (—1)“‘1@1- daj A ...\ da; N ... \dap,
i=1

and also that
(Qn/\O'ml_l)(;U;X)(Xl,...,Xn;Yl,...,le)
=0"(x)( X1,y Xp) - omy -1 (X) (Y1, oo, Yoy )
for all Xy,...,X, € T,G and all Y1, ...,Y,,, € UH,.

Definition 4.1. We denote by pg the measure on UH obtained by integration of
Q" ANom,—1 and by dug,, the measure on the fiber at x, UH ., obtained by integration
of om,—1. Thus, for every function f € L*(UH) we may write

FX) dpo( X) = [acr@) [ f@x)dpa ). (©)
UH G UH ;.

From now on, we set
N i=wi A A Wiy s Qo = Wing+1 N oo A Wiy, Qp = Wmyp 141 N e AWy,

so that Q" = Q1 A ... A Q. Moreover, *: A¥T*G — A" *T*G denotes the Hodge
star operator; we explicitly note that *Q; = Qo A ... A Q.

The next theorem asserts a Liouville type property of the measure py.

Theorem 4.2. The measure dug on UH turns out to be invariant with respect to

the horizontal flow on H associated with Ty and we have that

1
VAo =y 0 A (dao)™ A #h

The proof relies on the following lemmas.

Lemma 4.3. With the previous notation we have

Oéo/\( ao)ml 1
(mq— 1)(7”1 2)

= (m1—1)(-1) QA Oy 1
- ( 1)y -2)

= (mp —1)! Z (=)' a;w1 A ceo Awpy Adag A o Adag A ... A\ dagy, -
=1
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Proof. One can prove this lemma by induction on m1(= dim H), just by using the

definitions, the expression of ap = >} a;w; and that of doay = Y/ da; Aw;. [
Lemma 4.4. If X € C>*(G, H), then

QU Ai(X)(d* Q) = 0.
Proof. We have that

d(*Ql) = d(QQ VAN Qk)

n
= Z (—1)i+1wm1+1 Ao Awi—1 ANdw; Awip1 A ... Awn

i=m1+1

k n
1 L
- "9 (‘UZHCl‘hW F1 A o A(wj Awp) A A wp.
DD iy : "

I=1 i=mi+1 1<j, h<h;_1 i thylace

This formula, which is an easy consequence of Proposition 1.21 and Remark 1.22,
enable us to say that d (x€21) is a linear combination of (n — mj + 1)-forms of the
type

(Wj Awp) A w41 A e Awic1 A W5 Awigpr A .o Awn,
for ¢ = mq,..,n, jh = 1,...n, and ¢ # j,h. Thus, by a direct computation it
follows that Q1 Ai(X)(d % 1) is a linear combination of n-forms, each of which

have the following expression
wl/\.../\ws,l/\(ws)2/\ws+1/\.../\wn (s=1,...,n)
and the claim follows since these terms are equal to 0. O

Proof of Theorem 4.2. We have to show that the Lie derivative along Ty of Q" A
Omy—1 is 0. From Lemma 4.3 it follows that

(my1—1)(m1—-2) 1
2

m ag N (dao)ml_l A (*Ql)

Q" A g1 = (—1)

Thus we need to compute the Lie derivative along Ty of ag A (dog)™ 1 A (%) and

using Cartan’s identity and the invariance of ag under the horizontal flow induced
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by Ty we get

Ly (ao A (dag)™ L A (*Ql))
= Lr (ao A (dao)ml_l) A1) + (ao A (dag)m1_1> A Lo(+1)
= (ao/\ (dao)ml’l) A (Tj (d * Q) +d(T| *Ql))
= (a0 A (dag)™ ) A (T (d + )
and the thesis follows from Lemmas 4.3 and 4.4. O

Let D C G be a smooth, relatively compact domain (open and connected) and let

us consider

UHD = {X € UH : 7, (X) € D},

that is the restriction to D of the structure of unit horizontal bundle. If (z; X) €
UHD we set

lx(X) :=sup {s eERy 7 (t)e D, Vte (0,3)},

where 7, is the (unique) horizontal line satisfying v, (0) = m,, (X), ¥, (0) = X.
Notice that

£(X) = 1 (1 (10.£:(X)1) ).
By the boundedness of D we have /,(X) < oo, everywhere in D. Moreover
v« (lz(X)) is the first point of the horizontal line v, starting from x = m,, (X) to
hit the boundary of D.

Let now vp be the unit inward G-normal to 0D and let us set
UH*OD = {X € UHD : 7,,(X) € 9D, (X,vp)y, > 0}. (63)

This is the set of inward pointing unit horizontal vectors along the boundary 0D
and, identifying the generic fiber with S™~!, we may think it as the hemisphere
determined by vp which will be denoted by U™ ~!. We also provide UH 0D with

the following measure
do(z;X) :=dpo,(X)d|0D|g(z) V(x;X)€ UHTOD.
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Clearly d po, will be concentrated on the hemisphere U™ ~! = UH9D,.
Below we shall denote by C(9D) the so-called characteristic set of 9D (see for
instance [7], [42], [43], [45], [67]), i.e.

C(dD) = {x €dD: (N(z),X(x)) =0 V X € Hx}

Moreover we shall set

D* = {x €D:IX € Hy: 7, (b(X)) € C(aD)}.
Along the lines of [16], [81] and [86] we may prove now the following:

Theorem 4.5. Let D be a smooth relatively compact domain. For all f € L'(UH D),

we have

/ fy;Y) dpo(y;Y)
UH D
00 (X)
:/ / FOrse (8 X) (X, vp) . di do(; X)
UHtaD Jo

Ly (X)
_ / / / Fr (8 X) (X, vp) s, dt d ju, (X) 10D ().
oD UH+6DZ 0

Proof. First we consider the following map
Ry x UHTOD > (t, (25 X)) = (74 (t); X) € UH,

that is nothing but the restriction to UH 9D of the horizontal flow. Denoting by
®,(X) this flow, we shall see how ®;(X) acts on the measure d puy. To this end
we have to compute the pull back by ®;(X) of the volume form of UH. Observing
that (P4(X))*0m,—1 = Om,—1 We get

(@) (@ A1) = (15 (1) Q") A, -1 (X).

Notice that we have already performed this computation in the proof of Lemma
2.11 by means of a local parametrization and so we have just to reformulate it.
We have

(7x (0))"Q" = (X | Q") A dt,
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and explicitly this means that
(vx@)*dL" = (X,vp)n, dtd|0D|y(z)

fort >0 and x € 7T|UH(UH+8D>.
Therefore
(P(X))*dpo = (X,vp)g, dtd|0D|g(x) dug,(X). (64)

Since D is a relatively compact domain, we can univocally associate to any
(y;Y) e UH(D \ D¥)

the time t = ¢,(—Y) < oo and the point (z;X) = (v_, ({y(=Y)); =Y), so that
x is the first point on the boundary of D reachable from y along the (unique)
horizontal Y-line passing through y; furthermore ¢t < ¢,(X). Thus we have that
the map ®;(X) which takes (¢, (z; X)) onto (y;Y) is a diffeomorphism of the open
set {(t,(2; X)) :0<t</{y(X)} of Ry x UHTOD onto UH (D \ D*).

Finally, if uo(UH (D*)) = 0 then the thesis will hold multiplying both sides of
(64) by f and then integrating. But we can get the last claim from the classical

Area formula [33], by applying again the same computations of Lemma 2.11. [

Remark 4.6. If D is H-convex then D* = () and the map ®4(X) defined in the
above proof is a diffeomorphism onto UHD.

From the last theorem we easily deduce an integral geometric formula that allows

to compute the volume of a smooth relatively compact domain in a Carnot group.

Remark 4.7.

1

ooy = i [ ] LX) (Xvn) e, (X)d0Dla(e), (69

where Op,,—1 denotes the (my — 1)-dimensional surface measure of the sphere
Sm-t

We shall give now a first application of this theorem. To this end we need some

preliminaries.
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Let (z; X) € UH be fixed and denotes by UH I the hemisphere determined by X,
i.e.

UHF = {X € UH, (X, X\, > o}.
Lemma 4.8.

[ 5 Do i, () = (66)
Proof. It is enough to observe that this integral is the measure of the projection of

the (mj — 1)-dimensional hemisphere U™~ = UH onto a diametral plane and

so we may perform the computation using spherical coordinates. ]

As above, let D be a smooth, relatively compact, open subset of G and denotes
by diamg (D) its horizontal diameter, that is the quantity defined as

diampg (D) := sup Ly (Y).
(y;Y)EUHTOD

Denoting by diam. (D) the diameter of D with respect to the Carnot-Carathéodory

distance d., we have obviously
diamy (D) < diam.(D).

Corollary 4.9. Let D C G be a smooth and relatively compact domain. Then we

have

L™(D) < Om,—2
0D|u(G) = Omy—1 - (m1— 1)
where, in general, O denotes the k-dimensional surface measure of the unit sphere
Sk Of Rk+L

- diam.(D),

Proof. From Remark 4.7 we get

£M(D) < dlamH(D)/ (X,vp) . do(X)
Omlfl UHtOD

diam.(D
< B2 [ aoplu) [ (Xonhndao,(X)
mi1—1  JOD UH ' G,

and, using the foregoing lemma, we get the claim. O
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We would now to show some applications of Theorem 4.5 to the Analysis in
Carnot groups. For what follows, we refer the reader to [11], [23], [93], [94]. Here,
more precisely, we give two explicit lower bounds for the first eigenvalue of the
Dirichlet problem for the Carnot sub-Laplacian. To this end, we use Theorem 4.5
by also adapting some classical arguments of Riemannian geometry, for which we
refer the reader to [16], [21], [22], [26].

We stress that in these inequalities, as well as in Corollary 4.9, we do not
characterize the equality cases and, in general, they are non-sharp.

We recall that, with our notation , the Carnot sub-Laplacian of G is defined
by

dt?
t=0

m1 mi 2
d
Ay ;:Z:ij7 Apip(x) :Z Y(zeexp(tX;)) Ve C®G).
j=1 j=1
Let us consider the Dirichlet eigenvalue problem for Agy on a smooth bounded
domain D, i.e. we find all real numbers ¢ for which there exist non trivial solutions

@€ Wé’z(D) -the horizontal Sobolev space- of the problem
Agd+rp=0 (z€D) (67)

satisfying the boundary condition ¢gp = 0. One can prove that the eigenvalues A
of this problem are strictly positive real numbers and that all the eigenfunctions ¢
can be choose to be real-valued. Moreover, eigenfunctions corresponding to distinct
eigenvalues turn out to be orthogonal in L?(D), with respect to the usual inner
product on L?(D). The main result that we use in what follows is the variational

characterization of the first eigenvalue of (67) that we denote by Ai(D), i.e.

Vil dLn
M) = e oV

68
e o) T T PR L (68)

Notice that to prove (68) one uses the following Green’s identity

/D{w A+ (Vp, Vi) g} dL" =0

whenever ¢, ¥ : D — R are smooth and with at least one of them compactly

supported in D.
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Proposition 4.10. Let D C G be a smooth, relatively compact domain and let
A1(D) be the first eigenvalue of (67). Then we have

7T2-m1 7r2-m1

(D) > .
1(D) 2 diamy (D) ~ diam.(D)?

Proof. We have just to prove the first inequality since the second one is trivial. To

this end we notice that for any ¢ € C§°(D) we have

mi

Om1—1

VP = /U (X)%d o, (X).

Moreover the fized-endpoint version of the 1-dimensional Wirtinger’s inequality

says that

/ dt>/ V2dt YheCH(0,1]), h(0)=h(l) = 0.

Therefore, using this remarks and Theorem 4.5 we get

/D Vo AL (x)

m
-0 1 / (XQO)QdMo(w;X)
m1—1 JUHD
2
- / / (t))> (X,vp)m, dtdo(z; X)
m1 1 JUHTOD
ac(X) X . .
> Vb dtdo(E
= Omy— 1/UH+3D€ ( /0 (v (t ))’ ( D) H o(z; X)
- / / ) (X, vp)u, dt do(z; X)
Om1 1° dlamH UH+8D
_ 72 my / lp(2)]2d po (7 X)
Oml 1e dlamH D) Juup Ko
- /I (z)? dL™ ().
dlamH

Now we state another similar result along the line of [22]; see also [16] and [26].
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Theorem 4.11. Let D C G and A1 (D) be defined as above. Then we have

2
my - T 1
A (D) > - inf —d X).

Proof. Analogously to the previous proof we have

/D VP L ()

2 05(X) )
ma T -
- c X,vp)p. ¥
~ Om,— 1/UH+8D EQ(X)/ (¢(7X(t))> (X,vp)u, dtdo(z; X)
#(X) o
- ml . / / Z) vp)m, dt do(F; X)
Omy—1 Jum+op
ma - 7T
Omlfl /(;HD Zm( ) ( )
2
_ mp-7 9 / 1 .
B r dpoy(X) dL" (x
o | fw [ (0 dena)
2
my - T 1 2
> BT [ s ) x [ el aco

and the claim follows.
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5 Some remarks about the geometry of

hypersurfaces in Carnot groups

5.1 The H-perimeter form o0, on non-characteristic
hypersurfaces

Let G be a k-step Carnot group. Below we shall adopt the notation of Section 1.

We shall also use the following standard operations on differentials forms:

(a) if X € X(G), then X | : A¥(G) — A¥~1(G) denotes the contraction with
X (or interior multiplication with X) of a k-form w € A¥(G), defined as

(XJ w)(Yl, ceey kal) = w(X, Yl, ceey Yk,1>
for every Yi,...,Ys_1 € X(G);

(b) if X € X(G) and w € A*(G) then Lxw denotes the Lie derivative of w with
respect to X and by Cartan’s identity we have

Lxw=d(X |w)+ X |dw;

(c) * : A*¥(G) — A" *(G) denotes the Hodge star operator (see [54], pp 142-
143, or [64]).

Now we introduce the canonical Riemannian volume form on hypersurfaces,
[64]. To this end, let S C G be a smooth immersed hypersurface —without
boundary— and let N denote a smooth unit normal vector along S. In the se-
quel we shall denote by NS the (Riemannian) normal bundle over S. With respect
to the orientation of S determined by N, the induced Riemannian volume form of

S is canonically defined by

o= (N QY)s, (69)
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and we will often denote it by the symbol dA"~!. We remind that the n — 1-
dimensional Hausdorff measure H"~! associated with the Riemannian metric (-, -)
on G and the volume form dA™~! agree on smooth hypersurfaces; for a proof, see
[33], or Theorem IV.1.8 of [17].

If X € X(G), then (X |dV")|s = (X, N)dA" ! and since the Riemannian
divergence operator div : X(G) — C*>(G) satisfies d(X |dV"™) = divX dV",
by Stoke’s Theorem we get the usual Riemannian divergence theorem for smooth
domains contained in G having S as a boundary. If we assume S with boundary,
an analogous construction enables us to define the n — 2-dimensional Riemannian
volume measure on 9S. Therefore, if n € TS is the outward-pointing unit normal

vector along 05, we shall set

"= (0] 0" )os. (70)

Later on we shall introduce both the H-perimeter measure and a differential

(2

n—1-form o,,, henceforth called H -perimeter form, that will be used as the “regular
counterpart” of the H-perimeter measure. We remark right now that these notions
coincide on “regular” hypersurfaces.

