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Abstract The paper evaluates the statistical properties of two different matching es-
timators in the case of continuous treatment, using a Montecarlo experiment. The
traditional generalized propensity score matching estimator is compared whit a new
two steps matching estimator for the continuous treatment case, recently developed
[1]. It compares treatment and control units similar in terms of their observable char-
acteristics in both selection processes (the participation decision and the treatment
level assignment), where the generalized propensity score matching estimator col-
lapses the two processes into one single step matching. The results show that the two
steps estimator has better finite sample properties if some institutional rules define
the level of treatment with respect to the characteristics of treated units.

1 Introduction

The interest on the generalization of the programme evaluation framework from a
binary treatment setting to a more general structure for the treatment has increased
rapidly in the last years [4] and [6]. The policy mechanism can be away from an
experimental data framework because of the presence of multiple non random se-
lection processes, related not only to the participation decision but also to the treat-
ment level assignment. In these cases, the selection bias problem cannot be tackled
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using the estimation methods developed for the binary treatment case. The litera-
ture proposes few matching estimators for continuous treatment([4],[2] and [5]. In
all cases the analysis does not concern on the comparison between treated and non-
treated units and on the selection process related to the treatment level assignment.
We have recently developed a novel two steps matching approach to estimate the
causal treatment effects as a function of the doses [1]. The novel estimator matches
treatment and comparison units that are similar in terms of their observable char-
acteristics in both the selection processes (the participation decision and the treat-
ment level assignment). This is the main difference whit respect to the generalized
propensity score matching procedure that collapses the two processes into one sin-
gle step matching.

The main empirical advantage of our method is its aptitude to incorporate in
the matching procedure some recognized restrictions on the relation between the
two selection processes, as it happens in a lot of empirical application where pol-
icy instruments have institutional restrictions. This is the case of public subsidies to
private capital accumulation: in the European Union the (maximum) amount of sub-
sidies is strictly linked to the firm dimension and its geographical localization. An
important application of this institutional rules is the Law 488/1992 (L. 488) in Italy,
the most important policy intervention to subsidize private capital accumulation in
the poorest regions in the last decades. Moreover, subsidies by L.488 are allocated
by mimicking an auction mechanism: the firm can choose the amount of subsidy,
and lower the amount, higher the probability to receive it. This procedure generates
heterogeneity in the amount of subsidy allocated to similar firms. Therefore, the
L.488 case is an interesting experimental framework in order to test the statistical
properties of continuous treatment matching estimators.

The aim of the paper is to explore the finite sample properties of a two steps
matching estimator in the presence of a system of external constraints in the contin-
uous treatment level assignment. The comparison is based on a Montecarlo exper-
iments, mimicking the allocation mechanism of L.488, using different simulation
settings.

2 Simulating a subsidies allocation mechanism: the case of L.488

The L.488 allocates subsidies through a "rationing” system based on an auction
mechanism which guarantees compatibility of subsidies demand and supply. This
system is basically a regional tender for incentives where the subsidies allocation is
based on general criteria expressing the policy preference. In each regional auction
the investment projects are ranked by a score assigned on the base of five indicators
(among them the share of the subsidy requested by the firm and the highest subsidy
applicable, given the rules determined by the UE Commission). The rankings are
drawn up through the decreasing order of the score awarded to each project and the
subsidies are allocated to projects until the financial resources granted to each region
are exhausted. The amount of financial resources to be allocated in every auction is
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different across regions: for every auction exists a specific regional ranking and

a regional allocation threshold. Then, if all the firm are considered, an overlapping

area of firms with the same propensity to be subsidised for treated and control group
is available and matching estimators can be correctly applied.

The institutional framework of L.488 is important for the choice about the level
of the treatment. The maximum amount of subsidy (relative to the level of invest-
ment) allowable to a project depends on both the region where the investment is
localised and the size of the firm. Therefore, it exists some institutional constrains
related to the level of subsidies received by each firm, depending on some of its
characteristics. This aspect can be fully exploited in the estimation of the treatment
level decision. Moreover the amount of subsidy relative to the ceiling established
by institutional rules is also a choice variable for the firm: lower the aid applied for
by the firm, higher the probability to receive the subsidy. This is the key indica-
tor that transforms the allocation procedure to an auction mechanism. On the other
side, different amount of subsidies are allocated to similar firms, allowing for the
implementation of a matching procedure on the subsidy level selection assignment.

