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Abstract

A novel invariant texture classification method is proposed. Invariance to linear/non-
linear monotonic gray-scale transformations is achieved by submitting the image
under study to the ranklet transform, an image processing technique relying on
the analysis of the relative rank of pixels rather than on their gray-scale value.
Some texture features are then extracted from the ranklet images resulting from
the application at different resolutions and orientations of the ranklet transform
to the image. Invariance to 90◦-rotations is achieved by averaging, for each reso-
lution, correspondent vertical, horizontal, and diagonal texture features. Finally, a
texture class membership is assigned to the texture feature vector by using a sup-
port vector machine (SVM) classifier. Compared to three recent methods found in
literature and having being evaluated on the same Brodatz and Vistex datasets, the
proposed method performs better. Also, invariance to linear/non-linear monotonic
gray-scale transformations and 90◦-rotations are evidenced by training the SVM
classifier on texture feature vectors formed from the original images, then test-
ing it on texture feature vectors formed from contrast-enhanced, gamma-corrected,
histogram-equalized and 90◦-rotated images.

Key words: Ranklets, Support Vector Machine, Texture, Brodatz, VisTex

∗ Corresponding author. Tel: +39 051 2095136. Fax: +39 051 2095047. E-mail:
masotti@bo.infn.it. Web: http://www.bo.infn.it/∼masotti/

Article published in Pattern Recognition Letters 29 (2008) 1980-1986



Image
Ranklet

Texture
Features
Extraction

SVM
ClassificationTransform

Fig. 1. Block diagram of the proposed approach.

1 Introduction

Texture is a surface property which gives a combined information on the
smoothness, coarseness, and regularity of objects (Gonzalez and Woods, 1992).
On digital images, it reflects as local variations of the gray-scale content.
In the last years, owing to the increasing spread of digital image databases,
automatic texture classification has started playing a key role, with several
applications in biomedical imaging, remote sensing, image classification and
segmentation. The typical automatic texture classification system involves two
steps: (1) a feature extraction step, where a set of texture features are ex-
tracted from the image under study and (2) a classification step, where a
texture class membership is assigned to it according to the extracted texture
features. The majority of the existing systems assume that the images to be
classified are identical to those used in training, for instance, with respect
to gray-scale range and rotation. Nevertheless, this is a strong assumption,
as for the most part of practical applications it is very unlikely that images
are captured under the same conditions of illumination and viewpoint. As a
result, in the last years, great attention has been devoted to invariant auto-
matic texture classification. Systems having robustness to linear monotonic
variations of the gray-scale were proposed by Partio et al. (2004) and Sukanya
(2000). Rotation invariance texture classification was addressed in many sev-
eral ways: Chetverikov (1982) used texture anisotropy, Davis et al. (1979)
used generalized co-occurrence matrices, Pichler et al. (1996) and Idrissa and
Acheroy (2002) used banks of Gabor filters, whereas Charalampidis and Kas-
paris (2002) and Manthalkar et al. (2003b) used wavelet-based filters. Systems
which incorporate invariance to both linear monotonic variations of the gray-
scale and rotation are much more rare in literature. Two of the earliest ones
are those proposed by Chen and Kundu (1994) and Wu and Wei (1996), where
hidden Markov models were used. More recently, Ojala et al. (2002) proposed
a system based on local binary patterns.
This work proposes a system invariant to linear/non-linear monotonic gray-
scale transformations and 90◦-rotations based on a novel image processing
technique, known as ranklet transform, in combination with support vector
machine (SVM) classification. A schematic block diagram of this system is
shown in Fig. 1. First, given an image I, the ranklet transform is applied
(Smeraldi, 2002). As discussed in some of our recent works (Masotti, 2006a;
Campanini et al., 2006; Masotti, 2006b), in fact, being calculated from the rela-
tive rank of pixels rather than from their gray-scale value (i.e., non-parametric
property of the ranklet transform), this transform allows to produce a gray-