Let us consider the projection map onto the horizontal space
Pyg: TG — H,

that is, the homomorphism given by Py (X) := > ™ (X, X;)X; with respect to
the coordinates of the frame (X1, ..., X,,) . Hereafter, unless otherwise mentioned,
we assume that S C G is a smooth immersed hypersurface with a smooth
unit normal vector N. We also assume that S is transversal to the
horizontal distribution H. In this case we say that S is non-characteristic and
we set S h H. On the contrary, if S have characteristic points, we shall denote by
C(S) the characteristic set of S, defined by

o(8) == {x € S : dim H, = dim(H, N TxS)}.

The transversality condition can be formulated by means of the projection map

Pr of the unit normal N. Indeed, we easily get that

SMH<«=Py(N)#0<«<=3IX e H:(X;,,N,) A0Vx €S.
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Because our assumption that S is a smooth non-characteristic hypersurface, we
may normalize the horizontal projection of the unit normal N and so we obtain a
smooth unit section of H, called horizontal unit normal along S. More precisely,

we set

v, 1= 7PH(N) .

P (N)| 1

We stress that we may equip S with the smooth bundle structure, denoted by HS,

which is induced by H. We will refer to HS as the horizontal bundle over S, and
it is just defined by

(71)

HS = {XGH:WH(X)GS}. (72)

Note that v, is a smooth unit section of HS. Together with HS, we may define
the vertical bundle over S, denoted by VS, as follows. For x € S we define V, as
the n — 1-dimensional vector subspace of T, G such that 7,G = V, @ span{(v, )z},
ie. V. := (v,), and so we may canonically construct V.S as the smooth vector

bundle over the base space S given by

VS = H V. (73)

TES
The bundle projection maps of HS and VS will be denoted, respectively, by 7,
and 7. Finally, we shall define two bundle structures over S which are proper
subbundles of HS. They are, respectively, the horizontal tangent bundle HTS and
the horizontal normal bundle v, S and they are associated with the decomposition

of the horizontal space at x € S given by
H,S = span{(v,).} @ {(v,)x N H,} Vazels.

We set HT,S := (v,)x N H, (z € S). Note that HT,.S = Py(V,) Yx € S. Thus

we define

HTS := [[ HT.S, 1,8 := [ (w)e- (74)

zeSs zeS
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Remark 5.1. For z € S, let X € X(G) be such that X, € T,S N H,. We have
(Xg, Nz) = 0. Moreover we get that (Py,(X))e = 0 for any i = 2,...,k, where
Py, : TG — V; denotes the projection map onto V; that is the natural subbundle
of TG associated with the i-th layer V; of the stratification of g. But this implies
that X, = (Pu(X))z and so

(Xa, No) = (Xo, (Pa(N))a) = (Xo, (v )z) 5 = 0.
Furthermore, it follows that HT,S = T,S N H,.

The definition below allows us to regard the horizontal perimeter measure on
non-characteristic hypersurfaces as a smooth (non-degenerate) differential n — 1-

form.

Definition 5.2. [H-perimeter form o, | Let S C G be a smooth, non-characteristic
hypersurface with unit horizontal normal v,,. Then the H-perimeter form o, on
S is the differential n — 1-form on S given by contraction with v, of the volume

form Q" i.e.

oyls = (v, ] ")]s. (75)

Remark 5.3. By the previous Definition 5.2 we get

m1

ogls = ) ()i (Xi ] Q)]s

mi
= D (D)™ ()iwr A AB A Awy o
=1

where (v,); == (v, Xi)u (i =1,...,m1). Note also that

0y ls = [Pu(N)lm - 0" s.
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We also remind that if U is an open subset of G and E is a set of finite

H-perimeter in U with C'-smooth boundary, then

OB #(U) = /8 L Pa(V A, (76)

where N denotes the outward-pointing unit normal vector along OF. Moreover we
have v, = v;;; see Proposition 1.34.

We state in the next Remark 5.4 some results about the representation of
the H-perimeter measure and about characteristic points on regular submanifolds
which can be found in [67, 68]; see also [41, 42, 43] and [45].

Remark 5.4. Let U be an open subset of a k-step Carnot group and let > C U
be a C! submanifold of codimension h. Then, the intrinsec Q — h-dimensional

Hausdorff measure Hg)_h of the characteristic set of 3 is 0, i.e.
HET(C(D)) =0.

If ¥ is a Ct-smooth hypersurface, then the Hausdorff dimension of ¥ with respect

to the cc-distance d. is Q — 1, i.e.
dimy, (X)) = Q — 1

see [7], [41, 42, 43], [49], [67, 68], [81]. Furthermore, [67], if G is 2-step and
Y C G is a CYl-smooth hypersurface, then

dimy (C(5)) < Q — 2.

Now let us suppose that h =1, i.e. ¥ C U is a C' submanifold of codimension 1.
Then we have
Pu(N)|g-o" ' LS =k, S¢'LYE,

where k,_, denotes the so-called metric factor of d. (see Definition 2.17 of [67])

that is a function depending on both the structure of the Lie algebra g and on
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the direction of the unit H-normal v, along ¥ *. In some particular cases, the

metric factor k reduces to an explicitly computable constant, as in the case of

Q-1
the Heisenberg groups HF (k > 1). Moreover, let E C G be such that OF is a C!

hypersurface with outward-pointing unit normal vector denoted by N. Then
0E|y =ky , SE L OE = [Py(N)|y - o™ ' L OE.

Finally, if E is a C' closed subset of a k-step Carnot group G, the following version

of the Divergence Theorem holds true:

/diqu/)dV” —/ (6, v i1 | Por (V) gy dA™
F oOF

_ _/8E<¢,VE>HkQ1 SO vy e CG, H).

5.2 Geometry of 2-step Carnot groups

In this section we are mainly concerned with the study of 2-step Carnot groups.
There are many reasons for this and one, for instance, is that many proofs can
be given in a simpler way, by means of more explicit computations. Moreover,
an important reason for the study of geometric properties of hypersurfaces in
2-step Carnot groups is that a remarkable rectifiability theory for sets of finite
H-perimeter holds in this setting; see [42, 43]. Here below we shall simplify some
of our previous notation.

Let G denote a 2-step Carnot group of dimension n and let g be its Lie algebra.
In this case the stratification of g has only two layers: the first one, denoted by H,
is the horizontal space of g, while the second one is the center of g, denoted by Z.

We have g := H @ Z and we put m := dim H, so that n — m = dim Z. According

4Let B, (e, 1) denote the open d.-ball centered at the identity of G and of radius equal
to 1 and let Z.(v,) denote the maximal proper subgroup of G that is orthogonal to v,.

of d. is given by

Then the metric factor k,,_,

1

RQ-1

k =

Q-1

Hnil(Ie(VE> N Bc(e, 1))7
where xj, denotes the h-dimensional Lebesgue measure of the Euclidean unit ball in R”.
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to Remark 1.1 we denote by Z, (z € G) the image in 7,G of Z through (L;)s.
We shall denote by Z the smooth subbundle of TG defined by Z := [[,.¢ Z» and

by 7, its bundle projection map.

zeG

Notation 5.5. From now on we shall adopt the following convention on the range

of indices in the case of 2-step Carnot groups:

1<I1,J,H,..<n=dimg;, 1<ijh,..<m=dimH; m+l1<a,pf,7,..<n.

Moreover we shall set I := {1,....,m} and Iy :={m +1,...,n}.

In the case of 2-step nilpotent Lie groups, one has many simplifications with
respect to the general case. For example, the Campbell-Hausdorff formula takes

the form
1
eXp(X)oeXp(Y):eXp<X—|—Y—|—§[X,Y]> VXY eg,

and, for instance, one has dexp x(Y) = d(Lexp . )e (Y + 2 [V, X]) for all X,Y € g.

We now introduce a family of skew-symmetric linear transformations of H
which “capture” all the geometry of 2-step nilpotent Lie groups equipped with
a left invariant Riemannian metric; see [58], [31]. We emphasize that the metric
adopted in the sequel is that already defined by formula (3) of Section 1.1. So let
Z € Z and define j(Z): H — H by

J(Z2)X):=(ad X)* Z VXeH,
where (ad X)* is the adjoint linear transformation of ad X. Equivalently we have

G2)X,Y)=(X,Y],2) == ) z(C°X)Y), VX,YEH VZ= zXa€Z.
a€ly a€ls

By means of these maps, we shall explicitly write the Levi-Civita connection V
for G and we will specify both the expression of the Riemannian curvature tensor

of G and the values of its sectional curvatures. We have (see [31] pp. 620):

VxY = 3[X,Y] VX,Y € H,;
VxZ=VzX=-1(Z2)X YXeH, ZeZ (77)
V4Z =0 VZ, 7€ Z.
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a) RIX, V)X = 33([X, Y X — Li([V, X)X + L3([X,X))Y VX,Y, X € H,
a') R(X,Y)X = 3j([X,Y])X VX,Y € H;
b) R(X,2)Y = —1[X,j(2)Y] VX, YeH

Y Z e Z;
V) R(X,Y)Z = —1[X,j(2)Y] + 1Y, §(2)X] VX, YcH

VY Z¢eZ;
¢)R(X,2)Z = -Yj(2)0j(Z) X} VXecH

Y Z, Z;
)R(Z Z2)X = -1{i(Z) 0 3(2) X} + -1{i(Z) 0 3(2) X} VX eH

Y Z, Z,;
d) R(Z1, Z2)Z3 = 0 Y Z1, 79,73 € Z.

From (i7) we obtain a complete description of the curvature tensor but we may

also compute the Ricci tensor of G, defined, for X,Y € g, by
Ric(X,Y) := Trace(Z — R(Z,X)Y) Z € g.

From (i7) we get the expression of the sectional curvature of two orthonormal
vectors X, Y € g, ie. K(X,Y) = (R(X,Y)Y, X):

KX, Y)=-§lX.Y]? (XY €H)

K(X,Z)=—-315(2)X|? (X€e€H,Y € Z); (79)

K(Z,Z) =0 (2, Z € 2).

In the 2-step case we may easily compute the 1-forms of the coframe (wy, ..., w,)

for G. According to Remark 1.22, if 2 = exp (X) (X = Y j_; Tk ex) we get
(w)e = Y Biu(z)dzn
H=1
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where

_ ,—adX

Bru(z) = dan(la%(e]{)):dm(eH—i—%[eH,X])

n
= o4 % Z chrer since ¢k = (fer, ex], er).
K=1
Remark 5.6. Putting B(x) := [Bru(z)|ir,n=1,..n} (r € G) by an easy calculation
one gets B(x) = A(—x) where A(x) is the matriz representing the pushforward
associated with Ly; see Section 1.1. To see this, let x = exp (X) and y = exp (YY),

where X =Y y_jxmen, Y =Y. _1ymen; then

OPr(—z,0)

AIH(_x) - oy

n

0 ( 1 7
= o\ —Trtyr—35 c nyS)‘
Oy 2 R%jl RS y=e

1 1<
= (5;[—5 Z céséngzé}q—iZcéHxR
R,5=1 R=1

= Biu(w),
where the last equality follows from (i) of (16) of Section 1.1.

By the stratification hypothesis on the Lie algebra (see Remark 1.22) we obtain
also that B;; = 5{ for any 4,j € I; and that B,g = 88 for any «, 3 € I,. More
generally, note that

chi#0=H Kel, I €l

We now remind that the connections 1-forms {wj;}i j=1,..n (see [16], [59], [88]) of

the coframe (w1, ...,wy,) for G are defined by
wi(X) = (VxX;, X;) VX eX(G).

They are n? skew-symmetric 1-forms, i.e. w;; = —wj; (4, j = 1,...,n), satisfying

the equations

n
dwj = Zwk ANwgj (F=1,...,n).
k=1
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See also Proposition 1.21 of Section 1.1 for a more explicit result. By using this
definition and either the expression of V for 2-step Carnot groups (see item (7)), or
both Proposition 1.11 and the system of equations (11) of Section 1.1, we obtain
the system {wyk}Jj k=1,..n of connection 1-forms for the coframe (wi,...,wy) of

G. More precisely, since by definition we have
wik(X) = (VxXy, Xk) VXeX(G) (JJK=1,..,n), (80)

we get by an easy computation the following result:
wjk(Xi) =0 Vi, g, kel

wik(Xa) = =3¢ Vi kel Vaely

wja(Xi) =3¢ Vi,jel Yacely (81)
wja(Xg) =0 V] el Va,ﬁ S _[2;
waﬁ(X[):O Va,Bela VIelUl.

We end this section by computing the covariant derivative of two smooth left
invariant sections of T'G with respect to the coordinates of the frame (X1, ..., X},),
ie. if X =5 ;27 Xrand Y =) ;ys X, we shall compute VxY with respect to
the vector basis X1,...,X,,. We have

VxY = > xVx, (ys X))
I

= > {961 (X1ys) Xg+ 1 yJVX,XJ}

nJ
= > Xy)Xs+ Y zryswik(X) Xk
7 LJK

= (Xy)Xs+ ) wryjwnXDXe+ Y 2ryiwia(XD)Xa+ D> 21 Yo war(X1) X
7 Ik I.j0 Lok
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Here above, the first summation is nothing but the image of X under the Jacobian
matrix of Y with respect to the basis (X1,...,X,), i.e.
TIyX =) (XynX;=>_ ((ij)Xj + (Xyﬁ)Xﬁ)-
J J, B8

Now by (81) and the fact that the connection 1-forms are skew-symmetric, we get

VxY = JyX+ Z g y; win(Xg) Xk + Z 2 Y5 Wia(Xi) Xa + Z T Yo Wak (Xi) X
ﬁ]? i .77 i,a,k
1 1 1
= JyX — 5 Z cfk:cgyj X+ 3 Z cf‘jxiija ~3 Z €% Yo Xk
B,k (e’ o,k
1
= JyX+5 > C?‘k{xj yr Xo — (Tayj +x; ya)Xk}- (82)
Jik,

Definition 5.7. We set

C* == [l keny € MmmR),  Cp:=I[cilien, acn) € Mmn-m(R).

Moreover we define another family of matrices C* € M, »(R) (k € I1) by

T
Ck On—mm,—m

where C% denotes the matriz adjoint of Cx.. We shall also denote by C* : H — H

and, respectively, by C* : g — g, the linear operators associated with C* and CF.

Warning. Sometimes in some of the following computations we will use, with a
slight abuse of notation, the symbol (-,-) g to denote the inner product in R™ = H.

