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Abstract In this paper, we address two issues that have long plagsedn&hers in
statistical modeling and data mining. The first is well-kmoag the “curse of dimen-
sionality”. Very large datasets are becoming more and nmremuent, as mankind is
now measuring everything he can as frequently as he canstita@tanalysis tech-
niques developed even 50 years ago can founder in all thés @he second issue
we address is that of model misspecification - specificaly ¢f an incorrect as-
sumed functional form. These issues are addressed in thextai multivariate
regression modeling. To drive dimension reduction and rheelection, we use the
newly developed form of Bozdogan€ OMP, introduced in Bozdogan and Howe
(2009b), that penalizes models with a complexity measutieefsandwich” model
covariance matrix. This information criterion is used bg tenetic algorithm as
the objective function in a two-step hybrid dimension redhrcprocess. First, we
use probabilistic principle components analysis to indelatly reduce the num-
ber of response and predictor variables. Then, we use tregigahgorithm with the
multivariate Gaussian regression model to identify the S@lsset regression model.
We apply these methods to identify a substantially reduceltivariate regression
relationship for an dataset regarding Italian high schaalents. From 29 response
variables, we get 4, and from 46 regressors, we get 1.
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1 Introduction

In this paper, we address two issues that have long plagsednehers in statistical
modeling and data mining. The first is well-known as the “euo$ dimensional-
ity”. Very large datasets are becoming more and more fregasrmankind is now
measuring everything he can as frequently as he can. &atiahalysis techniques
developed even 50 years ago can founder in all this data. 8¢wnd issue we ad-
dress is that of model misspecification - specifically thaaofincorrect assumed
functional form. These issues are addressed in the corftexiltivariate regression
modeling, in which we present a novel hybrid dimension réidadechnique. We
apply these methods to identify a substantially reducedivauiate regression re-
lationship for an dataset regarding Italian high schoadlstis. From 29 response
variables, we get 4, and from 46 regressors, we get 1.

2 Multivariate Regression Modeling with ICOMP

2.1 Multivariate Gaussian Regression

In the usual multivariate regression (MVR) problem, we hawveatrix of responses

Y € R"™P; n observations ofp measurements on some physical process. The re-
searcher also hasvariables that have some theoretical relationship:tg € R"*9,

of course, we usually include a constant term as an intefoefite hyperplane gen-
erated by the relationship, sp= k+ 1. The predictive relationship betwe&nand

Y has both a deterministic and a stochastic component, satth#amodel is

Y = XB+E, 1)

in which B € R9*P is a matrix of coefficients relating each columnXfto each
column ofY, andE € R"*P is a matrix of error terms. The usual assumption in mul-
tivariate regression is that the error terms are uncogé/dtomoskedastic Gaussian
white noise:

Y ~ Np(XB,Z ®1n), where Y] = XB, andCouY) = Z @ In. (2)

Under the assumption of Gaussianity, the log likelihoodhef inultivariate regres-
sion model is given by

logL(6 | Y) = _”—Zf’mg(zm - g log|=| — %tr[(Y _XB) = YY-XxB)]. ()
The model covariance matrixingerse Fisher information matrj>can be derived
using the results of Magnus and Neudecker (1988, page 32djsaiven by
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— cn a1 [ZeXXx)Tt 0
CouvedB),vech(>)) =% = o %Dg(f@@f)Dg/ 4)
The IFIM provides the asymptotic variance of the ML estimatohen the model is
correctly specified. Itiraceanddeterminanprovide scalar measures of the asymp-
totic variance, and they play a key role in the constructibimf@rmation complex-
ity. It is also very useful, as it provides standard errorslie regression coefficients
on the diagonals.

In most statistical modeling problems, we almost alwayswit@ng model to the
observed data. This can introduce bias into the model du@tehmisspecification.
The most common causes of model misspecification includéicollinearity, au-
tocorrelation, heteroskedasticity, and incorrect funeai form. This final type is
the type of misspecification we address. The common answieititerature to
nonnormality has been the utilization Bbx-Cox transformationsf Box and Cox
(1964), which does not seem to work consistently well, eigfigén the context of
multivariate regression. Of course, when performing regim analysis, it is not
usually the case that all variables ¥1have significant predictive power ov¥t
Choosing an optimal subset model has long been a vexinggmland there are
many approaches to this problem. We follow Bozdogan and H@@@9b) and use
the genetic algorithm to select a subset MVR model.

2.2 Robust Misspecification-Resistant Information Compity
Criteria

Acknowledging the fact that any statistical model is meatyapproximate repre-
sentation of the true data generating process, informatiteria attempt to guide
model selection according to thminciple of parsimonyThis principle of parsi-
mony requires that as model complexity increases, the fitofriodel must increase
at least as much; otherwise, the additional complexity tswarth the cost. Virtu-
ally all information criteria penalize a poorly fitting mddeith negative twice the
maximized log likelihood, as an asymptotic estimate of theiformation. The
difference, then, is in the penalty for model complexityonder to protect the re-
searcher against model misspecification, Bozdogan and K29@9b) generalized
ICOMPto the case of a misspecified MVR model and introd@®@M Ry sp, which
can drive effective model selectiewven when the Gaussian assumption is invalid
Here we show their results without derivations or proofs.