scale invariant image representation; more specifically, as it will be shown in
the following, gray-scale invariance is intended as to linear/non-linear mono-
tonic gray-scale transformations of the original image I, e.g., brigthness varia-
tion, contrast enhancement, gamma correction, histogram equalization (Gon-
zalez and Woods, 1992). Also, being calculated as a multi-resolution and
orientation-selective analysis (i.e., multi-resolution and orientation-selective
properties of the ranklet transform), this transform allows to recognize anal-
ogous characteristics at different resolutions and orientations of the image as
well. From the ranklet images RI which result from the application of the
ranklet transform to the image I, up to 11 texture features similar to those
described by Xu et al. (2006) are hence extracted. Then, by means of an SVM
classifier (Vapnik, 1995, 1998), a texture class membership is assigned to the
texture feature vector resulting from the processing of the image I.
This system is evaluated on four different image datasets extracted from the
VisTex and Brodatz albums (MIT Media Lab, 1995; Brodatz, 1966). Specifi-
cally, invariance to linear/non-linear monotonic gray-scale transformations is
investigated by first training SVM on texture feature vectors formed from
original images, then testing it on texture feature vectors formed from (dif-
ferent) contrast-enhanced, gamma-corrected, and histogram equalized-images:
contrast enhancement is a gray-scale transformation which maps linearly the
gray-scale values of the processed image to a new range; gamma correction is
a gray-scale transformation whose mapping is non-linear, as weighted toward
brighter or darker gray-scale values; image equalization, instead, is a non-linear
gray-scale transformation which spreads the gray-scale values of the processed
image evenly distributed over the entire range (Gonzalez and Woods, 1992).
As far as 90◦-rotation invariance, SVM is trained on texture feature vectors
formed from original images, then tested on texture feature vectors formed
from (different) 90◦-, 180◦-, and 270◦-rotated images. The rationale behind
the decision of evaluating the proposed automatic texture classification sys-
tem on standard benchmark images as those in the Vistex and Brodatz albums
is twofold. First, to propose a system as general-purpose as possible, rather
than overly suited for a specific texture classification problem. Second, to be
able to compare the proposed system directly with three recent automatic
texture classification systems found in literature and having being evaluated
on the same images, namely, (1) a texture classification approach based on
ridgelets and minimum distance classification (Arivazhagan et al., 2006), (2)
a rotation-invariant approach based on wavelets and minimum distance clas-
sification (Muneeswaran et al., 2005), and (3) an approach based on wavelets
and SVM (Li et al., 2003).

2 Ranklet transform

The ranklet transform of an image I involves three phases: (1) multi-resolution,
(2) orientation-selective, and (3) non-parametric analysis (Smeraldi, 2002). As
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Fig. 2. Ranklet transform, multi-resolution analysis. At resolutions {2, 4, 8}, up to
49, 25, and 1 overlapping square crops are extracted from an example image with
size 8 × 8.

a result of the application of the ranklet transform to an image I, a number nRI

of non-parametric ranklet images RI are produced, this number being equal
to the number nR of resolutions at which the analysis is performed times the
number nO of orientations considered, i.e., nRI = nR × nO.
Multi-resolution analysis is achieved by choosing a set of resolutions, then
extracting from the image I a variable number of overlapping square crops
having these resolutions as linear size. For example, see Fig. 2, given an image
I of size 8 × 8, the analysis at resolutions {2, 4, 8} results in 49, 25, and, 1
square crops having linear size 2, 4, and 8, respectively. In general, for each
resolution, the number of extracted square crops is computed as (lI +1− lC)2,
where lI represents the linear size of the image I and lC that of the square
crops.
For each resolution, orientation-selective analysis is then achieved by splitting
half of the N pixels of each square crop into a subset T and the remaining half
into a subset C, these pairs of subsets being defined differently depending on
the orientation considered. In particular, as shown in Fig. 3, the two subsets
T and C are defined differently for three orientations, namely, as TV and CV

for the vertical orientation, TH and CH for the horizontal orientation, and TD
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Fig. 3. Ranklet transform, orientation-selective analysis. From left to right, the
vertical, horizontal, and diagonal pairs of subsets.