The selection procedure of L. 488 can help in policy evaluation simulation. The
procedure uses the indicators as selection variables: they explain the most part of
the difference between subsidized and not subsidized firms. Therefore, the indica-
tors can be very helpful in the construction of the counterfactual scenario. Moreover,
different regional auctions (with different thresholds) can be easily replicated, gen-
erating a data set with treated and not treated firms having overlapping probability
to be treated.

3 The matching methods in the continuous framework

In the continuous treatment framewoYKT) represents the set of potential out-
comes, for each unit given a random sample indexed by 1...N andT repre-

sents the continuous variable indicating the treatment level. The observed outcome
Y can be written ag = diy; (tj) + (1 —d;)yi(0). D is a dummy variable indicating the
treatment statusd( = 1if the individual has been treated){t;) is the potential out-
come at the observed levgl The participation decision assignment will determine
the treatment status, while the treatment level process will determine the dpse
Even if they can occur simultaneously, we suppose that can be logically separated
in the analysis. Let assume assignment to treatment is made on the basis of:

o= {0 otherwise’ %~ 0otherwiser 1 =W+ (1)

whereW, Z andU, V represent a set of observable and unobservable variables re-
spectively available at a fixed time, when the selection processes occur. This struc-
ture represents the basis of our approach: differently from the previous literature,
it specifies separately the two selection processes. Adopting different specifications
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for the two processes might be helpful for considering different influencing factors
and for estimating the selection process in a more efficient way. The first step iden-
tifies the participation decision rule and units will be matched on the basis of similar
value of the set of covariates, using the propensity score funpfiwin= P(d;|\W),
instead of the full set of covariatéy and Z. Among matched units in the first
step, the next matching procedure will pair units with similar value in the covariates
identifying the treatment level assignment process. Q@) = E(T|Z, p(W)) the
parameter that uniquely represents the propensity function ([6]), then matching on
it can be easily accomplished by matchingénnstead, the one step matching pro-
cedure is based on the propensity score funcipm z) = P(d;|W, Z;), exploiting

the full set of observable variablég andZ.

As regards the parameter of interest, a natural development in the continuous
case of the traditional treatment effect estimation (the average treatment effect on
the treated ATTE[Y (1) — Y(0)|D = 1)), is what we named the average treatment
level effect on the treated ATLE &(T) = E[Y(T) —Y(0)|T =t] for a person ran-
domly drawn from the subpopulation of the participants at the lev@ince esti-
mated the ATLE for each observed treatment level, the next interesting object to
estimate regards the specification of the relation between effects and levels:

a=1fte) @)

in order to estimate the entire function of average treatment effects over all possible
values of the treatment doses.

4 The Montecarlo experiment

There are very few papers that use Montecarlo simulations to evaluate matching
estimators ([3], [7], [8]). All the studies investigate different aspects of matching es-
timators (finite sample properties, sensitiveness to propensity score specifications,
etc.) but they restrict their attention to the binary treatment case and do not con-
sider the small-sample property in the continuous treatment cases. This is the main
contribution of our paper: our focus is on comparing one step and two steps match-
ing estimators by Montecarlo experiments in the case of continuous treatment. The
Montecarlo simulation mimics the L. 448 two steps allocation mechanism:

1. generating different data set by unit, including for each unit the value of 3 in-
dicators (3,l2,13), i.e. covariates affecting the participation decision and the
treatment level assignment, the outcome for treatéd)) and not treated units
(Y(0)). The indicators are generated as random numbers drawn from a standard-
ized normal distributionN (0, 1)).

2. generating different thresholds for each dataset and creating the treated units and
control groups. We generateas a random number drawn from a uniform distri-
bution (0.3; 0.8). The presence of different thresholds allows to define an overlap-
ping area for the matching experiment, mimicking the L. 488 allocation setting.
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3. calculating the amount of treatmerit)( as a function of two indicators (eq.4).
The treatment level indicatdr enters in the participation selection functibn
as in the L. 488 selection mechanism.(eq.3).