Note that C*, « € I, are skew-symmetric linear operators while C* k € I,
turn out to be symmetric and such that Im(C¥) C Ker(Py) (k € I). We may
state the following;:

Lemma 5.8. Let (G, (-,-)) be a 2-step Carnot group endowed with the Levi-Civita
connection V. Let X, Y € X(G) be two left invariant vector fields. Then

VxY = v X { > (CEXY) X+ Yo (€ PH><X>,PH<Y>>HXQ}. (53)

kel acls
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Proof. The equation (82) shows that, using the coordinates of the frame (X7,
we have

1
VxY =JvX - 5Z<Ck(xm+17~--axn)T7(yla---vym)T>Xk

kel
1
5 Z <Ck(merla ceey yn)Tv (xla ceey xm)T>Xk
kel
1
+ 3 26; (C¥(x1, .. xm)T, (Y1 ey ym)T>H Xa,
a€ls

so the thesis follows from Definition 5.7.
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6 Regular non-characteristic hypersurfaces

in 2-step Carnot groups

6.1 H-adapted moving frames and structure equations

In this section we shall introduce a moving frame in G adapted to a regular non-
characteristic hypersurface S C G; see Definition 6.1 below. This frame will enable
us to get explicit computations about the local geometry of S and will be mainly
used to understand the meaning of some variational formulas that we will prove
in the sequel. Here we just remark that the choice of this frame is motivated by
the fact that we cannot use the usual Riemannian approach (see [63], [16], [87],
[88]) in stating variational formulas concerning the H-perimeter form o, as, for
instance, divergence type theorems on hypersurfaces and the first and the 2nd
variation of o,. Indeed, it should be noted that the tangent space to a smooth
hypersurface does not play the same role as in the Riemannian setting, so that we
shall replace it by the vertical bundle VS over S defined in Section 1.2. Al least
for 2-step Carnot groups this seems perhaps motivated by the Blow-up method.
Indeed let x € 0*E, where 0*FE denotes the Reduced Boundary of a (locally) finite
H-perimeter set E. Then it can be proved that the (local) tangent structure at
x € 0*E is the vertical hyperplane orthogonal to v, (x) which turns out to be a
maximal (proper) subgroup of G; see [42, 43|, [67, 68].

Let G be a 2-step Carnot group and S C G be a smooth immersed non-
characteristic hypersurface. Since the following discussion is local we may assume
also that S is imbedded. Let VIS, HS, HTS and v, S denote the vector bundles
on the base space 5, defined in Section 1.2. Moreover we shall denote by ZS the
smooth vector bundle over the base space S whose fibre at any = € S is given
by Z,S = (L;)«Z. We have already seen that T,G = span{(v, ).} ® V, and by
Remark 5.1, for any x € S, we get that H,S = span{(v, ).} ® HT,S. Note also
that V.8 = HT,S ® Z,S. We may start by giving the following:

Definition 6.1. Let G be a 2-step Carnot group and S C G be a smooth immersed
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non-characteristic hypersurface. Fixz an open set U C G such that UNS # (. A
H-adapted moving frame for S on U is a smooth orthonormal frame (71, ..., )
for U such that:

(i) (T1)e = (U,)e and HTS = span{(72)e, ..., (Tm)e} for z€U=UNS;
(i) To = X0 (@€ ly={m+1,..,n}).
Note that
HyS = span{(71)z, ..., (Tm)z} = span{(X1)z, ..., (Xm)a} V2 €eUNS,

and that Z,S = span{(7m+1)z,---» (Tn)z} = span{(Xm+1)z, ..., (Xpn)z} for every
x € UNS. Thus, 7, ..., 7 are smooth left invariant horizontal sections that turn

out to be homogeneous of degree 1 with respect to Carnot dilations

{0xn(z1,...,2n) = (A 21, ..., A\ zy) b0,

while, clearly, 7,41, ..., 7 are homogeneous of degree 2. The H-adapted dual

coframe (¢1, ..., ¢n) for S in U is then (uniquely) determined by requiring that
¢1(ry) =67 (I,J =1,...n).

By construction, the 1-forms ¢, ..., ¢,,, which are dual of the horizontal sections

Ty, ..., Tm Of HS, are homogeneous of degree 1 with respect to Carnot dilations, i.e.
(S)\(l‘l, e ,xn) = ()\O‘lxl, Ceey )\a"azn)*gbi = t¢i (Z S ]1),

while the 1-forms ¢,11, ..., ¢, which are dual of the sections 7,41, ..., 7, of ZS are

homogeneous of degree 2, i.e.
O\ (T1, .y ) = (A2, A 2) Do = P00 (a € D).

Remark 6.2. Since locally the Riemannian volume n-form Q™ can be written in

terms of the wedge product of the 1-forms ¢1, ..., ¢y, i.€.
Q" =1 A ... A Py,
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by setting U := U N S, from Definition 5.2 we get

o LU = (v | )|
= (T1J¢1/\.../\¢)n)|z,{
= (¢2A--‘/\¢n)|u-

The following lemma will be useful in many computations of the next sections.

Lemma 6.3. [Vanishing Lemma] Assume that S C G is a smooth non-characteristic

hypersurface. Then, for any i € Iy \ {1} = {2, ..., m} we have
(1 | QM)|s = 0.
Proof. Obvious, since
(7 | Q")s = (13 | dV™)|s = (1, N) dA" |5
and (1;, N) = 0. O

From now on, we shall denote by ¢;; (I,J = 1,...,n) the connection 1-forms

of the H-adapted coframe (¢1, ..., ¢y ), which are defined by
¢17(X) = (Vx11,77) VX € X(G),

where V denotes the Levi-Civita connection of G. {¢1;}(1,7=1,..n} is a family of
n? skew-symmetric 1-forms. Furthermore we denote by ® ;5 (J, K = 1,...,n) the
curvature 2-forms of (¢, ..., o) (see [16], [59], [88]) defined by

(I)JK(X,Y) = QZ)K(R(X, Y) Tj) = <R(X, Y) TJ,TK>

forall X, Y € X(G) (J, K = 1,...n). Now we may write the (Riemannian) structure
equations of the H-adapted coframe (¢1, ..., ¢y):

doy = Z o Norg (J=1,...n) (1st structure equation); (84)
K=1

n
dojx = Z gL Norx — Py (J, K =1,...n) (2nd structure equation).(85)
L=1
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The H-adapted frame (71, ..., 7,) to S is a smooth frame for G which is defined
locally in a suitable open neighborhood of S and in the sequel we shall make use of
it instead of the frame (X7, ..., X;,), and consequently we shall replace the coframe
(Wi, ...,wy) with that H-adapted (¢1,...,¢n). Our point of view will be that of
interpreting the results of the next sections in terms of that geometric invariants
encapsulated by the H-adapted frame to S.

Below, we shall compute in detail the expression of the connection 1-forms
o1y (I,J =1,...,n) of the coframe (¢1, ..., p,) by means of Lemma 5.8. To this
aim, let x € U := U N S, and consider the orthogonal n x n-matrix O(x) € O(n)
given by

O(x) = [ ot ] ,

On—m,m In—mmn—m

where x € U and Oy (z) € O(m) is the orthogonal m x m-matrix given by
On(z) == [<Ti,Xj>Li7jzlmm} .

We set orj(z) := ((11)z, (XJ)z) (I,J = 1,...,n) and denote by or(x) the L-th
column of O(z) representing, in the coordinates of the frame (X7, ..., X,,), the L-
th vector 71, of the H-adapted frame (7i,...,7,). Now if O(x) : T,G — T,G
denotes the linear operator associated with O(z) and Oy (x) : H, — H, denotes

the operator associated with O (z), by making use of Definition 6.1 we get that
Ox)(X1)z = (71) (I=1,..,n).
Using Lemma 5.8 and the very definition of ¢;;, get us

¢ri(t) = (VeT1,77)
1

= ([To;)z 0L, 05) — 5{ Z<CkOL,OI>OJk — Z <Ca(01L, ...,omL)T, (011,...,om1)T>H O]a},

kel acls

and by this formula we deduce the following:
Lemma 6.4. If x € U, we have
(i) bij(mi) = ([To;)w 0k, 05) (i, J, k € I);
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(ii) ¢ij(m5) = (5%, 05) — 5 Ler, (Cog,0i) o (i, j € In, B € I);

(iti) ¢ig(1j) = =2 (CP(01j, s 0mj) T, (0135 wcsomi) Ve (4,5 € I, B € I);
() ¢in(13) =0 (i€, a, B € I);

(v) ¢ap(tr) =0 (o, B €Iz, L €11 Uly).

Proof. We have just to use the above formula and the fact that the derivative
along X, (a € I3) is nothing but the partial derivative %; see Remark 1.5 in
Section 1.1. O

Remark 6.5. Let S C G be a smooth non-characteristic hypersurface and let us
consider the tangent space TS of S. Suppose that (t1...,t,—1) is an orthonormal
frame for S. Since S is non-characteristic, Frobenius’ Theorem (see [64], [88])
implies that the Lie bracket of any two tangent vectors is still a tangent vector, i.e.

if t €S andif X,Y € T,S, then there exist oy, ..., an_1 such that

n—1
[X, Y]x = Z Q- (tz)a:
=1

Remark 6.6. Let x €U = U NS and consider the tangent space of S at x, T.S.
Moreover let N denote the Riemannian unit normal vector along S. Note that,
with respect to the H-adapted frame (71, ...,7,) for U, we have that
N = |Py(N)|gm+ Z Na Ta = M1 T1 + Z N Tar-
acls acls
By using the coordinates associated with o H-adapted frame, a vector basis for TS

can be written by noting that:

(i) (T2)z, -, (Tm)z are m—1 tangent vectors to S at x; they form an orthonormal

basis for the horizontal tangent space HT,S to S (see Section 1.2);

(i1) <Ta — = 7'1>$ (o € 1) are n —m linearly independent tangent vectors to S

at z; they are orthogonal with each other vector (7)., for every j € Iy \ {1}.

By normalizing the family of vectors introduced at item (i), we would get a full
basis for TS.
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In the sequel we shall make use of the following notation:

n
S::Ta——aﬁ a € I,
m

Ta

Remark 6.7. We remind the definition of the horizontal tangential operators
0/ = Xitp = (Vv vy V€ CO(U) (i€ I,
introduced by N. Garofalo and S. Pauls in [44]. We stress that, with our notation,
one gets
§p = VY — (VI gy, = Vi — (V1)

= > n()n Ve COU).
=2

1

Remark 6.8. There is no affine connection on the vertical bundle VS over S
because, obviously, VS it is not a subbundle of TS; see Definition 1.12 of
Section 1.2. Later on we shall define an HTS-restricted connection over HTS for
S, in the sense of Definition 1.12 of Section 1.1; see Definition 6.12.

However, we may give the following notion that will be useful in the sequel.

Definition 6.9. From now on, we shall denote by DVS the rule which assigns to
each vector field X € X(G) the operator DYF : X(G) — C>(G, VIS) defined by

DEFEY = Pys(VxY)
= VXY_<VXY7VH>VH X,YE%(G). (86)
Remark 6.10. We may explicitly write the rule DVS by means of the frame
(12, ..., ™) for VS. More precisely, for every X € X(G) we have

Dty = Z (X))t € VS VJ=2..n. (87)
H=2

Definition 6.11. If ¢ € C>*(G) we denote by DV, the unique vector field of
C>(G, VS) such that (DvS¢, X) = dp(X) = X (VX € VS), and we call DVS1p
the VS-gradient of . Also, we define the VS-divergence of X € VS, denoted
by div,¢ X, to be the function given at each point x € S by

div,, X := Trace <Y — D¥3X> (Y € V,.S).
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By definition, since (79, ..., 7,,) is an orthonormal frame for VS, we get
div,s X = Z (D¥sX,7;) ¥ X € C>G,VS). (88)

Furthermore, for every X € C>(G, VS) and every ¢, ©) € C*(G) we get that
Dv¥(¢ptp) = oD+ D5 ¢ (89)
divy, (¥ X) = (D89, X) + ¢ div, X = X + ¢ div, 4 X. (90)
The above discussion shows, in a sense, a formal analogy with the classical
Gauss Formulas; see [16], [59], [88]. Nevertheless, by making use of the horizontal
connection, this analogy becomes more evident. Indeed, first note that HTS C TS
is a smooth subbundle of the tangent bundle of S, whose fiber at © € S is, by
definition, an m — 1-dimensional vector subspace of H,. We shall now define an

HTS-connection over S, which is naturally associated with the decomposition of

the horizontal space at z € S given by
H, = HT,S & span{(v, )z} (91)

Definition 6.12. Let V denotes the Levi-Civita connection over TS induced by
(-,-), that is, by definition, V := (V)T5. Then, we denote by V47 the HTS-
restricted connection over HTS, in the sense of Definition 1.12, i.e.

s . o (HTSHTS)

Definition 6.13. We define the HTS-gradient of ) € C*(S), denoted by the
symbol VHTS) to be the (unique) horizontal tangent vector field such that

(VIS4 X) i = dip(X) = Xop (V X € HTS).

Moreover, the HTS-divergence of X € HTS, denoted by div,
given at each point x € S by

X, is the function

H TS

divy o X = Trace (Y — VI{/TSX> (Y € HT,S).
Finally, we denote by A, the HTS-laplacian that is defined by

A psth 1= divy (V59) ¥ o) € C(S). (92)
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From Definition 6.11, using also (87) and (88), we easily get that
div,, X = div,,, (Purs(X)) + div, (Pz(X)) ¥ X € C®(G, VS).  (93)

Remark 6.14. Using (91), if X, Y € C>*(S, HTS), we may decompose VLY as
follows:

(VA Y)2 = (Purs(VEY))z + (Py,s(VEY))e (z€S).
It is easily verified that
VE{(TS = ’PHTS(V_]){(Y). (94)

Note also that

Vin = > ¢i(X)7m =du(X) T+ 6ii(X) 7
jel Jj=2
= <V§(TZ‘,T1>HT1+V§(TST1' VXECOO(S,HTS), iGIl\{l}.

We therefore get that the horizontal connection V# satisfies a generalized
version of the classical Gauss Formulas. Before the statement of this result, we

give the following:

Definition 6.15. We define the horizontal second fundamental form of S

to be the map by : HTS x HTS — v, S given by
b (X,Y) =(VEY,v,) 5 vy, vV X,Y e HTS.

The trace of by, denoted by H, is called the horizontal mean curvature of S.
Finally, the quantity H:¢ := (H,v, )y will be called the scalar horizontal mean

curvature of S.

Remark 6.16. Clearly, we have that H € v, S and that

H:= Z <V%Tj,Tl>H T = —Z <V%7'1,T]~>H T = —Z $15(5) 1.
=2 j=2 =2

J

By arguing as in the Riemannian case, we may prove that by (X,Y) is a C*(S)-
bilinear form in X andY and that by (X,Y) only depends on X, and Y, ; indeed
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to see this, we can proceed as in the proof of Proposition 3.2 of [59], Vol.I1I. More
importantly, in general, by is not symmetric. The reason is the following.

Symmetry of by is easily seen to be equivalent to the following condition:
X,Y € HTS = Py[X,Y] € HTS.