If we note 85 as the value of the parameters vector which minimizes the
Kullback-Lieblerdistance (Kullback and Leibler, 1951) for some specifiedcfun
tional modelf (95) to the true functional modej(8), and we useZ to indicate the
outer-product form of the Fisher information matrix, we dav

Theorem 1.Based on an iid sampleyy. .., yn, and assuming regularity conditions
of the log likelihood function hold, we have
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O ~N(6;,7 1%F 1), or V(0 —6;) ~N(0, 7 1271 (5)
Note that this tells us explicitly
CoU ;) misspec= F - #.F L, (6)

which is called thesandwichor robustcovariance matrix, since it is a correct vari-
ance matrix whether or not the assumed or fitted model is corre

Of course, in practice the true model and parameters areownkrso we estimate
this with o o
Cov8) =2 ‘%71 7)

If the model is correct, we must hae 1% — |, so

Cov®) =g 1% F t=1F1=91
Thus, in the case of a correctly specified mod:a-/(\G) =g
For multivariate regression, we have already seen the-piregtuct form of esti-
mated IFIM in (4). The outer-product forg# is derived in Magnus (2007), and we
show the result in (8).

. Slexix  3(EYM2eX)DSA @®

_ Lol 4
JADSI(S2®X)  3ADSI; DA

This matrix takes into consideration the actual sample sks#& and kurtosis of the

data. There is an issue of matrix stability to be address#udtive sandwich covari-

ance matrix, however. Numerical issues with estimatingséwedwich covariance

matrix prevent it from approximating the FIM when the modetorrectly speci-

fied. We employ thé&mpirical Bayes covariance regularizatipmocedure

C/O\_/(\G)HC/O\-/(\G)-FF);/]-\M, )
(n)tr(Cov0))
to ensur@?v(\G) is of full rank. Thus, the misspecification-resistant forfh@OMP
for multivariate regression is computed as (10). When thdehis correctly speci-

fied, we expec€ou8) = Z 1, we getiCOMP(Z 1) in (11).

ICOMP(Cov(8))misp = nplog 2+ nlog| | +np+2C;(Cov(8))  (10)
ICOMP(.Z 1) = nplog 2r+ nlog| 2| + np+2Cy(.# ) (11)

In both, C; is the first order maximal entropic complexity of BozdogaB8&): a
generalization of the model covariance complexity of Vandem(1971), given by

s, _tr(Cov(8))

CL(Co(8)) = Slog - % log|Cov(8)|, s= rank(Cov(8)).  (12)
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3 Dimension Reduction with the Genetic Algorithm and
Probabilistic Principle Components Analysis

3.1 Genetic Algorithm

The genetic algorithm (GA) is a search algorithm that boseancepts from bio-
logical evolution. Unlike most search algorithms, the Gaglates a large popula-
tion of potential solutions, encoded as binary strings.seh&olutions are allowed
to interact over time; random mutations and natural seledilow the population
to improve, eventually iterating to an optimal solution.eTGA was popularized
by Holland (1975), and it is a widely recognized and populacisastic search and
optimization algorithm. Today, there are many problem<iarsce, economics, and
research and development that are solved using the GA. \Wethef reader to ex-
isting books and articles regarding details of the algaritSome excellent books
are Goldberg (1989); Haupt and Haupt (2004); Vose (1999jclas specifically
combining the GA with subset regression models would inelBdzdogan (2004)
in which the GA was implemented for multiple regression stitselection under
the normality assumption. Also, Bozdogan and Howe (2002t®reled this work
to the case of misspecified multivariate regression.

3.2 Probabilistic Principle Components Analysis

In this paper, we employ Probabilistic Principle Compon&malysis (PPCA) as a
first step to independently reduce the dimensionality ofridependent and depen-
dent matrices. PPCA was developed in the late 1990’s andigdped by Tipping
and Bishop (1997). Here, we show some results from TippirtgBishop (1997)
and Bozdogan and Howe (2009a) that are relevant to thisnesdzetx € R1*P
be a random vector; assumecan be expressed as a linear combinatiofate#nt
variablesand stochastic noise:

X=Af+u+e, (13)

where f € R™? holds the latent variableg) € RP*™ is the loading matrix, and
u € R¥™P defines the mean of Maximizing the PPCA likelihood function, we get
the model covariance matrix in (14)

Cou(X) = UpLUy, (14)

whereUp contains all the eigenvectors & L is almost a(p x p) matrix with
eigenvalues of onthe diagonals. Positions corresponding to variableschtded
in the given subset are replaced with the mean of the lefeigeinvalues. Using this,
the inverse Fisher information matrix is given in (15).
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. 1 [CouX) 0
F1- —— . . (15)
0 2D CouX)®CoUX)D}