and CD for the diagonal orientation; these subsets are evidently reminiscent of
the Haar basis functions introduced by Mallat (1989) within the framework of
the wavelet theory, but also fairly close to the rectangular regions adopted by
Viola and Jones (2004) to compute their set of Haar-like features for real-time
object detection.
Finally, for each resolution and orientation, non-parametric analysis is carried
out on each square crop. By means of N/2×N/2 = N2/4 direct comparisons,
the number of pixels pairs (pm, pn) satisfying the condition that gray-scale
value of pm ∈ T is higher than that of pn ∈ C can be calculated; this number
would naturally range from 0 to N2/4 but, by appropriate normalization,
can be mapped into the range [−1, +1]. Rather than calculating the above
mentioned number of pixel pairs through O(N2) direct comparisons, however,
this is achieved in O(NLogN) operations by considering the relative rank of
pixels instead of their gray-scale value:

Rj =

∑
p∈Tj

π(p) − N
4
(N

2
+ 1)

N2

8

− 1, j = V, H, D (1)

where
∑

p∈Tj
π(p) is the sum of the pixels’ ranks π(p) in Tj. The derived

ranklet coefficient Rj is close to +1 as many square crop’s pixels in Tj have
higher gray-scale value than the pixels in Cj. Conversely, it is close to −1 as
many square crop’s pixels in Cj have higher gray-scale value than the pixels
in Tj. Also, RV , RH , and RD are close to 0 for a square crop with no vertical,
horizontal, and diagonal global gray-scale value variation, respectively.
By following this approach, the ranklet decomposition of an image I results for
each resolution in a set of three ranklet images RI, i.e., vertical, horizontal, and
diagonal; the pixels of each image are represented, respectively, by the ranklet
coefficients RV , RH , and RD calculated from the square crops of that specific
resolution. At a given location of one of these ranklet images, the ranklet
coefficient can be thought as a measure of the regularity of its neighborhood
at that specific resolution and orientation, namely, a measure of the texture;
the higher its absolute value, the more variable its neighborhood. Also, for
more than one resolution, the number of ranklet images is equal to the number
of resolutions times the three orientations considered, i.e., nRI = nR × nO =
nR × 3.

3 Texture features extraction

For each ranklet image RI derived from the ranklet decomposition at different
resolutions and orientations of an image I, the texture features extraction step
involves two phases: (1) quantization of the ranklet image and (2) extraction
from the quantized ranklet image of nF texture features (Xu et al., 2006).
Quantization is aimed at discretizing the continuous real values taken by the
ranklet coefficients of the ranklet image. In this work, the discrete number
of quantization bins is chosen equal to 21; as a result, the ranklet values



rv(i), i = 1, . . . , 21 taken by the quantized ranklet coefficients are (−1, −0.9,
. . ., −0.1, 0, +0.1, . . ., +0.9, +1).
From the quantized ranklet image, nF = 11 texture features are then calcu-
lated. They are based on two texture measures, i.e., the ranklet histogram rh
and the ranklet co-occurrence matrix rcmd,θ. The ranklet histogram rh repre-
sents the probability distribution of the values taken by the ranklet coefficients
in the quantized ranklet image. It is defined as:

rh(i) =
n(i)

∑21
j=1 n(j)

, i = 1, . . . , 21 (2)

where n(i) is the number of ranklet coefficients in the quantized ranklet image
taking value rv(i). Instead, the ranklet co-occurrence matrix rcmd,θ represents
the probability distribution of the transitions between all pairs of two ranklet
coefficients in the quantized ranklet image. It is defined as:

rcmd,θ(i, j) =
nd,θ(i, j)

∑21
l=1

∑21
k=1 nd,θ(l, k)

, i, j = 1, . . . , 21 (3)

where nd,θ(i, j) represents the number of two ranklet coefficients at spatial
locations (x,y) and (w,z), d-pixel apart along the angular rotation θ, and
such that RI(x, y) = rv(i) and RI(w, z) = rv(j); the normalization factor
∑21

l=1

∑21
k=1 nd,θ(l, k) represents the total number of transitions.