But this condition fails to be true, in general. For instance, this condition turns
out to be trivially true, in the case of the Heisenberg group H', being HTS a
1-dimensional subbundle of TS, for any given non-characteristic surface S C H.
But, for example, the condition fails to hold, in general, for the case of H" (n > 1),

as it can be easily proved by using a dimensional argument.
Proposition 6.17. [HTS-restricted Gauss Formulas] For each x € S we have
VLY = VY + oy (X, Ya)
where Xy € HT,S and Y is any horizontal vector field which is tangent along S.
Proof. Obvious by the previous discussion. O
We may give the following:

Definition 6.18. We define the torsion THTS of the partial HTS-connection
VHTS7 by

THIS(X,Y) := VISY — VIS X — Py[X,Y] (X,Y € HTS).
From this definition, it follows that for every X, Y € HTS one has
TATS(X,Y) = by (Y, X) —by(X,Y) = (PylY, X],v, ) 5. (95)

Note also that the mapping HS 5 X —— Vf(VH is, in fact, the sub-Riemannian
analogous of the usual Weingarten map. In the case of hypersurfaces, using the
compatibility of V# with the metric (-,-) g, we get that (V&v,), € H,S. Indeed,
by differentiating the identity |1, |% = 1, we obtain

X (v, ,v,)m = 2<V§£VH7VH>H =0.
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6.2 Gauss-Green type formulae on hypersurfaces

Below, we shall prove first a generalized version of the Riemannian divergence
theorem on regular non-characteristic hypersurfaces and then some related Green’s
identities. The main proofs will be given in the next section.

Here we will just make a short comment. We remind that if (M, (-,-)) is a
Riemannian manifold and o denotes the Riemannian volume form on M, then the

divergence of a C! vector field X on M satisfies the following well-known identities:
Lxo=Divy(X)o=d(X |o) =divX g,

where Div, X denote the divergence of X with respect to o (see [16], [88]). These
relations allow to prove easily, via Stoke’s Theorem, the Riemannian divergence
theorem. Here, following the same approach, we state a generalized version of this
theorem in the case of regular non-characteristic hypersurfaces in 2-step Carnot
groups, endowed with the H-perimeter form o,. However, we cannot expect such
an extension of it to be trivial, as further terms will appear in it, due to the
non-Abelian structure of the Lie algebra.

Let G be a 2-step Carnot group and let S C G be a smooth immersed non-
characteristic hypersurface with unit normal vector along S denoted by N. Let
U C S be compact and let us suppose that the boundary U of U is a smooth
(immersed) n — 2-dimensional Riemannian submanifold with outward pointing
unit normal 1. Let V denote the Levi-Civita connection induced by (-,-) on U
(ie. V:= (V)T). Finally, we denote by V1 the gradient of 1) € C®() and by
divy the Riemannian divergence on U. A first easy remark is contained in the

following;:

Proposition 6.19. Let U be as above and let X € X(U) be a tangent vector field
on U. Then the following holds

/{divTuX—i-<X,Vlog(|PH(N)]H)>}aH:/ (X, 1) | Pa (N o™ 2. (96)
u ou

Proof. The proof it is a straightforward application of the Riemannian divergence
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theorem. Indeed, by definition of o,, and a simple calculation, we have

d(X]o,) = d(|Pu(N)lg X Jo" 1) = divey(|Pu(N)|g X) 0"
= {divry X + (X, Viog(|Pg (N)|x))} oy
and the thesis now follows by Stoke’s Theorem. O

The definition of the H-perimeter form o,, modify the role of the usual tangent
space and we shall replace it, in our analysis, by using both the vertical bundle
VS and the horizontal tangent bundle HTS. The starting point of our work will
be that of stating the analogous version of the Riemannian divergence theorem for
regular hypersurfaces endowed with the H-perimeter form o,,. Our first result in

this direction is the following;:

Lemma 6.20. [Main Lemma/ For every X € C®(G, VS), (X =3} _,xs7s), we

have

d(X oy )ls

= { PRI [xj [Z¢jh(7—h)+<ca(7'l>77j>H%f:| —¢15(75) no;;a] } (o3)]s-
J=2 h=2

j=2 a€ly
where ny = (N, 71) = |Pu(N)|g and ny = (N, 7y) (v € I2).

The proof will be given in Section 2.3. However, we may state the main
consequences of Lemma 6.20. To this end, we make use of the VS-divergence
operator div,, introduced in Definition 6.11. Now, let us state the following

elementary fact:

Lemma 6.21. For every X € C*(G, VS), X = > 7_,xr 71, we have

divye X = (@) + Y xn éni(7y).
=2 h, j=2

Proof. By definition of div,; we have
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n n

divy X' = (DB X,1s) = Y (DY (wrm1),7)
J=2 1,J=2
I,J=2
= > m@)+ Y. wrén(r)
=2 1,J=2

n

= () + Z xp, On;(75) (by (iv) of Lemma 6.4). (97)
-2 h, j=2

O]

By this lemma we obtain a more concise formulation of Lemma 6.20:

d(X |o,)|s = {diVVSX—|— Z<Cﬂ71,'PH(X)>H%f+H;C (Pz(N), Pz(X)) 731} a,ls,

Bel2

for every X € C*®(G, VS), or equivalently

d(X Joy)ls = divys X oy |s + {< > npCon, Pu(X)) +He <Pz(N),PZ(X))} o" s,

Bel2

From equation (98) we then get the next two corollaries.
Corollary 6.22. For every X € C>®(S, HTS), we have

d(XJ O-H)‘S = leHTS O’H|S + < Z nﬁCﬁleX>H Un_l’S-
BEI2

Proof. Tt is enough to use equation (98) together with the natural definition of
HTS-divergence related to Definition 6.12 (see also Remark 6.13) and observing
that xy = (X, 77) # 0 if, and only if, I € I; \ {1}. O

Corollary 6.23. For every X € X(5)(= C*(S, TS)), we have

A(X Joy)ls = {dives X = a3 foyls + ( 32 maCPr, Pu(xX) ), 0" ls

Bel2
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Proof. Also in this case we use equation (98). Since, for X € TS (X =), z1 1),
we have (X, N) = 0, we obtain

(X,N) =21 |Pg(N)|g + Z To Mo = X1 M + Z Zo N = 0.

acls acly

O]

Theorem 6.24. [Divergence type theorems on reqular hypersurfaces] Let G be
a 2-step Carnot group and let S C G be a smooth immersed non-characteristic
hypersurface with unit normal vector along S denoted by N. LetU C S be compact
and suppose that the boundary OU is a smooth n — 2-dimensional Riemannian

submanifold with outward pointing unit normal n. Then the following hold:

(i) For every smooth vector field X € C>®(G, VS) we have

/udivvsX o + /u {<g 12 Couy Pa(X)) +HEE (PL(), P} 0™

— [ (o) PNl 0
ou
(i) For every smooth vector field X € C*>°(S, HTS) we have

: 16} n—1 _ n—2,
[avmXa, + [ (S nsx) o= [ (X [Pa()] 0™

u Belz

(i1i) For every smooth vector field X € X(S) we have

/u{divvsX — H§c<X’VH>}UH+/ZJ<Z“ﬂCﬂVHaPH(X)>HU"1

Bels

- / (X, 1) [Pt (V)1 ™2, (98)
ou
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Proof. This follows from Stokes” Theorem, and the fact (easily verified) that

(X J oy )low = [P (N)|a (X, m)lou,

by using, respectively, Lemma 6.20, Corollary 6.22 and Corollary 6.23. O

Corollary 6.25. With the same hypothesis of Theorem 6.24 the following hold:

(i) For every smooth vector field X € C3°(G, VS|y) such that spt(X)NS €U

we have

/udivVSXaH _ —/M{< S n5Cou Pu(X)) + HE (PA(N), Po(X)) } o™

Bl

(i1) For every smooth vector field X € C3*(U, HTS|y) we have

/udivHTSX o, + /u< Z ”BCBVH’X>HU”_1 =0.

Bels

(iii) For every smooth vector field X € C5°(U, TS|y) we have

/u{distX — H(X,v,) } o, + /u< Z ng CBVH?PH(X)>H o1 — 0.

Belz

Proof. 1t is obvious by Theorem 6.24. O

Now let ¢ € C*°(G). By Definition 6.11 we may consider the VS-gradient of
1, i.e. the (unique) vector field DV of C*(G, VS) such that

(DS, X) = dyp(X) = Xo VY X € VS.
Clearly, we may compute also the VS-divergence of DVSq.
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Definition 6.26. We define the VS-laplacian of 1» € C>*(G) to be the function
given by A ;1 := div 4, (DVSy).

From (93) we get that

Ayt =0y (Wls)+ > 7P@) Vi e COG).

acls

From equations (89) and (90) we get, by means of an easy computation, that the

VS-laplacian satisfies the following properties:

divvs (¢ VHTS¢) =9 Avs (¢) + <VHTS¢= VHTS¢>H7 (99)

Ay (09) = 0 Ay (V) + P Ay (9) +2(D¥5 ¢, D4 (100)

for all ¢, ¢ € C*°(G). Analogous relations are satisfied if we consider the HTS-

laplacian on S; see Definition 6.13. More precisely, we have:

div 5 (9 VITY) = @ A s () + (VI 0, VIS ), (101)

Bprs(0V) = 0 B pyps (V) + 9 By (@) +2(VITE 9, VITY) (102)

for all ¢, ¥ € C*°(S). These formulae allows us to state the announced Green’s

type identities for regular non-characteristic hypersurfaces.

Theorem 6.27. [Green’s type formulae:I] Let G be a 2-step Carnot group and
let S C G be a smooth immersed non-characteristic hypersurface with unit normal
vector along S denoted by N. LetU C S be compact and suppose that the boundary
OU is a smooth n — 2-dimensional Riemannian submanifold with outward pointing

unit normal 1. Then the following hold:

(i) Let ¢1, p2 € C(G) and let us suppose that, for at least one i € {1,2}, we
have

spt(¢i) NS EU.
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Then we have

| {¢18002+ 07610500 o,
[ o{( X mu PuD )+ (PuN) oD o <.

(ii) Let ¢1, pa € C>X(S), with at least one of them compactly supported on U.

Then we have

/L{{¢1AHTS¢2+(VHTS¢1,VHTS¢2>H} /¢1<Z"ﬁcﬂ VHTS¢2> "1 =0.

Bels

(iii) Let ¢1, po € C>2(S), with at least one of them compactly supported on U.

Then we have

¢1 A ysh2 + (D1, DV o) — 1 (DVS o, 1) HE b 0y
A }

/¢1 ZTLQC VH,PH(DVS¢2)> "1 =0.

Belz

Proof. Tt follows from Corollary 6.25 and from the identities (99) and (101). O

Theorem 6.28. [Green’s type formulae:lI] Under the hypotheses of Theorem 6.27
the following hold:

(i) Let ¢1, p2 € C°(G) and let us suppose that, for at least one i € {1,2}, we
have spt(¢;) NS € U. Then we have

»/Z/{ {¢1 Avs‘lsQ + <DVS¢17DVS¢2>} Oy

/ {< Z "3 Covy, P DVS¢2)> +H ¢ <P2(N)’PZ(’DVS¢2)>} o1

Bl

- / 61 (DVS oy, 1) [Py (V)| i 02
ou
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(ii) Let ¢1, po € C°(S), with at least one of them compactly supported on U.
Then we have

/Z/{{¢1AHTS¢2+<VHTS¢1 VHT5¢2> 4y —|—/ 1 Znﬁcﬁy VHTS¢2> o1

Bel
_ /a b1 (V775 oy, ) [Pyg (V) gy "2
U

(iii) Let ¢1, ¢ € C°(S), with at least one of them compactly supported on U.
Then we have

/u {¢1 A sp2 + (DVSp1, DV ¢a) — ¢y <DVS¢2,VH>H}5[C} o,
/(bl > 15 C%wy, P DVS¢2)> "= [ ¢ (Do) |Pu(N)|mo" 2
BEIs ou

Proof. 1t follows from Theorem 6.24 and identities (99) and (101). O

Theorem 6.29. [Green’s type formulae: III | With the hypothesis of Theorem
6.27 the following hold:

(i) Let ¢1, p2 € C(G) and let us suppose that, for at least one i € {1,2}, we

have
spt(¢i) NS EU.

Then we have

[ {oraomonnnl o [ ({30 ms PutorD oo on),

Bels

+ <772(N),732(¢1 DV po — ¢2 DVS¢1)>H20 } o™t =0.
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(ii) Let ¢1, po € C°(S), with at least one of them compactly supported on U.
Then we have

/M{% Dy P2 — 2 A Ts¢1} / < Z ns CPy, {¢1 VHTS gy — by VHTS¢1:| >H o1 0.

Bels

(iii) Let ¢1, ¢ € C°(S), with at least one of them compactly supported on U.
Then we have

/M{[¢1 AN AVS<Z>1} - <[<Z>1 DVS g — 2 DVS¢1},VH> (H, VH>H} o

/ < > n5C%,, Pu($1 DYy — ¢2DVS¢>1)> o1 = 0.
U " per, "
Proof. 1t follows immediately from Theorem 6.27. O

Theorem 6.30. [Green’s type formulae: IV | With the hypothesis of Theorem 6.27
the following hold:

(i) Let ¢1, ¢po2 € C°(G) and let us suppose that, for at least one i € {1,2}, we
have

Spt(gbi) NSeu.

Then we have

/M{¢1Avs¢2—¢2Avs¢1}UH /{<Zn5€ , P (1 DVS po— ¢2Dvs¢l)>

Bels
+ <PZ(N)aPZ(¢1 DV gy — 2 DVS¢>1)>< H, v, )u } o

= <[¢1 DVS g —¢2DVS¢1},TZ> |Pe (N) | o2,

ou
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(ii) Let ¢1, po € C°(S), with at least one of them compactly supported on U.

Then we have

/M{qh Ayyrs P2—¢2 AHTS¢1} UH+/U< > 15C%,, [¢1 VHTS (ho —h VHTSqﬁl} >H o™t

Belz
= /au < {¢1 VHTS g — g VHTS¢1},U> |Pr(N) g o™ 2.

(iii) Let ¢1, ¢ € C*°(S), with at least one of them compactly supported on U.

Then we have

/M {[6180562 = 628 ,001] = ([1 D702 = 92D ] v, ) (Hov )it o,

+/z,{< Z nﬁCﬂVH,PH(gZ)l DVS gy — ¢2DVS¢1)>H i1

BEI2
— [ {01062~ D6 i) (PN 0”2
ou
Proof. 1t follows immediately from Theorem 6.28. O

Example 6.31. [Application: The Heisenberg group H'.] Let U C S be a compact
subset of a non-characteristic surface S C H'. Suppose that the boundary OU (# ()

is smooth and denote by @ the inclusion map of OU. Then for every smooth vector
field X € X(H') we get

/u [72(372) + 73(3?3)}% + /u {wz - :133<Z512(72)} PN P = /au V(2203 — x303),

where we have used the H-adapted coframe (¢1, ¢2,¢3), i.e. the dual coframe of
the H-adapted frame (11, 71,71) (T1 =1, T2 = l/HlH, T3 = X3; dds = p1 A ¢2).