The heavy-penalty form dCOMP we use here is
ICOMPoey(.# 1) = —2logL(A, i, 62 | x) + 2( ) +log(n)Cy(.# 1),
(16)
wherem is the number of variables included from the original deta&e with the
MVR model, we can use the GA to reduce the dimensionality o&ta det, with
ICOMP as the objective function.

nm
n—-m-2

4 Numerical Results

Our dataset is a random sample a#4Q0 students from the ALMALAUREA
database. ALMALAUREA was started as a service for addrgs#tie faculty
choice of high school students based on interests, skitid, jab expectations.
All variables have been normalized to vary betweehand 1. As response vari-
ables, we hav#lat;, Maty, ..., Matyg: students judgements about different subjects
(math, physics, chemistry, engineering, statistics.Qur regressor matrix is di-
vided into two “sets”. Answers regarding what the studehitskt are important for
ideal future work - collaboration, time flexibility, ...- @measured in variables
Nz,Nz.,... ,Nzg4. VariablesNpy,Npp,...,Nps2 measure students personal abili-
ties (concentration, time management, curiosity, ...)e Pphedictor variables are
numbered from 1 to 14 for Nz, and 15 through 46 for Np.

Table 1 ICOMP Scores & Subsets of Predictors.

Criteria] Score] Best set of predictors
No Preliminary Dimension Reduction
ICOMP(.# 1)|64004{1,2,4,5,6,9,12,13,16,17,19— 21,25 27,...
29—31,34,35,38,41,42}
ICOMP(Cov(8) )misp|5970 (146}
Preliminary Dimension Reduction of Only Dependent Vamstilatrix
ICOMP(#~1)| 9693 {1-46}
ICOMP(Cou(8))wise| 9483 {146}
Preliminary Dimension Reduction of Both Responses anddé¥sgrs
ICOMP(#~1) |10824 45
ICOMP(Cov(8) )misp|10963 45

For modeling this data, we first used the GA to identify optisizbset MVR

models, driven by bothCOMP(.% 1) andICOMP(C/O\-/(\G))wsp. If the Gaussian
regression model was correctly specified, we would expeztctiteria to select
very similar models with similar scores. Results shown i@ finst third of Table
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1 do not bear this out. While the substantially loW€OMP(Cov(6))wmisp Score

indicates it has selected a better model, we have not beentabeduce the di-
mensionality at all. Mardia’s tests for multivariate nofnskewness and kurtosis
(Mardia, 1974), reject the null hypothesis of normalitythwiesults shown in Ta-
ble 2, confirming the misspecification identified B JOMP. Secondly, we used

Table 2 Normality Test Results for First Identified Model.

Skewness Kurtosis
B 0 Bz 899
B 3255 B 98684
X% 759492 Z* 38.75

95% Region[0,465209 95% Region[—1.96,1.96|
p-value 000000 p-value MO000
Conclusion € » N(u, X) Conclusion & = N(u,%)

PPCA as a preliminary step to reduce the dimensionalityehtatrix of responses.
Using ICOMPRbey(-# 1), the GA selected a model with only 4 dependent vari-
ables:Matys — Matyg. We then attempted to identify a subset MVR model using just
these responses. THeOM P/sgres indicate that the Gaussian regression model is
misspecified, witHCOMP(Cov(8))misp < ICOMP(.Z 1), though both criteria se-
lected the fully saturated model. These results are showreimiddle third of Table

1. Mardia’s expected and sample kurtosis values of 24 ar&@h@ere very close; the
test statistic for skewness, however, was 214 - much higiaerthe critical value of

31. Once again, we verify the misspecification identified®@MP.

Finally, we also used PPCA to select a subset of only 4 of thnd€pendent
variables. Those selected wexgpg — N ps2. We then ran two sets of the GA a
third time, using botHCOMP versions, with results displayed in the bottom third
of Table 1. Note how close tH€OMP scores are (relative to the other pairs), and
that both criteria selected the same substantially redsigleset MVR model, using
only a single predictor for the four responses. Thus, we lgavee from an overly
complex misspecified multivariate regression model, to aehthat is both (very
nearly) correctly-specified and parsimonious.

While our end result would suggest the misspecificatioistastICOMP was
not needed, recall the first MVR subset model identified. If eel only used
ICOMP(.# 1), we would have had less motivation to use PPCA to reduce the di
mensionality of the model. We would have settled upon an MVéteh with 32
responses and 24 regressors.

5 Concluding Remarks

In this research, we have applied a novel hybrid dimensidacton technique for
multivariate regression. While independently reducirggritbmber of dimensions in
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both the matrix of responses and regressors using PPCA ai@ihwe used a new
misspecification-resistent form 8&£OMP. These methods allowed us to identify a
nearly correctly-specified simple regression relatiops¥ith 4 of 29 dependent and
1 of 46 independent variables, rather than a misspecifiedyosemplex relation-
ship.
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