The first two texture features are derived from the ranklet histogram rh.
1 – Mean convergence

mc =
∑21

i=1
1
σ
· |rv(i) · rh(i) − µ|,

µ = ranklet coefficients’ mean

σ = ranklet coefficients’ stand. deviation

2 – Code variance

cv =
∑21

i=1(rv(i) − µ)2 · rh(i)

The remaining texture features are derived from the average of four ranklet
co-occurrence matrices rcmd,θ corresponding to θ = (0◦, 45◦, 90◦, 135◦) and
with d set equal to 1, i.e., rcm = 1

4
(rcm1,0◦ + rcm1,45◦ + rcm1,90◦ + rcm1,135◦).

3 – Code entropy

ce =
∑21

i=1

∑21
j=1 rcm(i, j) · log(rcm(i, j))

4 – Uniformity

un =
∑21

i=1

∑21
j=1 rcm(i, j)2

5/6 – First-order/second-order element difference moment

fdm =
∑21

i=1

∑21
j=1 |i − j| · rcm(i, j)

sdm =
∑21

i=1

∑21
j=1(i − j)2 · rcm(i, j)



7/8 – First-order/second-order inverse element difference moment

fidm =
∑21

i=1

∑21
j=1

1
1+|i−j|

· rcm(i, j)

sidm =
∑21

i=1

∑21
j=1

1
1+(i−j)2

· rcm(i, j)

9/10/11 – Energy distribution of the ranklet co-occurrence matrix

edrcm1 =
∑13

i=9

∑13
j=9 rcm(i, j)

edrcm2 =
∑15

i=7

∑15
j=7 rcm(i, j) − edcm1

edrcm3 =
∑19

i=3

∑19
j=3 rcm(i, j) − edcm1 − edcm2

As a result of the described texture features extraction step, each ranklet
image RI is encoded by a 1 × 11 texture feature vector.

4 Gray-scale and 90◦-rotation invariance

The way ranklet images RI are obtained from the image I represents the basis
for the invariance to linear/non-linear monotonic gray-scale transformations
and 90◦-rotations of the proposed approach.
As ranklet coefficients are computed from the relative rank of square crops’
pixels, rather than their gray-scale values, ranklet images are very robust to
gray-scale variations. This is clear in Fig. 4, where correspondent ranklet im-
ages obtained by decomposing an image, its contrast enhanced version (i.e.,
linear monotonic gray-scale transformation), its gamma corrected version (i.e.,
power-law non-linear monotonic gray-scale transformation), and its histogram
equalized version (i.e., non-linear monotonic gray-scale transformation) are
nearly identical. As a result, any texture feature calculated from one of such
ranklet images is almost completely invariant to linear/non-linear monotonic
gray-scale transformations as well.
As far as 90◦-rotation invariance, ranklet images are computed at three dif-
ferent orientations with the precise intention to perceive texture patterns in
more than one single direction. As each ranklet image is representative of a
specific orientation, any texture feature calculated from one of such ranklet
images cannot be rotation invariant by itself. However, if calculated as the av-
erage value of that texture feature over the vertical, horizontal, and diagonal
ranklet images, the new averaged texture feature becomes almost completely
invariant for 90◦-rotations (Porter and Canagarajah, 1997; Manthalkar et al.,
2003a).
In this work, to achieve both gray-scale and 90◦-rotation invariance, an image
I is hence encoded by a texture feature vector obtained by concatenating a
number of 1 × 11 texture feature vectors equal to the number of ranklet im-
ages resulting for its ranklet decomposition, i.e., nRI = nR × nO = nR × 3.
For each resolution, correspondent vertical, horizontal, and diagonal texture
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Fig. 4. Gray-scale invariance of the ranklet transform. Ranklet decomposition, from
resolution 2 up to 16, of the original image, of the original image after contrast
enhancement (i.e., linear monotonic gray-scale transformation), of the original im-
age after gamma correction (i.e., power-law non-linear monotonic gray-scale trans-
formation), and of the original image after histogram equalization (i.e., non-linear
monotonic gray-scale transformation). Regardless of the linear/non-linear gray-scale
transformation, the resulting ranklet decompositions are almost identical.



features are then averaged, thus ending up with a number of concatenated
1×11 vectors of averaged texture features equal to the number of resolutions,
i.e., nR.