By the above formula we also get

/u [7’3(963) - 9U1¢12(T2)}0H = - /au 1" (r302)

and this can be written more explicitly as follows

[ [tan + .30, == [ @)

ou
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6.3 Proof of Lemma 6.20

Proof. For X € VS, we compute the exterior derivative of the contraction by X

of o, , i.e.

d<XJO'H)‘5:d(XJ(pQ/\---/\(bn)’S"

Soif X =3 _,x 7y, then
d(X|o)ls = Y d@srs|¢an...dn)ls=> d(xsrs]|o,)ls
J=2 J=2
= Y @) ouls+ D wrd(rr]oy)ls
J=2 J=2

= Y ml)oyls+ Y wjd(rjloy)ls+ Y wad(raloy)ls
J=2 jer\{1} acly
(103)

Thus the proof follows by computing the exterior derivative of the form (77 | o, )]s,

i.e.

d(rrlo)ls = (=1)d(¢aA... AL A ... Adn)ls (I=2,...,n).

Step 1. Computation of

d(rr]o)ls = (~1)'d(¢an...AGi A Ny)ls
= (—1)id<¢2/\...AZ§A...A¢m/\qsa)‘ i=2,...,m.

S
a€ls

Proof of Step 1. With no loss of generality we may suppose i = 2. We have

A: = d(PsN... A A dp)
= > (=1)Mgs A Adbs N b
J=3
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= Z(—l)J+1d)3/\.../\<Z¢1/\¢IJ)/\-"¢71
J=1
n 2
. _Z(—l)”l(ngu/\gm)/\@A.../\@A.../\...gbn

- _Z D7 (d1s Ad1) Ad2 Ads AL NGI AL A by

—Z 1) (o Ad2) APa Ad3 A e AdyA oAb (104)

Here above we have used the 1st structure equation (84) of the H-adapted coframe

(¢1,...,¢n) for S. Now we note that

$17=> (k) dx  and o= > $os(7k) bk

K=1 K=1

We have so

(A1)s: = (GruAG)AGIA ... NGsA... Ay
= (¢15(2) G2+ d17(Ts) BI) NP1 ADa AL AT A .. Ay
= ()N ANPIA A+ (1) (1)) DL A B A A Dy
(105)

Now if J € I; \ {1} Lemma 6.3 says that (¢1 A.. AGIA... A¢n)|s = 0. Moreover,
by Lemma 6.4 of Section 2.1, if J € I5, the second expression in the above formula
(105) is 0, while the first one is different from 0 only if J € I5. Analogously, we
have that

(A2)s: = (s Ad2)Ada... Ay A... Aoy
= (¢2J(T1)¢1+¢2](TJ)¢J)/\(ﬁg/\.../\@/\.../\(ﬁn
= (ZﬁgJ(Tl)gﬁl/\.../\@/\...(bn—l-(—1)J¢2J(TJ>¢2/\.../\(Z)n.(106>
Using again Lemma 6.3 and Lemma 6.4 of Section 2 we get that the first term of

(106) is different from 0 only if J € Iy while the second one is different from 0

only if J € I; and so that cases are mutually exclusive. Now, using (104) and the
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expressions of (A1) and (As)s, we may finish the computations of Step 1. More

precisely, we have

Als = —Z J+1<I1 J+(I2)>‘S

= —Z(—l)JH{ — (M) PLA . AGIA A

+ ¢2J(71)¢1/\.../\@/\...A¢n+(—1)J¢2J(TJ)¢2A...A¢n} .

= Z¢2J i) (P2 A dn)ls

—I—Z @15 TQ) ¢2[3(7-1))(¢1/\---/\-“5;/\-”/\(;571”5

Belz

= Z¢2J(TJ) (@)ls + D (18(72) — d2s(11)) (15 ] )]s

Belz
n
= {Z¢2] 7j) + Z (¢15(72) ¢2,6(71))ﬂ}UH|S,
n
BEl2
where we remind that ng = (N,73) (8 € I2) and that ny = (N, 1) = [Pg(N)|u
Notice that from item (iii) of 6.4 and Definition 5.7 we obtain

bip(m) = —2 (@) ), dap(n) = —5(CPrm)n

Since C? (B € L) is a skew-symmetric linear operator® we get
$15(12) = dap(11) = (CP71, 7o) hr.
Therefore

A\SZ{Z@JTJ + Y (€, 1}(%)\5,

Bl

and, in the general case, if i € I;\{1}, we finally get

( |S = {Z@g T] + Z 7'177'1 n } UH|S' (107)

pels

°Notice that, with respect to the coordinates of the H-adapted frame (7, ...,7,), the

linear operator C? corresponds to the matrix 0T CA0.
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Step 2. Computations of
Ao o)s = (=1)%d(dpa A-..AdaA-..ANdn)ls a=m+1.. . n (108)
Proof of Step 2.
B: = d(gaA...AGaA...Ndy)

Digg Ao Ndds Ao A A ... Ay

Il
MMS

+ Z Ga Ao Ao A Addy Ay (109)

y#a,vEl2
We remark now that the second addend (109) of B;(j) must be 0. Indeed, by the

first structure equation of the coframe (o1, ..., ¢,), we get

=Y ¢x Ny #0 = Kel.
K

But (109) implies that K = 1. Moreover we have
$1 A p1y =1 \ <Z¢17 TR ¢R> (110)

and if we substitute (110) in (109) the claim follows by item (iii) of 6.4, since R

must be equal to a € I». Therefore

Bls = Z(—l)j{qbzA.../\(ZgbkAgékj)/\...Aas;A...Aqsn}
j=2 kel S
_ —Z(—l)j{(z¢ij¢k)A(bzA...Ag/ﬁ;A...Ag/ﬁ;A...A(ﬁn}
j=2 kel S
From the first structure equation we get that
Bi(j) = G AGIAGIA NG A Ndal... Ay
= (Z¢1j(TR)¢>R>Agbl/\...AgﬁAjA...AgE;/\...A%
R
= G (T)OAGIA A DA ANDa A A
F01(Ta) Da ADLA .. N Dj A Ao A A . (111)
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By applying Lemma 6.3 we get that the second addend (111) of By(j) is 0, if it is

restricted to S. Furthermore

Bo(j) = GajAPaNGaN...d; Al Nga ... Aoy
(quaj(TR)qﬁR)A%/\...A@A...A@A.../\%
R

= Gaj(T)IADa Ad2 A NG A Ada Ao A (112)
i (T Ada Ada Ao i A by Aol i AL Ao .. A .

By applying again Lemma 6.3, we get that the first addend (112) of Ba(j) is 0
when restricted to S. Thus we get

Bls=d(¢sA...Ada A...\dn)ls

=->) (-1 { D/ hus(r)¢n A - A@A.-.A¢>n+(—1)j+a*1¢aj(fj)¢zm..A%}S

J=2

= (—1)0‘*12%‘(71‘)(% s+ (= Z%J (75)(
= ) ! Z {¢1j Tj ¢aJ(Tj)} (o4)]s

= (—1)0“_1{ - [Zﬁbaj(Tj) Z¢1J(Tj)]7::} (04)]s-
= =2

By the characterization of the connection 1-forms ¢,; given in Lemma 6.4 we get

Paj(Tj) = (C7j,75) =0

by the skew-symmetry of C%, so that

d(p2 A ANPa N Ayl = (—1)°7 [Z(blj(Tj)] (7o ] Q)]s

:(—1)a_1[Z¢1j(7j)]na(0"_l)|s = (—1)a_1[2¢1j(7j)]2(0f1)ls

Jj=2
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and finally

d(1o | 0y, |5——{Z¢1g Tj } - (oy)]s-

O]

At this point we may achieve the proof, by substituting into (103) the results of
the computations of Step 1 and Step 2. More precisely, we have

d(XJ O-H)‘S
—ZTJQUJ o ]5—1-2%] (15 ] oy |S+Zxa Ta | 04)|s
acly
n m m n
= {ZTJ(QJJ)—FZ {Z%h (7 —i—Z Clr, i) } —p1(75) Z To O‘] } oy )ls
J=2 j=2 = ﬂEIg a€cls
that is equivalent to the thesis. O
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7 1st and 2nd variation of o, in 2-step

Carnot groups

7.1 Preliminaries

Before the statement of our results we would like to make a short comment, sug-
gested by a paper of Hermann, [55].

Let M be a smooth manifold and let y : N — M define N as a submanifold of
M. Assume that N is an oriented manifold with oriented boundary ON. Suppose
that w is a p-form on N and denote by x; a family of of 1-parameter smooth
deformations of IV fixing the boundary of N and which is just the identity for
t = 0. Then a very general variational problem is that to compute the 1st and the

2nd variation of the functional L(x;) = [y xjw, i.e.

d/ Tw d2/ Tw
dt NXt ) a2 NXt :

Assuming that ¢ — x; is the integral curve of a fixed vector field X € X(M), we
can prove, by using Cartan’s formula and Stokes’ Theorem, that:

i/NXW):/NX:(XdeH/aNX:(XJw)‘

From this we obtain that x is an extremal of L(x;) = [y xjw if
X(X |dw)=0 VX eX(M).
Moreover we obtain the condition that X must be transversal to the boundary, i.e.
X (X Jw)lan = 0.

Now the 2nd variation turns out to be given by
d2
g [ xiw= [ aeage) e [ e ace o))
N N ON

This kind of analysis goes back to Cartan, and applies as well to the case of
the H-perimeter form o, in general k-step Carnot groups, but, of course, it can be

used in studying more general variational problems in the subriemannian setting.
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Below we shall introduce basic tools and definitions that nedeed to compute the
1st and the 2nd variation of the H-perimeter form o, on regular non-characteristic
hypersurfaces of 2-step Carnot groups. We stress that we are dealing with 2-
step Carnot groups, because in this case, we have previously developed the useful
method of H-adapted moving frames. Actually, we will see in section 7.4, how
stating some of these results for the case of k-step groups without using such H-
adapted moving frames. For many calculations and well-known results needed in
this section we will follow, in many respects, the classical Spivak’s book, [88].

We now begin by quoting the following standard fact:

Proposition 7.1. [Leibnitz’ rule] Let N be a compact oriented n-dimensional
C°-smooth manifold with or without boundary, and R 5> t — w(t) € A"(N) a

C> 1-parameter family of n-forms on N. Then

jt’t:to/Nw(t):/Nw(t).

Proof. See [88], Proposition 10, Chapter 9, vol. IV. O

This elementary proposition can directly be applied to the case of a regular
hypersurface immersed in a k-step Carnot group.

Throughout this section let G denote a 2-step n-dimensional Carnot group and
S be a smooth immersed non-characteristic hypersurface with unit normal vector
along S denoted by N. Moreover, let &4 C S be compact and suppose that the
boundary ol is a smooth n—2-dimensional Riemannian submanifold with outward

pointing unit normal 7.

Definition 7.2 (Smooth variation). Let 1 : U — G denote the inclusion of U
into G, and let ¥ : (—e,e) x U — G be a C*° map. We say that ¥ is a smooth

variation of ¢ if the following hold:
(i) Fach 9y :=9(t, ) : U — G is an immersion;
(it) Yo =1

(1i3) Y¢|lou = t|lou for each t € (—e,¢€).
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We remark that the pull-back metric 9§ (-, -) on U determines a volume element
on U which can be regarded as an n — 1-form on U, denoted by o ~'. The classical
approach (see, for instance, [16], [63], [88]) to the calculation of either the first or
the 2nd variation of the Riemannian volume form, is that to applying the above

Lemma 7.2 to compute

i‘ /O_nl dQ‘ /O_nl
dt lt=0 M t ’ dt2 t=0 Jnr t .

In the sequel, if ¢t € (—¢,€), we denote by N; the unit normal vector along

U :=9¢(U). Notice that, if {t1,...,t,—1} is any orthonormal frame for ¢, then

N, = ﬁtn*tl VANAN ﬁtn*tn—l
[0, 61 Ao Ayt

Remark 7.3. Let G, S, U and ¥ be as above. If U and € are small enough, then
U; = 94 (U) turn out to be non-characteristic for every t € (—e,€). Obviously,
this is just a local property and this fact can easily be proved by a contradiction

argument.

From now on we choose U and € so that any Uf; is non-characteristic. Therefore,

according to Definition 5.2, we may define the H-perimeter form o, , on U; as
-1
(O-H,t)‘ut = (VH,t J Qn)|ut eA” (ut)v te (_67 6)7

where we have set

Prr (Ny)
v, = . 113
H,t ’PH(Nt)’H ( )
Clearly, the family of n — 1-forms
L(t) :==vjo,, € AN, t € (—¢,€), (114)

is a C*° 1-parameter family of n — 1-forms on U satisfying Proposition 7.2. Thus,

if we want to determine the 1st variation of o, on U given by

o) = 5|, [ T (115)

it suffices to determine T'(0). From now on, let % denote the canonical vector
field along the 1st factor in (—e¢,€) x U and denote by W its variation vector field,

defined as W = ﬁ*%‘t:e'
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7.2 1st variation of 0, in 2-step Carnot groups

The main result that we shall prove in this section is the computation of I'(t)];—o.
The result turns out to be a generalized version of the corresponding Riemannian
one, but we cannot expect such an extension of it to be too trivial, because the
different features between the Riemannian volume form on hypersurfaces and the
H-perimeter form. We refer the reader to Section 6.1 for definitions and notation
which will be used in sequel.

Our main result of this section reads as follows:

Theorem 7.4. Let G be a 2-step Carnot group and let + : U — G denote the
inclusion into G of a smooth non-characteristic hypersurface U, with boundary OU .
Moreover, let 9 : (—e, €) xU — G be a smooth variation of 1, with variation vector
field W, and assume that U = 9¢+(U) is non-characteristic for every t € (—e¢,e).
Finally, let T'(t) = 9o, , denote the C* 1-parameter family of n — 1-forms on U
defined by (114). Then the following hold:

()

PO)={ = A Pa(W),v,) 0, = HE (Po(W), P (W) !

+ d(Pu(N)]a (W ")} (116)
(ii)
Iny( /'HSC (P (W /HSC (Pz (W Pz(N»Un*l
+ L;UMnHﬂN i o2 (117)

Proof. Let U be an open set containing Im(1}) . We now fix an H -adapted moving
frame (C1,...,¢n) for S on U (see Definition 6.1) such that:

(i) G1(I(t,x)) :== vy, () (see (113) of Section 7.1);
(i) Hy(s,)TUy = span{Ca(I(t, 7)), ..., (m(V(t, 7))} Varel,
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(11i) Co = Xa Vaelh={m+1,..,n}.

