Activity Regimes Inferred from Automatic Classification of Volcanic Tremor at Mt. Etna, Italy

M. Masotti1, S. Falsaperla2, H. Langer2, S. Spampinato2, R. Campanini1

1Medical Imaging Group, Department of Physics, University of Bologna
2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania
Mt. Etna

Mount Etna is the largest active volcano in Europe:

- **Type:** Basaltic stratovolcano
- **Location:** Sicily, Italy (3350 m a.s.l.)
- **Latest eruptions:** 01, 02-03, 04-05, 06

Mount Etna’s volcanic monitoring is a key issue.
Volcanic Tremor

For basaltic volcanoes (e.g., Mount Etna)...

- Volcanic tremor is a persistent seismic signal marking different states of the volcano’s activity:
 - Pre-eruptive
 - Lava fountain
 - Eruptive
 - Post-eruptive

- Volcanic tremor provides reliable information for alerting governmental authorities during a crisis and permits surveillance even when direct access to the eruptive theatre is not possible.
In [Masotti, Geo. Res. Lett., 33 (20) (2006)], a system able to automatically classify different states of the volcano’s activity from the analysis of its volcanic tremor was proposed:

Data: Volcanic tremor \[\rightarrow\] Features: Spectrogram-based \[\rightarrow\] Classification: Support Vector Machine

Here, what if:

- Support Vector Machine is optimized (e.g., using Genetic Algorithm)?
- A different (optimized) classifier is used (e.g., Artificial Neural Networks or Cluster Analysis)?
- A different eruption is considered (e.g., 2006)?
Data

Seismograms are labeled according to their recording date…

<table>
<thead>
<tr>
<th>Date</th>
<th>Lava fountain (FON)</th>
<th>Pre-eruptive (PRE)</th>
<th>Eruptive (ERU)</th>
<th>Post-eruptive (POS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Jul 01</td>
<td>153</td>
<td>55</td>
<td>180</td>
<td>37</td>
</tr>
<tr>
<td>06 Jul 01</td>
<td>84</td>
<td>0</td>
<td>168</td>
<td>84</td>
</tr>
<tr>
<td>01 Aug 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feature Extraction

Features are computed by…

1. Calculating the spectrogram of each seismogram (10 min., 0-15 Hz)
2. Averaging the rows of each spectrogram (62-dimensional feature vector)
Classification

A comparison is performed among:

- Supervised classification based on Support Vector Machine (SVM) + Genetic Algorithm (GA)

 VS

- Supervised classification based on Artificial Neural Network (ANN) + GA

- Unsupervised classification based on Cluster Analysis (CA)
Classification :: SVM

Supervised classification

Maximum margin

$$w \cdot x + b = 0$$

Maximal margin hyperplane
Supervised classification
Unsupervised classification
Some of the SVM and ANN parameters are tuned using GA:
Results :: SVM + GA

Overall classification error:
22/425 = 5% patterns

2001

Overall classification error:
22/336 = 7% patterns

2006
Results :: SVM + GA

Overall classification error:

\[\frac{68}{761} = 9\% \text{ patterns} \]
Results :: ANN + GA

Overall classification error:
2001 patterns
124/425 = 29%

2006 patterns
64/336 = 19%
Results :: ANN + GA

Overall classification error:
196/761 = 26% patterns
Results :: CA

2001
Number of clusters: 5

2006
Number of clusters: 2
Results :: CA

Number of clusters: 4
Conclusions

- The improvement achieved using SVM+GA rather than SVM is not significant, i.e., < 1%

- SVM+GA performs significantly better than ANN+GA, i.e., overall classification error is equal to 5% on 2001 and 7% on 2006, versus 29% on 2001 and 19% on 2006, respectively

- Individually, SVM+GA and ANN+GA achieve quite similar classification results regardless of the data considered, i.e., 2001, 2006, or 2001+2006

- CA: separation of data is quite close to what expected
The translation of the SVM-based system (TREMOrEC) from Matlab to Visual C++, to make it available to our collaboration and scientific community for validation, is completed.

For more information, and to see a demo of TREMOrEC, join us today at poster A-05120!
Thank you