The selection mechanism is defined by an index fundtiatepending on the two
indicatorslq, I and the treatment levdl (eq.3). In each dataset 10 threshotds

are generated. Assignment to treatment of each unit is made on the basis of the
following rule:

1 it Bili+Bolo+ BT >1
D= { 0 otherwise (3)
T =Bul2+Bsls+& (4)
Y(0)=PBsli+B7ls+& if D=0 (5)
_  Beli+Brlz+ T+ & in the linear case B
Y= { Bol1+ Brlz+ YT + T2+ &1 in the non linear casi D=1 (6

The treatment level assignment depends alsty@nd on the other indebg, cre-
ating a positive correlation with the selection mechanism. A standardized normally
distributed error terngy is added (eq.4). The outcome variall@) is observed af-
ter the treatment, for the control and treated group (i=0 and i=1, respectively). In
the untreated stat&,(0) depends on indicatollg andls, that are also in the two
selection processes, and on a standardized normally distributed errog;tefime
outcome in the treated statél) is generated by adding the effect of the treatment
to the outcome of the untreated state. We are interested in capturing the difference
in the treatment effect by the treatment level. Therefore a linear and a quadratic
treatment effect are experimented. In the last case we imposed that the maximum of
the curve lies inside the range of the generated treatment level. Then, the outcome
of the treated units is defined as in eq. (6). We allow perfect correlation between
the error terms in the outcome equations, but do not allow correlation between the
error term in the selection equations and the error terms in the outcome equations,
i.e. coM(&y,&1) = 0. So unconfoundedness is satisfigl.are fixed parameters in
our Montecarlo experimeht The parameterg are the policy impact coefficients,
explaining the relation between treatment level and outcome.

We are interested in comparing the properties of the two continuous matching
estimators with respect to the traditional ATT and the paramgteestimated by an
OLS regression of the ATLE on the treatment levels (eq. 2). We investigate this issue
in different designs, changing the impact coefficients and the selection processes
error variance. In the linear experiment we impgsequal t00.2 and1.2. In the
quadratic case we imposg {y2)=(6; -0.3), (9; -0.5). The variance gf assumes the
values0.5; 1and2 in both experiments. For each of these 12 different combinations,
100 dataset are simulated, each of 10,000 observations, coming from the simulation
of 1,000 observations replicated for 10 different thresholds.

Among the matching algorithm proposed in literature we choose the stratification
matching, properly adapted for the continuous case. In particular, for the two steps

1 The set of parameters we adopted in our simulatiofis3,, B3 = 0.33;4, Bs = 0.4; B, B7 = 0.1.
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estimation, we first compute the stratification with respect to the propensity function
that identifies the participation procesg\W) = P(d;|l1,12,T)) and then with respect

to the treatment level assignmeht We compute the ATLE (for each stratum of

the treatment level) as the weighted average among the mean differences between
the outcome of treated and not treated units, for each stratum of the propensity
function p(w). Indeed, for the one step case, we compute a stratification matching
on the basis of a unique propensity functjfw) = P(di|l1,12,T,l3). The ATLE are
computed at the same stratum of the treatment level used in the two steps case.

5 Results and conclusions

Tables 1 and 2 report estimates of ATT andMean column), bias (the difference
between the estimated and the true effect/parameter) and mean square error (MSE).
The parameterg are estimated by an OLS regression of the ATLE values on treat-
ment levels. Fig. 1 plots this regression in one of the setting of the Montecarlo ex-
periment. In the linear case both the 1-step and the 2-steps estimator show always

Table 1 Sensitivity to the treatment level effect: linear case

2 STEPS CASE 1 STEP CASE
ATT Vi ATT Vi
i 02 Mean S.D. Mean S.D. Mean S.D. Mean S.D.

0.2 05 2.040 0.068 0.199 0.050 2.052 0.080 0.017 0.026
1 2.037 0.082 0.192 0.041 2.050 0.087 0.015 0.022
2 2.039 0.088 0.203 0.050 2.042 0.099 0.013 0.026
12 05 12.265 0.452 1.197 0.045 12.299  0.458 0.072 0.056
1 12271 0.468 1.198 0.044 12.307 0.474 0.082 0.058
2 12.233 0.507 1.204 0.047 12.281  0.502 0.079 0.065

i 0 Bias MSE Bias MSE Bias MSE Bias MSE

0.2 05 0.040 0.006 -0.001  0.002 0.052 0.009 -0.183  0.034
1 0.037 0.008 -0.008  0.002 0.050 0.010 -0.185  0.035
2 0.039 0.009 0.003 0.003 0.042 0.011 -0.187  0.036
1.2 05 0.265 0.275 -0.003  0.002 0.299 0.299 -1.128 1.275
1 0271 0.293 -0.002  0.002 0.307 0.319 -1.118 1.252
2 0.233 0.311 0.004 0.002 0.281 0.331 -1.121 1.260

a small upward biased ATT (Tab. 1). In both cases higher the error variance, higher
the MSE. However, the MSE is always lower in the 2-steps case than in the 1-step
one. The bias oy is substantially higher in the 1-step case, as well as the MSE.
Fig. 1 shows that the downward biased coefficient generates a flatter regression line
for the 1-step estimator: even if the estimated average ATT is close to the true ATT,
the treatment effect is less affected by changes in the treatment level.
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Table 2 Sensitivity to the treatment level effect: non-linear case