Condition (i7) above means that {(2,...,(n} is a family of linearly independent
horizontal vector fields which span HTU, i.e. the horizontal tangent bundle of
U;. Furthermore, we shall denote by (1, ..., p,) the corresponding dual coframe
(ie. w1(¢s) =87, I, J =1,..,n). Clearly, by construction, this frame and its
associated coframe, satisfy all the properties discussed in Section 6.1. We stress
that, at t = 0, the orthonormal moving frame now defined, is an H-adapted moving

frame along U (so that (; = 77 and @5 = ¢ for every I = 1,...,n). Note that

() oy Ju, = (] A Ao, = (02 Ao Aon)luys
(v) T(t) = ;(p2 A - A o).

The variation vector field W on U is the restriction of the vector field W = %—?,
which can be extended on some open set U C G containing Im(¢). Clearly the

integral curve of W that starts at a point x € U is just t — Jy(x).

Step 1. We claim that

Proof of Step 1. The proof of this fact is standard and it can be found in [88].
Denoting by Vv, (t) the integral curve of 1% starting at * € U, if x € U and
Y e T, U, we get

(1) (1Y) = 04.Y.

ﬁ/m *

Y
So let Y1, ...,Y,—1 be tangent vectors along Y. Then

PO) (Vi Y1) = lim —{T(5) (Vi o Y1) = T(O)(Yi, oo Yo 1)}

s—0 8

: 1 * *
= ;1_I)I(l) ;{793 O—H’t(Yla"an—l) —1 UH’t(Yla--an—l)}

1
= ;I_)I%E{UH,t(ﬁs*Ylv---vﬁs*Yn—l)_UH,t(Z*Yh---aZ*Yn—I)}
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o1
= ;1_1)1(1] E{O'H’t(et*(l*yl),...,Ht*(Z*Yn_l))—O'H’t(Z*}/l,...,Z*Yn_l)}

= Loy, (Y1, 0:Yn1) (by definition of Lie derivative).

O
By using Cartan’s identity we get
Loy, =W ]|do,, +d(W]o,,)
and therefore by Step 1.
0(0) = (W | do,, +d(W ], ). (118)
Now we have
doy,, = d(paN...\py)
= Z(—l)lﬁpg A ANdpr Ao N
1=2
= YDA <—Z§0JI/\90J> A A on (119)
1=2 J=1
= > (D2 A Alprr A1) A Ao, (120)

2

Note that equality (119) is the 1st structure equation of the coframe (o1, ..., ¢n),
while equality (120) comes from the fact that J can only be equal to 1. Also, we

have

n
o171 = Z v11(CK) YK -
K=1

Therefore, by substituting this identity into (120) we obtain
n
dUH,t = = Z(_l)l(_l)lilwl N Ne1r N A on
1=2
n
= Z@H(CI) AN ) A (since K must be equal to I)

1=2

= Zﬁph(g) P1 Ao N\ pnp, (121)
=2
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where (121) follows since the H-adapted coframe (1, ..., ¢,) for S on U satisfies,

by construction, item (iii) of Lemma 6.4, i.e.:

via(Cg) =0 Vieh={l,...m},Va, € la={m+1,..,n}.

Thus we get
(T Jdoy) = (VLo
= {Z@lz((i)(WJ LA A gO")HM
i—2
= { [ZSOM(Q’)] <W’ Ne) oy _1}
i=2 u
= —H (W, N)o" 'y 122

since 1*(1 = ¥3¢1 = v4,. Note that at the last line we have used Definition 6.15 and
Remark 6.16. Now the second term in (118) is easily computed by using the fact
that

(AW oy,,)) =d@ (W ]oy,)). (123)
Moreover

W J03,) =7 | [Pa (Nl o7 ™) = (O 1PVl " Hlowe = {[Pa (W)l (W o™ 1)}

Finally, using the last relation and equalities (118) and (122) we get

L(0) = =My (W, N) 0"+ d ([P (N) | (W | o))

and item (i) of the theorem follows by Remark 6.6 of Section 6.1. Now item (ii)
easily follows by using (115), Leibnitz’ rule, and then by integrating both sides of
(116). Finally, for the second term, we use Stokes’ Theorem and the fact that

W] o™ Dlau = (W.m) (0" lou-
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We now state a definition of “divergence” of a vector field on G with respect

to the H-perimeter form on a regular hypersurface.

Definition 7.5. Let G be a k-step Carnot group and let S C G be a smooth
immersed non-characteristic hypersurface with unit normal vector along S denoted
by N. If X € X(G) we shall hereafter denote by Div,, X the divergence of X

with respect to o,,, that is, the function satisfying
(DngHX) o,ls = Lxoy,|s.

Notice that X € X(G), i.e. X is any smooth section of TG and it is not necessarily
tangent along S.

Proposition 7.6. Let G be a 2-step Carnot group and let S C G be a smooth
immersed non-characteristic hypersurface with unit normal vector along S denoted
by N. LetU C S be compact and suppose that the boundary OU is a smooth n — 2-
dimensional Riemannian submanifold with outward pointing unit normal n. Then

the following two items hold:

(i) For every smooth vector field X € X(G) we have

(Dive, X) o]
1
_ : 8 __qysc .
{leVSX—i-’,PH(N)‘H<ﬁ§€I2 ns Covy Pu(X)) —H; <PH(X),VH>H}JHS,

(ii) Let x € S and suppose that X5y € HpS. Since HyS = HT,S & span{(v, )z},
we set X, := (X" ), + (X"™),. Then, for every X € C®°(G, H) we have

(Dive, X) oy |s

1

_ . HTS B __qysc
= {leHTS(X )+ ’PH(N)|H<%I: nﬁc VH7X>H HH <X7 VH>H}O-H‘S
2
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Proof. The proof is a consequence of Lemma 6.20 of Section 6.2 and of the previous

proof of Theorem 7.4. Indeed, using Cartan’s formula we get
(Diva, X) ol = (X | do, s +d (X | 0,)ls. (124)

Now the second addend of the left hand side can easily be computed from Lemma
6.20 by noting that it does not depend on the v, -component of X. Moreover, we
have already proved that, for every X € X(G) the first addend of (124) turns out
to be (X ] do,)ls = —H (X, N) o™ *|s. Therefore, the proof follows by adding
these two terms using Remark 6.6 and definitions.

O

We can finally state the following (see also Theorem 6.24):

Corollary 7.7. Let G be a 2-step Carnot group and let S C G be a smooth
immersed non-characteristic hypersurface with unit normal vector along S denoted
by N. LetU C S be compact and suppose that the boundary OU is a smooth n — 2-
dimensional Riemannian submanifold with outward pointing unit normal n. Let
U C G be an open neighborhood of U = U N S. Then for every smooth vector field
X € X(U) we have

/u Divy, (X)o, = — /u H® (Per(X), vy ) 11 0y — /u HE® (Py(X), Py (N)) o™
n / (X, 1) [P (V)| 1 "2, (125)
ou
Proof. This is obvious from Theorem 7.4. O

7.3 2nd variation of o, in 2-step Carnot groups

In the present section we derive the formula for the 2nd variation of o,, for regular
non-characteristic hypersurfaces in 2-step Carnot groups, according to the general
discussion of Section 7.1. The calculation itself is quite difficult and also the result

has a very complicated expression. Thus we do not compute the boundary term of
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the variation, since we make use only of compactly supported vector fields. Also
in this case we shall use H-adapted moving frames in doing computations. The
proof of the following Theorem 7.8 can be regarded as a continuation of the proof
of Theorem 7.4 and we refer to Section 7.2 for notation and previous results.
Moreover, since Theorem 7.4 implies that the 1st variation of o, only depend
on the normal component of W (i.e. the component of W along N) we restrict
ourselves to the case of normal variations of U, that is, smooth variations with
variation vector field which is normal along ¢ and to the case of horizontal normal

variations (see Theorem 7.10 below).

Theorem 7.8. Let G be a 2-step Carnot group and v : U — G be the inclusion
into G of a smooth non-characteristic hypersurface . Let ¥ : (—¢,e)xU — G be a
smooth normal variation of 1, with variation vector field W € C3°(G, TG) such
that spt(W)NU € U and W, € NU ¥V x € Int(U). Assume thatU; = 9¢+(U) is non-
characteristic for every t € (—¢,¢€). Furthermore, let I'(t) = Vo, , and (1, ...,Cn)
be an orthonormal moving frame for U, where U is an open set containing

m() (see Section 7.1). Below we shall denote by w the function w := %
Then

(i
£0) = { = W+ wfon (00,05 ~ [ou ) ~ Hiaiv, (P2

[HTsw1+Z< v (VP w1, ) ) = 3 10, [y

aclr a€ls

© 3 (et = (94 (32).9070)) P o

acls
(i)
mnt _ sc 2 2 sc 1z
(o) = /M{ — W)+ wwn ((Hv,) % = [bn g ) — Hoodiv, (P2W)]

w
|: s W1 T+ Z < SV (VHTSwa + wlcaVH)> - 71 Z ||CQVH"%¥ram

a€ly agly

+30 (B A+ (7 (22), 9w, >>+divHTS(PHTS(CW))} }JH

acly
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Preliminarily, we give a definition that will be used trough the proof of the

next results.

Definition 7.9. Let S be a smooth non-characteristic hypersurface and let (71, ..., Tp)
be an H-adapted frame for S with H-adapted coframe (¢1, ..., ¢pn). Then we define
Ricg : NS — 11, S by the following

Ricy(X):=> (R(r, X)m,m)g 1 ¥V X € NS.
el
We also set
Ricy(X) = (Ricy(X),m) (X € NS).

Moreover we define Ricy : v,S — v,,S by the following

ﬁH(X) = Z<R(Ti7X)Ti77'1>H T1 VXEI/HS,
i€l

and we set
%H(X) = (Ricy(X), 1) (X € NS).

Proof of Theorem 7.8. Since the variation vector field W along U is a normal vec-
tor field, by using the coordinates given by the orthonormal frame ((1,...,(,)
for the open set U (see, for instance, the proof of Theorem 7.4) we get that
W = @161+ Y per, D56s-

Using the hypothesis and Theorem 7.4 gets us the local expression of the 1st

variation of o, at the interior of U, i.e.

L) = M (Pu(W), 1) 0, — Hyt (Pr(W), Pz(N)) o™

W, N
— _HSC < ? >

H ‘PH(N”HUH‘ (126)

119



More generally, we remark that we have already proved that on Int(U/) the 1st

variation at ¢ € (—e, €) is given by

L) = i)

)

o)

We then get for every t € ( ) the relation

(W N
{[Z‘plz Cz ] ’,PH(Nt)’H H.t }

= Ny ) t>
- {LZ;SDM(C@) Wlm/\.../\@n}

Throughout this proof, to sake of simplicity, we shall set:

TMS gMS %e

u

I(t) (127)

u

u

(W, N) (W, N;)

YT T PN

According to the proof of Theorem 7.4 we then have to compute
PO = *{LzW]da, )} (128)
To this aim we make use of (137) by noting that

L) = {[ZSOM(Q)] wt<P2/\-~/\80n}

1=2

u

m

= Z{wtcpg/\.../\ P15 /\---/\Spn}
NG

=2

(129)

j—thplace u

This easily follows from definitions and Lemma 6.3. Therefore we preliminarily

have to compute the following expressions:

(i) Ly (pn) for he I\ {1} = {2,...,m};
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(i) Ly (pa) fora€lp={m+1,..,n}

(i4i) L (p15) for j € I\ {1}.
This can be done by means of Cartan’s formula and of the structure equations for

our H-adapted coframe (¢, ..., ¢,). For the term appearing at item (i) we get

EW((ph) = Z {SDJ(W)QOJh — QOJh(W)goJ}.
T#h

Similarly, for the term appearing at item (ii), we have
Lip(a) = W1 Y <<P1a(Ch) - <Pm(§1)><ﬁh + dwq.
h=2

Finally (iii) can be obtained as follows:

L (p1j) =W [drj+d(W | ¢1y)

=) {(SOM(W)SOLJ‘ - (PLj(W)SOIL) — &1;(W) + d(@lj(W))}
LA1,j

= ) {(‘PIL(W)SOLJ' - SOLj(W)QDlL> — (R(Cx, W) G, Q) + d(%j(f/‘v/))}
LAGK
(130)

where in (130) the 2-forms @k are the curvature 2-forms of the coframe (1, ..., p5,)

for U, which are defined by
Pyr(X.Y) = or(RX,Y)()
= (R(X,Y) (s ¢k)
forall X, Y € X(G) (J, K =1,...n).
Now from (128) and (129) we get

m
F(t) = ZEW{wt O WA AR Son}
Jj=2

= W(w) [Z ©1i(Gi)
=2

= I+1I,

m
o, +w ZLW{@Q A AL A A gon}
j=2
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where

m

Il = w Zﬁw{@g N N A A (pn}
7j=2
m
=w Y P2 A AL (PR) A A1 A A (131)
.77h:2
m
Y D Pa A Aij A AL (0a) A A on (132)
J1=2 a€ly
m
tup > o A AL (915) Ao Apn = Iy + 1Ty + IT5. (133)

j=2
To compute each of these terms we make use of the previous computations of the

terms (i), (ii) and (iii). More precisely, we get

n: = > wt{m A N (150G e + 1) eon) A
Jhen\{1}
A [Z (SOhL(VT/)@L - wL‘PhL)} N A sﬁn}
L#h
= > 'U)t{SOU (&) [ > wrensl Ch)} ©1;(Ch) [%J > wienn(§) ]}
j,hel\{1} L#h L#h

= Y w{wen@en@) = eu @) (D will il ) fou,

Jhel\{1} L#h

= ) wtwl{tmj(Cj)%h(Ch) — 15 (Cr){[¢5> Q1 Ch>}UH,t
Jhel\{1}

= Y wtwl{QOIj(Cj)SDlh(Ch) — 15 (Cr) (P11(G5) — <Pyh(C1))>} Tpp 45
Jhel\{1}

h=w Y % {%-(gl) [gl(aa) + Wy (cma(Cj) - @ja(ﬁ)ﬂ %

jeh\{1} aelz
+015(G)Ca(@a) = @15(Ca) [G5(a) + @1 (P1a(G) — 9ialc)) | } o
=u 30 3 {en(G)a(@) +—en (G — 720 ) [G(8a) + 1 (01a(G) — pial@) | o

jGIl\{l} acls
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Now we put [I3:= (II3), + (I13)p, where

(II3)a = w >, {2/\ /\{ Y (RECx W) G, G1) o

jenh\{1} K
+ Z [<P1L )oLi — @Lj(w)<ﬂ1L] } A A (pn}
L#1,5

and, by using Lemma 6.3 and Definition 7.9, we get

(Is)a = ~w {Rica (W)~ 3 3 [eWeri () — e (Mer2(G)] } o

jen\{1} L#1,5

Furthermore we have

(II3)b = wy Z 25 WANVAN d((plj(W)) N .o N\ pp
=2
= w3 Gl (o, (134)
=2

Claim 1. We claim that the connection 1-forms @;; are 0 whenever j, h € Iy \ {1}.