5 SVM classification

The last step of the proposed approach consists in using SVM classification to
assign a texture class membership to the texture feature vector encoding the
image I.
In the context of two-class classification problems, SVM is a learning system
that uses an optimal hyperplane to separate sets of feature vectors into two
classes (Vapnik, 1995, 1998). During the training phase, the optimal hyper-
plane is designed as the one with the maximum margin of separation between
the two classes. Once completed the training phase, during the test phase, a
feature vector not used for training is then classified as belonging to either
one of the two classes according to its position with respect to the optimal
hyperplane.
In this work, to deal with a number of classes k greater than two, the one-
against-one approach is used, i.e., k(k − 1)/2 SVM classifiers are constructed
being trained on feature vectors from two class memberships only, then a test
feature vector is associated with the class membership to which it is more
often associated by the different SVM classifiers (Weston and Watkins, 1998).

6 Tests

6.1 Data

For evaluation of the proposed approach, four different image datasets are
used, i.e., Test-1, Test-2, Test-3, and Test-4. Test-1 and Test-3 are comprised
of 30 1 and 31 2 images of size 512×512 obtained from the VisTex album (MIT
Media Lab, 1995), then subdivided into 480 and 496 non-overlapping image
regions of size 128× 128, respectively. Test-2 and Test-4 are comprised of 26 3

1 Bark.0006, Brick.0000, Brick.0004, Brick.0005, Clouds.0001, Fabric.0000,
Fabric.0006, Fabric.0007, Fabric.0013, Fabric.0015, Fabric.0017, Fabric.0019,
Flowers.0005, Flowers.0006, Food.0000, Food.0001, Leaves.0003, Leaves.0012,
Metal.0000, Metal.0002, Metal.0004, Misc.0001, Misc.0002, Sand.0000, Sand.0002,
Stone.0005, Tile.0004, Tile.0008, Water.0005, Wood.0002
2 Bark.0001, Bark.0004, Bark.0005, Bark.0006, Bark.0010, Brick.0000, Brick.0004,
Brick.0005, Fabric.0000, Fabric.0002, Fabric.0007, Fabric.0009, Flowers.0005, Flow-
ers.0006, Food.0001, Food.0002, Food.0004, Food.0005, Food.0006, Leaves.0002,
Leaves.0003, Leaves.0004, Leaves.0008, Leaves.0010, Metal.0000, Metal.0005,
Misc.0001, Sand.0002, Tile.0007, Water.0005, Wood.0002
3 D1, D3, D4, D5, D6, D8, D9, D11, D16, D17, D18, D20, D21, D25, D26, D27,
D28, D29, D33, D36, D78, D87, D92, D95, D101, D102



and 30 4 images of size 640 × 640 obtained from the Brodatz album (Bro-
datz, 1966), then subdivided into 650 and 750 non-overlapping image regions
of size 128× 128, respectively. In order to verify the invariance to linear/non-
linear monotonic gray-scale transformations of the proposed texture features,
a transformed version of the original 30, 31, 26, and 30 images is also produced
by contrast enhancing, gamma correcting and histogram equalizing each one
of them, then extracting non-overlapping image regions as described above.
As far as 90◦-rotation invariance, four rotated versions are produced by ro-
tating each one of the original images by 0◦, 90◦, 180◦, and 270◦, then again
extracting non-overlapping image regions.
Each image region is submitted to the ranklet transform and decomposed into
nR = 7 ranklet resolutions (i.e., {4, 6, 8, 10, 12, 14, 26}) and nO = 3 orientations
(i.e., vertical, horizontal, and diagonal). Similarly to what discussed in one of
our previous works (Masotti, 2006b), this choice is as arbitrary as reasonable,
since it spans over a large range of resolutions, from fine ones (encoding close-
view texture details) to coarse ones (encoding broad-view texture details). In
particular, preliminary tests confirmed the validity of the selected ranklet res-
olutions. Each image region results hence in a 1 × 231 texture feature vector
invariant to linear/non-linear monotonic gray-scale transformations, namely,
a 1 × 11 texture feature vector for each one of the 7 resolutions and 3 orien-
tations. To achieve 90◦-rotation invariance, correspondent vertical, horizontal,
and diagonal texture features are averaged for each resolution, thus ending up
with a 1×77 texture feature vector, namely, a 1×11 vector of texture features
averaged over 3 resolutions for each one of the 7 resolutions.