2 STEPS CASE
ATT Vi
¥ 3 02 Mean S.D. Mean S.D.

1 STEP CASE

A ATT Vi ¥
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

6 -0.3 0.5 29.91 0.057 6.123 1.888
1 29.90 0.065 6.437 1.357
2 29.88 0.074 5.833 1.617
9 -0.5 0.5 39.63 0.442 8.975 1.451
1 39.60 0.488 9.171 1.782
2 39.57 0.448 9.033 1.605

-0.305 0.092 29.90 0.064 0.057 0.224 -0.003 0.011
-0.322 0.067 29.89 0.079 0.064 0.262 -0.004 0.013
-0.292 0.078 29.87 0.087 0.073 0.269 -0.004 0.013
-0.499 0.071 39.60 0.446 -0.123 0.751 0.002 0.035
-0.509 0.087 39.57 0.497 -0.151 0.583 0.004 0.027
-0.501 0.078 39.53 0.468 -0.120 0.805 0.002 0.038

Yo ¥3 02 Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

6 -0.3 0.5 -0.090 0.011 0.123 3.581
1 -0.098 0.014 0.437 2.033
2 -0.116 0.019 -0.167 2.644
9 -0.5 0.5 -0.367 0.330 -0.025 2.106
1 -0.398 0.396 0.171 3.204
2 -0.431 0.387 0.033 2.575

-0.005 0.008 -0.103 0.015 -5.943 35.37 0.297 0.088
-0.022 0.005 -0.105 0.017 -5.936 35.30 0.296 0.088
0.008 0.006 -0.127 0.024 -5.927 35.20 0.296 0.088
0.001 0.005 -0.402 0.361 -9.123 83.78 0.502 0.253
-0.009 0.008 -0.433 0.434 -9.151 84.09 0.504 0.254
-0.001 0.006 -0.472 0.442 -9.120 83.82 0.502 0.253
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Fig. 1 OLS regression of ATLE on treatment level.
Linear casey; = 1.2, 02 = 0.5) and quadratic casgy(= 6,3 = —0.3,02 = 0.5)

Similar results are derived in the

non linear case. We register a small downward

biased average ATT in both cases, with a slight higher MSE for the 1-step estimator.
However, the coefficientg and y; are poorly estimated by the 1-step matching
procedure in every simulation. The quadratic curve is much more flatter than the 2-
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steps case (Fig. 1), and it does not capture the strong heterogeneity of the treatment
outcome with respect to different treatment levels.

To understand the finding, we note that the 2-steps procedure enhances the qual-
ity of the matching: if the treatment effect depends on the treatment level, compar-
ing units with the same potential amount of treatment improves the accuracy of the
ATLE estimation. The result is more evident in presence of some institutional rules
that relate the amount of subsidies to the characteristics of the treated units. This
is the case of our Montecarlo experiment, where the variables influencing the se-
lection rule and the treatment level assignment are different. By adopting different
specifications for the two processes we improve the selection process estimation,
incorporating information on the institutional framework.

To conclude, the major finding from our simulations is that, even if the statistical
performances of the two matching procedures are similar in the estimation of the
ATT, they deeply differ on the estimation of the effect-treatment level relationship.

In fact, the treatment impact coefficients are poorly estimated in the generalized
(1-step) propensity score procedure, in particular in the non linear case. Our Monte
Carlo results show an overall underestimation of the elasticity of the treatment effect
to changes in the treatment level in the case of the 1-step estimator. The reason is
that the 2-steps estimator sharps the matching procedure, comparing units with the
same potential amount of treatment. The finding can be empirically relevant if there
are strict rules that relate the amount of treatment to the characteristics of treated
units, as several economic policies. Therefore, both methods we used can have a
wide application field. Nevertheless, the 2-step matching methods offers more and
better information to the empirical instrument evaluation: the comparison between
the treated and the non treated units is more homogeneous with respect to the treat-
ment level, and a less biased measure of the impact of all different treatment levels
to the treated units can be derived.
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