Proof. Consider a Riemannian orthonormal moving frame on U H -adapted to the
open setUd = UNS. This means that we have an orthonormal frame § = {{1, ..., }
on U, satisfying £1(p) = N(p) (N is the Riemannian unit normal along S) and
such that

€% = spang{&2(p), ... &n(p)} = TS

for every p € U C S. Moreover let us denote by £ = {e1,...,&,,} its dual co-frame.
Claim: It is always possible to choose another Riemannian orthonormal moving
frame gfor U H-adapted to U satisfying:

(i) &(po) = E(po);

(ii) The connection 1-forms &r; = (VEr,&5) (I,J = 1,..,n) for g satisfies
€ij(po) =0 for every i,j =2,...,n

Here again, 55 {52, ceey En} is a tangent orthonormal frame for ¢/. We stress that

the proof of this claim is standard and it can be found, for instance, in [88], pag.
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517-519, eq.(17). Therefore, from this fact the thesis easily follows by assuming
that at po the frame & satisfy &;(po) = Gi(po) for every i € I \ {1}, i.e. the set of
vectors {£2(po), .-, Em(Po) } is an orthonormal basis of the horizontal tangent space
H,,S at pg, coinciding with that given at the beginning. In this case we get, in

particular, that

&7 (P0) = (Vx,, &, &) (po) =0 for every i,j € I\ {1}.

By extending the orthonormal frame {Eg, - Em} for the horizontal tangent space

to a full H-adapted frame ¢ we get our initial claim. O
Claim 2. We claim that <[W,ﬂt*X], Ni) =0 for every X € C*(U,HTU).
Proof. A proof of this claim can be found in Spivak, [88], Ch. 9, pag. 521-522. [

Claim 3. Let us set Ct := " Maco Then we have

acly ngy
VE () = —VHATU @) — Z @VHTMM'EQ — Puru, (th). (135)
v a€ls 1

Proof. Using the previous Claim 3 we get ([W, ¢, Ni) = 0 for every j € I \ {1}.
Therefore

(Vig G Ne) =V, W Ny (€ I\ {1}).
This implies that

<VH Ht’CJ> = <VCJW7VHt + Z %ﬁ«vng@t) - <V’W7ijCa>)

acls

= Gla)+ Y ﬁ{; (Wa) + Y zzwznﬂ ((Ve;Crs Ca) = (Vi G Ca))

a€lz acly I

_ ta Nto

- m+zg@m+zzw
a€cls acly 1

T .

= Glw)+ Y —agj +CW,¢) (GGe L\ {1} ={2,...,m})

a€ly
which is equivalent to the claim. ]
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At this point, by making use of Claim 3, we get that (134) can be computed

as follows:
U3y = wy ZC (‘101](W)> Hit — wtleHTL{t (V%Q)
j=2

i (9 5 P, Py )
acly i1

= _wtdWHTM (VHT“twl + Z nta VHTU W, + Prry, (C W))
acls t1

— Nta H Nta HTUy 775

= wt{ HTU, wy + Z ( AHTL{ Weo + <v (ntl) V twa>)

leHTu (PHTMt (CtW» }UH,t :

In sequel we shall set

n
C:= E e,
ni
a€ls

Now, tacking into account all the above computations, if we restrict to U by

assuming ¢ = 0, we get that®

F(O) = {I + 1L +115+ (Ifg)a + (Ifg)b}|t:0 = { — W(w)<H,7‘1>H

+ Y wwn{6n(n)oum(m) — 15 (m) (@) — Sin(r)) }

Jheli\{1}

tw >y {¢1j(Tj)Ta(wa) — 915 <Ta - %ﬁ) [Tj(wa) +wy (éf)la(Tj) - ﬁbja(Tl))} }

jEIl\{l} acls

—w{Rz’cH Z Z [¢1L Yor;(Tj) — ¢Lj(W)¢1L(Tj)”

Jen\{1} L#1,j

{AHTSwl + Z <%AHTSMO‘ <VH <n1> Vi, >) + divyg (PHTS(CW))}}UH
acls

SNote that, at t = 0, we have (; = 77 and 7 = ¢y for I = 1,...,n. Moreover, remind

that m =y,
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= { - W(wyH* + Z ww1{¢1j(7'j)¢1h(7h) - ¢1j(7'h)¢1h(7j)}

Jheli\{1}

o Y {0 ma(wa) = 64 (7)1 (wa) + wr (61a(7) = Bialii))| |

jeni\{1} a€l2

—w{Rz’cH(W)— Z Z [¢1L(W)¢Lj(7'j)_¢Lj(W)¢1L(Tj)]}

jehi\{1} L#1,j

{AHTSwl + Z (Z—TAHTSUJQ + <VH (%) , VHTSwa>> + div, .6 (PHTS(CW))}}UH
aclr

- { — W)+ w|wn ()% = [oa g ) — Hoodiv, (P2W))]

—w Z ((VTguH,VHTSwa) + ’LU1<Cal/H,Vf£VH>>

a€cly

—w{RicH(W ) + w1 Z Z¢a] )01a(75) }

JeN\{1} a€lz
—w{ A + a; (”a Ayrstva + (V7 (m ) V) ) + divg (PHTS(CW))}}JH
= { Wt wlun (1.0~ Do) — v, (P20

—w Z ((vTD%‘VH,VHTSwa> + w1<CO‘VH,Vf§VH>>

acls

—w{RicH(W)erl Z Z i<[7'1a7'j]a7-a>2}

jen\{1} a€lz

— { s W1+ Z (na Ay rsWa + <VH (Z—T),VHTSMQ>> + divy, (PHTS(CW))}}UH

= { — W (w)He + w[wl (¢, 1% = Mo [ ) — Hiediv, (P2 W)

—w Y (Togv, (P wa + i€, ) ) = 3T S () ma)?

agls jeh\{1} a€l

—w{ &ypn + Z (”a Ayrstva + (V7 (Z—?),VHTSwa» + div, (PHTS(CW))}}UH

where in the last equality we have used the explicit expression of Ricy (W), i.e.

Ricy(W) = —w 2 > jen\{1} Zaelz<[7—177—j]77—a>2' Indeed this result can easily be
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obtained by using (a’) of (78). The last expression achieves the proof once we note

that Zje[l\{1}<[7—1’7—j]’7—a>2 = ”CQVH“éram'
L]

At this point we may state another similar result which give us the second
horizontal normal variation of o, on regular non-characteristic hypersurfaces in

2-step Carnot groups. Also this formula is stated without boundary terms.

Theorem 7.10. Let G be a 2-step Carnot group. Let 1 : U — G denote the
inclusion into G of a smooth non-characteristic hypersurface U and ¥ : (—€,€) X
U — G be a smooth normal H-variation of i, with variation vector field
W € CX(G,H) such that spt(W)NU € U and W, € (v,).U ¥V x € Int(U).
Assume that Uy = 9¢+(U) is non-characteristic for every t € (—e,€). Finally, let
I'(t) = v;0,, and (C1,...,Cn) be an orthonormal moving frame for U, where

U is an open set containing Im(9) (see Section 7.1). Then we have
()
F0) = { - W+ o (4 olan) — 080

(6% w2 6% .
—u? Z <VT§VH76 VH> + ? Z HC VH”%‘mm - wleHTS(wCVH)}UH

a€cls a€cls
(ii)
Ifzz;{nt(O'H) = /u { — W(M)H}SIC + 7172<<H7 VH)%‘[ - HbHH%‘ram> - wAHTSw

w?
2 2 .
—w Z <VT§VHvCaVH> + ? Z ||CayH HGram - WdIVHTs(wcyH)}UH
aclr acly
Proof. This proof can be regarded as a continuation of that of Theorem 7.8 and
we refer to it for the notation used in the sequel.
We have by hypothesis that the variation vector field W along U is a horizontal

normal vector field, and so using the coordinates given by the H-adapted frame
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(C1y ..., Cp) for the open set U we just get that W= w(1. By using the hypothesis
and Theorem 7.4 we get the local expression of the first H-variation of o, at the

interior of U, i.e.
o) = —“HX (W) o, = —(H, W)y oy
Notice that we have to calculate
FOke = {Lz(W do,,)}. (136)
We also have that the 1st variation on Int(i) at t € (—¢, €) is given by

Ity = «(W|da,,)

- (Se@lianan),
- (S an,

and then we have, for every t € (—e¢, €), the relation

M T

It = {

X

#1i(G ] W19, Hu

||
N

:
|

NgE

©15(C ] wy P2 A /\SOnHu

[|
N

7

I

[\

{1171 W2 N NP1 AL A (pn}‘u.
‘]:

As in the previous theorem we have to compute the following quantities
(i) Ly (pn) for he L\ {1} ={2,...,m};
(i) Ly (pa) fora € Iy ={m+1,..,n};
(iii) Lp(p1;) for j € I\ {1},

Also in this case, we can do this by Cartan’s formula and the structure equations

for the H-adapted coframe (g1, ...,¢,). Clearly, we have many simplifications,
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because W = wy(1. For the term appearing at item (i) we have

Lip(on) =) {@J(W)¢Jh - ¢Jh(W)¢J} =w Yy {‘Plh - SOJh(C1)<PJ}
J#h J#h

= w Z {Splh(CJ) - SOJh(Cl)}W-

J#h

For the term appearing at item (ii), we have
m
Lip(a) = w Y (%m((h) - soha(Cl))SDh-
h=2

Finally (iii) can be obtained as follows.

L) = Wldej+d(W 1))
= w > {[eren — eriein] = IRk Q) G i b+ d (e (7).
K

L#1,j

We therefore have

m
F(t) = Z[:W{wt ) WA} VAR (pn}
=2
— m m
= W(w) [Z@u(@) Oy + Wy Zﬁw{(pg A A A A gpn}
1=2 j=2
= I+1I,
where
m
IT = w Zﬁw{m A e A1j A e A cpn}
=2

m
= W Z 2L WANAN ﬁw((ph) N N1 Ao N n
J,h=2

m
tw Y > @a A Apri A AL (0a) A Aoy
7J=2 a€ls

m
> pa A AL (91) A oo Apn =2 I + Iy + 115,
Jj=2
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We substitute into this expression (i), (ii), (iii) above. This way we get

IL: = Z wt{g02 A A (golj(Cj)QOj + <p1j(<h)g0h) A
Jhen\{1}

A e Y {eulen) = (@) }es] A pn

J#h

= Y e {en@en@) - euGen(G) by

Jhel\{1}

Ih: = wt 30 D () (91a(6) = 2ial@) 1% = 15(Ca) (#10(G) — 010(C1)) f o

jen\{1} a€lz

= —uf Y 3 oG- 220 (01a(6) ~ eialc)) o,

jeL\{1} a€la

We put I3 := (113), + (I13)p, where

(I13)s = wy Z {802/\---/\{ Z (Cx, W )Gy C1) oK

Jen\{1} K
+ 3 oo - oMol A nen) 139
L#A1,j

and, by using Lemma 6.3 and Definition 7.9, we get

(I13)a = —w {RZCH - > > [%L (C)eri(G) — @Lj(Cl)@lL(Cj)”UHt
Jenh\{1} L#1,j
Furthermore we have

(IT3)y = we Y g2 A Ad (W) A Apn = w1 (wiCa))oy,
j=2 i=2

(139)

and we may compute this term by arguing exactly as in the previous proof of

Theorem 7.8 and, more precisely, by making use of Claim 1, Claim 2 and Claim 3
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we obtain
(II3)y = w ZCj(‘PIj(W))UHYt = wtdivHTMt(V%Cl)
=2

= wtdiVHTL{t ( — VHTUs y — w Py, (Ctgl))JH,t
= —wdivyy, <VHT”’5 wy + wPrTuy, (Ct<1)>JH,t

= _wt{AHTL{t wy + diVHTZ/{t (thHTUt (CtCl)) }UH,t‘

From what we have previously seen and by using Claim 1 of the proof of Theorem

7.8, we get that

00) = {I+ 1L +1L+ (II3)s + (IT3)p} =0
= { — wgywaf + Z u12{¢1j(7j)¢1h(7h) — ¢1j(7h)¢1h(7j)}
" Jheli\{1}

ot > Y { — ¢1; (Ta - %%) <¢1a(7j) - ¢ja(VH))}

jeL\{1} a€ls

—u{Rien(v) = Y Y [$1004)615(7) = d1s()1(7)] }

jen\{1} L#1,j

_w{ AHTut w+ diVHTMt (wPHTUt (thl)) } }UH

= { Wl ()% - o)

,w2
—uw Z<VT§VH’CQVH> + 9 Z Z<[Tl’Tj]’TO‘>2

a€cls jeh\{1} a€l
_w{ A, w+ div,, (wCC) } }aH

= { Wl ()% = o) — 0y
U}2 « U}Q o 2 .
- Z <VT§VHaC VH> + 7 Z HC VH”Gmm - wleHTS(wCVH) Oy
acls acls

which is the thesis. O
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7.4 Addendum: Integration by parts and 1st variation
of 0, in k-step Carnot groups

The results previously stated can be generalized for k-step Carnot groups. Through-
out this Addendum, we shall generalize some of them, and, more precisely, the
theorem about the 1st variation of the H-perimeter form o, and the integration
by parts formulae for smooth non-characteristic hypersurfaces.

However, many proofs given below will turn out to be slightly different from
the previous ones because we will make use just of the fixed left invariant frame
(X1, .., Xn).

Let G be a k-step n-dimensional Carnot group and let S C G be a smooth
immersed non-characteristic hypersurface with unit normal vector along S denoted
by N. Let U C S be compact and suppose that the boundary O is a smooth n—2-
dimensional submanifold with outward pointing unit normal . Finally, U C G
will denote an open set having non-empty intersection with S and U/ := U N S.
In this section we do not make use of the indices convention used for 2-step
Carnot groups.

In the sequel we shall set
I = {1, ...,ml}, I := {m1 +1, ...,mg}, v Iy = {mk,1 +1, ,n}

Q=W A Awmy, Q2= Wiy 41 A e AWy oo, Q1= Winy 41 A e A Wiy,

so that Q™ = O A oA Q.
The next notions of horizontal second fundamental form and of horizontal mean

curvature, are analogous to the ones given in Definition 6.15.

Definition 7.11. We define the horizontal second fundamental form of S

to be the map by : HTS x HTS — v, S given by
by (X,Y) = (V&Y v, n v, VX, Y e HTS.

The trace of by, denoted by H, is called the horizontal mean curvature of S.

Finally, the quantity H>¢ = (H, v, )y is the scalar horizontal mean curvature
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of S. Clearly, H € v, S and

mi

mi
:Z (VL XJ,VH v, :_Z<v§(jVH’Xj>HVH:_HZCVH

j=1

We begin by stating some preliminary lemmas.

Lemma 7.12. Let j € I1. Then we have

D 1 C o™ e (i€ N);
d(Xi ] X;1Q")|s =

Shivr Cimo™ s (izmi+1eie UL UL).