6.2 Results

The results achieved for the 480, 650, 496, and 750 image regions of Test-1,
Test-2, Test-3, and Test-4 are reported in Tab. 1. Each table’s entry referring
to the proposed approach (i.e., Ranklets+SVM) specifies the leave-one-out
(LOO) percentage classification accuracy reached on the image regions of the
dataset considered. In other words, for each dataset, SVM is trained on the
whole amount of image regions, except the one used for test; by changing the
test image region in a round-robin manner, training and test are then repeated
a number of times equal to the number of image regions (Efron and Tibshi-
rani, 1994). The LOO percentage classification accuracy is hence measured as
(nIRCC ·100%)/nIR, where nIRCC represents the number of image regions cor-
rectly classified, whereas nIR the number of image regions extracted from each
original image. As far as the SVM kernel parameters, an RBF kernel with γ = 1
and C = 100 is chosen after tuning on Test-1. The table’s columns labeled
with O refer to the case in which the LOO training and testing phases are both
carried out on image regions extracted from the original images; the columns

4 D1, D3, D6, D11, D16, D17, D20, D21, D24, D28, D29, D32, D34, D35, D46,
D47, D49, D51, D52, D53, D55, D56, D57, D65, D78, D82, D84, D85, D101, D104



Table 1
Results comparison. Ranklets+SVM represents the proposed ranklet-based ap-
proach. Ridgelets+Dist (Arivazhagan et al., 2006), Wavelets+Dist (Muneeswaran
et al., 2005), and Wavelets+SVM (Li et al., 2003) refer to three different approaches
evaluated on the same 30 VisTex images used in Test-1, 26 Brodatz plus 31 VisTex
images used in Test-2/Test-3, and 30 Brodatz images used in Test-4, respectively.
O = original image regions. CE = contrast enhanced image regions. GC = gamma
corrected image regions. HE = histogram equalized image regions. R-90, R-180,
R-270 = 90◦-, 180◦-, 270◦-rotated image regions.

Images Approach Classification Accuracy (%)

O CE GC HE R-90 R-180 R-270

Test-1
Ranklets+SVM 98.96 98.96 98.96 98.96 98.96 98.96 98.96

Ridgelets+Dist 96.79 - - - - - -

Test-2
Ranklets+SVM 99.38 99.23 99.23 99.23 99.38 99.38 99.38

Wavelets+Dist 99.52 - - - 95.19 100.00 95.67

Test-3
Ranklets+SVM 98.59 98.59 98.59 98.59 98.59 98.59 98.59

Wavelets+Dist 93.55 - - - 83.67 100.00 83.47

Test-4
Ranklets+SVM 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Wavelets+SVM 96.34 - - - - - -

labeled with CE, GC, and HE to the case in which the LOO training phase is
carried out on image regions extracted from the original images, whereas the
testing phase on image regions extracted from the contrast-enhanced, gamma-
corrected, and histogram-equalized images; the columns labeled with R-90, R-
180, and R-270 to the case in which the LOO training phase is carried out on
image regions extracted from the original images, whereas the testing phase
on image regions extracted from the 90◦-, 180◦-, and 270◦-rotated images, re-
spectively.
By looking at the first row of Tab. 1, it is possible to notice that the LOO
percentage classification accuracy reached on Test-1 is particularly high, i.e.,
475/480 = 98.96% of image regions correctly classified. Also, this result is
maintained perfectly unaltered for the gray-scale transformed and 90◦-rotated
versions of the image regions, meaning that the proposed texture features are
insensitive to linear/non-linear monotonic gray-scale transformations and 90◦-
rotations of the original images.
High results are achieved also for Test-2, see the third row of Tab. 1. Here,
the LOO percentage classification accuracy reaches 646/650 = 99.38% for
the original and 90◦-rotated images, whereas 645/650 = 99.23% for the gray-
scale transformed ones. Despite the surplus error for the gray-scale trans-
formed images, the proposed texture features demonstrate to be invariant to
linear/non-linear monotonic gray-scale transformations and 90◦-rotations also
in this case.
A perfect agreement among the results achieved on the original, gray-scale
transformed, and 90◦-rotated images is found again when evaluating the pro-



posed texture features on Test-3, see the fifth row of Tab. 1. Reaching 489/496 =
98.59% of image regions correctly classified, the LOO percentage classification
accuracy confirms the high results achieved in the previous cases.
Finally, no errors are made on the original, gray-scale transformed, and 90◦-
rotated images of Test-4, see the seventh row of Tab. 1. In this case, the LOO
percentage classification accuracy scores 750/750 = 100.00%.

6.3 Comparisons

For the purpose of comparison, the described results are compared with those
achieved by three recent automatic texture classification systems found in
literature and having being evaluated on the same Brodatz/Vistex original
images, see Tab. 1. In particular, comparison is performed among automatic
texture classification systems intended as a whole, i.e., as a set of specific
features in combination with a specific classification technique, rather than
singularly among the sets of features or the classification techniques adopted.
First, Arivazhagan et al. (2006) proposed a texture classification approach
based on ridgelet transform and minimum distance classification (i.e., Ridge-
lets+Dist). On a number of image regions extracted from the same 30 VisTex
images used in Test-1, they achieved 96.79% of accuracy. As evident from the
first and second rows of Tab. 1, Ranklets+SVM reaches higher results, i.e.,
98.96%).
Second, Muneeswaran et al. (2005) developed a rotation-invariant approach
based on wavelet transform and minimum distance classification (i.e., Wave-
lets+Dist). Evaluation was carried out on a number of image regions extracted
from the same 26 Brodatz and 31 VisTex images used in Test-2 and Test-3. On
the former, they found 99.52%, 95.19%, 100.00%, and 95.67% of accuracy for
the original and 90◦-rotated images, respectively; similarly, they found 93.55%,
83.67%, 100.00%, and 83.47% on the latter, see the fourth and sixth rows of
Tab. 1. As before, Ranklets+SVM performs generally better (i.e., 99.38% on
the 26 Brodatz images and 98.59% on the 31 VisTex images); also, the results
on the 90◦-rotated images seem to be much more stable.
Finally, Li et al. (2003) used wavelet transform and SVM (i.e., Wavelets+SVM)
on a number of image regions extracted from the same 30 Brodatz images used
in Test-4.As evident from the seventh and eighth rows of Tab. 1, they reached
96.34% of accuracy versus the 100.00% achieved by Ranklets+SVM. Also, as
the classification technique adopted by these two approaches is the same (i.e.,
SVM), a direct comparison among ranklet and wavelet features is allowed as
well; in particular, owing to the superior results achieved by Ranklets+SVM,
ranklet features seem to be more appropriate than wavelet features in solving
the proposed texture classification problem.



7 Conclusions

In this work, texture classification invariant to linear/non-linear monotonic
gray-scale transformations and 90◦-rotations is achieved by: (1) submitting
each image to the ranklet transform; (2) extracting a number of texture fea-
tures from the resulting ranklet images; (3) averaging, for each resolution,
correspondent vertical, horizontal, and diagonal texture features; (4) assign-
ing a texture class membership to the final texture feature vector by means
of an SVM classifier.
On image regions extracted from four VisTex and Brodatz image datasets,
classification results perform very well and demonstrate to be superior to
those reached on the same image datasets by three recent texture classifi-
cation methods found in literature (Arivazhagan et al., 2006; Muneeswaran
et al., 2005; Li et al., 2003). More specifically, the LOO percentage classifi-
cation accuracy achieves 98.96% on the original 30 VisTex images of Test-1,
99.38% on the original 26 Brodatz images of Test-2, 98.59% on the original
31 VisTex images of Test-3, and 100.00% on the original 30 Brodatz images
of Test-4. Also, invariance to linear/non-linear monotonic gray-scale transfor-
mations and 90◦-rotations is evidenced, as the above classification results are
confirmed when the original images are subjected to contrast enhancement,
gamma correction, histogram equalization, or 90◦-rotation.
Owing to its capability of reaching high classification results, together with its
robustness to illumination and viewpoint variations, this method could surely
represent an attractive tool to address texture classification problems with
such requirements.
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