Definition 7.13. Throughout this section we shall set Cf, = [Ci‘ej]{i,j en} € My mi (R)
and Ck .= [C‘];i]{jef1,iEIQU..-UIk} € My n—m, (R). Moreover we shall denote by
CI]} : H — H and, respectively, by C{} Vo @ ... Vik — H, the linear operators
associated with Cfy and C’f/. We shall also denote by

Pvig—Vodb...6 VW

the projection map onto Vo & ... ® Vi given, for X € g, by

n

Pr(X) = > (X, X)X

i=mi+1

Proof of Lemma 7.12. This proof will be divided into two steps. We start with
the following:

Step 1. Computations of

d(X: | X;]QM))s  foriel, (j=1,..,m). (140)
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Proof. We have

d(Xi ] Xj | QU AQ A A5
- d( X5 ) (QZA...AQk)ﬂS

(d X5 QDA (Q2 A A
F(=1)™7X(X; | X | Q) Ad (A .. /\Qk))‘s

= () X ) A A A ),

(141)
since dwy, = 0V k € I1. Now setting 3 :=d (Q2 A ... A Q) we get
,8 = d (me_l VARAN wn)
n
= Z (—1)FFmtly, A Adw A Awy
k=mi+1
= 1
= Z (—1)k+m1+1wm1+1 Ao A ( —3 Z cffs wy A ws) A oo N wp,
k=mi1+1 1<r,s<hi—1
(142)

whenever hy_; < k < hj41(< k € I;); see Remark 1.22 of Section 1.2. From (142)

we get
1 n
g = -3 Z Z clﬁs (—1)k+m1+1wm1+1 Ao A wp Awg Auee A wy (143)
k=mi1+1 1<r,s<h;_ k—th place
1 & __
= -3 Z Z C]:s (—1)k+m1+1 (Wr Aws) A (W41 A oo A Wi A oo Awp).

k=mi1+1 1<r,s<h;_
Now we note that o # 0 if, and only if, we have
Ql = :E(XlJ XJJ Ql) VAN (wr VAN ws).
This implies »r = ¢ and s = j or r = j and s = 4. So, tacking into account

(141), (142), (143), using the skew-symmetry on the lower indices of the structural
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constants cfs, one gets
n
o = — Z cfj (—1)k+1w1 A N OE Ao Awyls
k=mi1+1
n
= > Gi(Xls
k=mi1+1
n
= Z c?i n o™ .
k=mi1+1

Step 2. Computations of

d(XZJXJJQnMS fori>mi+1sielbU.. Ul (jzl,...,ml). (144)

Proof. We have

oo (o 0 A ),

— (—1)y*'q (XZ-J ((w1 Ace NG A e Nemy) (@2 A .. mk)))‘s
= (“D)Md (w1 A AW7 A e Ay AWy 41 A e AW A e Awn )]s

Jjeh i€IU...Ul}
= (=D)AL A DG A e Awmy) [\ d (@1 A AT A Awn)|s

(145)
since dw =0 V k € I;. Now, setting
ﬂ:wm1+1/\.../\ Wi N N\wy

we get

= (=) A LA DA Awy) AdBls
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so that we have to compute d 3. We note that d § is a finite sum of terms of the

following type:

Y1 = Wmit1 Ao Adwg AN A A wp,
Y2 = Wigt1 A AW A Ad wi A A wy.

But each n — mi-form of the type 71 must be 0. Indeed dwy is a finite sum of

2-forms w, A ws, with 1 < r;s < hj_; whenever hj_; < k < h1(& k € 1)),

and so in the wedge product which defines «, there is at least one term wz (or

w?). Therefore, setting 3 := B1 A w; A B2, where B := Wiy 11 A ... Aw;_1 and

s

B2 = wit1 A ... Awn, wWe get
df = (=1)"" 7B A G Ad B (146)
Now we have

dpy = d(wiﬂ/\.../\wn)

n

= Z (—1)k+i+1w,~+1/\.../\dwk/\...Awn

k=i+1
g 1
= Z (=R A LA (— 5 Z cfswr/\w5> A A\ wp
k=i+1 1<r,s<h;_q
(147)
whenever hj_; < k < hi11(& k € I}); see Remark 1.22. From (147) we get
1 ¢ k k4it1
dpBy = —3 Z Z crg (—1) Wit1 A e A Wr Aws Avee A wp,.
k=i+1 1<r,s<h;_1 k—th place
(148)

Then, tacking into account equations (145), (146) and (148) we obtain
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a = (=) MG A A DA e AWy A A @7 Ad Bals
(

—1)FIrmam )l A LA G A e AWy A e A W

1< ;
/\ ( —5 Z Z ()M LR i i A A we Aws A A wn> <

k=i+1 1<r,s<h; k—th place

1 & L e e
= 3 S CDIE WA AG AL AD A A (wr Aws) A Awnlg

k=i+1 1<r,s<h;_q
n

e Z (—l)k—‘rlc‘];,bwl/\.../\ C/L); /\.../\CL)TL|S7
k=i+1

where the last equality follows from the the skew-symmetry on the lower indices

of the structural constants. Finally, from (149) we get

n n

a= Z c?i (Xk | Q)]s = — Z cfj n o™ s (150)
k=i+1 k=m1+1

O
Now the proof of Lemma 7.12 follows by applying both Step 1 and Step 2. O

By using the previous lemma we can prove the analogous of Lemma 6.20; see
Section 6.2.

Lemma 7.14. For every X € X(G) we have
: (X,N) — (Ixvy, N)
axJopls = {awx+ [t S B 6

— > (Gl Pa(O)m + (i Chy Py (X)) (0" s
kelxU.. .Ul

Proof. Let (v,); (j = 1,...,m1) denote the j-th horizontal component of the unit
H-normal of S, with respect to the frame (X1,..., X5,), i.e. (v,); = (v, X;) and
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vy = ()15 ¥y)mi»0,...,0) and let X = > | z;X;. First we note that, by
definition, o, = (v, | 2™)|s. So we have

(X Ja)ls = d(X |, | )]s = D0 D d (@il ) Xi ] X5 19")]s (151)
=1 j=1

= 2% { Xl () (X5 1 s = X (1)) (X ] Q)]s + i () d (X | X )]s -

=1 j=1

Now we remark that for Carnot groups we have
n

divX = Y (Vi X, Xp) = (Xh(mi)(szh—l—xi(VXhXi,Xh))

NgE

h=1 i,h=1
n 1 n ' .
= ) Xi(wm) + 5 zi(ci; — i)
i=1 i,h=1
n
= > Xi(w), (152)
i=1
where the last equality follows from the stratification hypothesis on the Lie algebra,
which implies that cﬁj = —cz-i =0 (i, = 1,...,n). Moreover we note that
n mi
22 Xl (1)) (X5 1 2")]s
i=1 j=1
n mi
=303 (Kila) )y + e Xil);) (X512
i=1 j=1
= divX (g |s+Z(Z$z Xi( )J) (oy)ls
=1 j=1
= divX (o,)|s (153)

since Y, (v,); Xi(v)j = %XZ(ZJ.(VH)?) — 0. Therefore, using (151), (152) and
(153), we get

n  mi

X Jo)ls = divX (o)l = 323 (6 X50a)s + )y X)) m 0"l
i=1 j=1
DD wm ) d (X ] X5 )]s
i=1 j=1
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: . (X,N) | (Ixvy, N)
- {de— [deuH R ‘P;(N”H]} (o)

n  mi

D i () d (X ] X5 ] 9Y)s. (154)

i=1 j=1

Notice that —div, v, = (H,v,) = H;° is the scalar horizontal mean curvature of

S. Now, by using Lemma 7.12 and Definition 7.13 we finally get
. <X’N> <‘-7XVH’N>
d(X = ¢divX s¢ —
( JUH)|S { A + [HH ’PH(NNH ‘,PH(N”H] (UH)|S
= > [ Pa (X)) a + (g Pr (X)) | (0"

keloU... Uy

O]

Therefore, as an application of the previous lemma, it follows a divergence-type

theorem for regular non-characteristic hypersurfaces in k-step Carnot groups.

Theorem 7.15 (Divergence-type Theorem). Let G be a k-step Carnot group
and let S C G be a smooth immersed non-characteristic hypersurface with unit
normal vector along S denoted by N. Let U C S be compact and suppose that the
boundary OU is a smooth n—2-dimensional Riemannian submanifold with outward

pointing unit normal n. Then for every smooth vector field X € X(G) we have

/ divX o,
u

+ /M{H;c<X,N>—<quH,N>— Zn: ny, ((cﬁ,uH,PH(X»H+<05VH,7>V(X)>)}gn—1

k=mi+1

= [ X Pal o, (155)
ou
Proof. The proof follows by Lemma 7.14, using Stokes’ Theorem and the fact that

(X Joy)lou = (Pu(N)| (X, m))|ou-
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We now state the analogous formulae for the 1st variation of o, in k-step
Carnot groups. We refer to Section 7.1 for an introduction to the problem and for
some further notation that we will use below.

According to [55], we will consider deformations of the following type:

Definition 7.16. Let X € X(G) be a fized smooth vector field. We say that
¥ :(—€,€) xU — U is a smooth deformation of » : Y — G generated by

X if, for each x € U, the mapping
(—€,€) 3t Oy(x) :=V(t, 2)

is the integral curve of X starting at x € U.

Theorem 7.17. Let G be a k-step Carnot group and let + : U — G denote the
inclusion into G of a smooth non-characteristic hypersurface U with boundary OU .
Moreover, let ¥ : (—e,€) x U — G be be a smooth deformation of U generated by
X € X(G) and assume that U, = V¢(U) is non-characteristic for every t € (—e,e€).
Finally, let T'(t) = Yo, , denote the C* 1-parameter family of n — 1-forms on U
associated with ¥¢. Then the following hold:

(1)

0(0) = { ~H (X, V) 0" + d (Pu(W)]ar (X 0" )|

= { =1 (Pu (X)) 0, = M3 (Pa(X), Po(N)) 0"+ d (Pa(N)]1r (X Jo" )}

(i)
Tuloy) = - /u HE (P (X), vy) 1 0y — /M HE (P2(X), Py (N)) 0!

+ /8 ) [Pl 0”2

where Iy(0,) = %‘t—o J,;T(t) is the st variation of o, on U.
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(iii) For every smooth vector field X € X(U) we have
/Dmhuy&:—/ﬁq@mxw@H%—/Hymﬂmj%N»wA
u u u

" /a X [Pl 0"

where Divy, (see Definition 7.5) is the divergence operator with respect to

o, which turns out to be defined by the following identity:

1 n
Divy, X =divX + ——— n, Chv P (X
Vo, v |'PH(N)’H<k_mZH_1 k “H"n H( )>H
1 = L
+m Z ng CVVH7PV(X)>H — <jX7/H, N>

k=m1+1

A posteriori will be clear that the previous item (iii) it is just an independent
reformulation of the previous Theorem 7.15. Now, to prove the theorem, it suffices
to determine P(O) Also, we note that if % denote the canonical vector field along
the 1st factor in (—e, €) x U then X turns out to be its variation vector field, i.e.

X = ﬁ*%‘t:O'

We may start with the following useful remark:

Lemma 7.18. For any X € X(G) we have

L0) = Lx (o ) = (X]d (v, ] O)Du+d(X o, )lu

= ([X v ] 1)+ (v ] A (X ] Q"))us -
b1 b2

Proof. The first identity follows by applying Cartan’s formula and using the very

definition of o, ,, while for the second, we have to use a well-know characterization
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of the Lie derivative’. OJ

Remark 7.19. The terms ai, az, b1, ba, which appear in the above Lemma 7.18,
can be computed as follows. First we note that the Riemannian divergence theorem

give us
(X Jd(Y Q")) y, = (divY | Q")|y, = divY (X, N) (6" 1), VX,Y e X(G).
Thus we immediately see that:

(i) a1 :=divy, (X, N) (" Hy;

(ii) by := (divX v, | Q")|y = div X (0,)|u.

Note that Definition 7.11 implies that divy, = —(H,v,) = —H;°. Moreover,
by using Stoke’s Theorem, the term as can be computed in terms of a boundary
integral, if U is with boundary, or also, by a direct computation, as in the next

Lemma 7.1/ which is the k-step analogous to Lemma 6.20.

Lemma 7.20. For any X € X(G), X = > | x;X;, we have
([Xv VHt] J Qn)’l/lt
=L [unClave Pu (X)) e+ (mx CEyty s Py (X0)| (Tt N } (0"t

kelzU...UI

Proof. We first notice that

[X, VHt] = [ZZL‘ZX,L, Z(VHt)ij] = Z Z [IL‘lXZ, (UHt)ij]
i=1 j=1 i=1 j=1

Tifwe AP(M) and X, Y € (M), where M is a n-dimensional smooth manifold oriented
by Q™. then
LxY |w)=[X,Y]|Q"+Y | Lxw.
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n  mi

= >3 {xiXi(VHt)j Xj = (W) X (i) Xi + 2i(vy,); [szXj]}
i=1 j=1

- Z Z Z {x’ Xi(VHt)J' Xj— (VHt)ij(xi)Xi + ijlﬁ (VHt)j Xk}

i=1 j=1 k=mi+1
(156)

From (156) we thus get
([X7 VHt] J Qn>|ut

= {Z , {wiXi((yHt)j)Xj — (V)i X () X + ijxz‘(VHt)j}J Q”}

Ur

- . A Z {xiXi(VHt)j Nty — (VHt)j Xj(‘rz)ntz + ijl‘i(VHt)jntk} (U"71)|ut

- > { = )i X (wayms + i)} (0"l (157)
i=1 j=1k=mi+1
- { ek CF 1 () Par (OO 1+ (g Chy 1 Py ()] = (Tt Ne) (0"
kelxU.. .Ul

2
where equality (157) follows, since X (@) = 0; see the previous equation (153).
Note also that in the last line we have used Definition 7.13.

O]

Proof of Theorem 7.17. Tacking into account the previous discussion, from Lemma

7.18 and Remark 7.19 we easily get that

I'0)=Lx(o, )l = (X]dW, | YNu+d(X o, )u=1T
= (X, Q) + (] d(X ] Q") =: 11

and since (X | o™ Y|ar = (X, 1) (6" 2)|ou, we have

I = divy, (X,N) (6" Dy +d(|Pa(N)|x (X ") (158)
= (X0 ] Q") + div X (o, ) s = 11
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Therefore (i) follows by applying Definition 7.11, while (ii) follows immediately
from Stokes’ Theorem and the very definition of o,,. Now, using Definition 7.5,

item (ii) of Remark 7.19 and the previous Lemma 7.20, we get
(Divey, X) oy ly = div X o, [y

> { Gy Pu (X)) m + (i Chugy, Py (X)) = (Txvy, N) | 0"

kelaU.. .Ul

=divX o,y

n

+{< > mChu P (X)), + (> nkceuH,Pv(X»_<quH,N>}an—1yu
k=mi+1 k=mi1+1

and so (iii) follows by using (158) integrating both sides and applying again Stokes’
Theorem for the second addend of I.
]
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