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ABSTRACT: Let F be a homogeneous polynomial of degree d in m+ 1 variables
defined over an algebraically closed field of characteristic zero and suppose that
F belongs to the s-th secant varieties of the standard Veronese variety Xm,d ⊂
P(m+d

d )−1 but that its minimal decomposition as sum of d-th powers of linear
forms M1, . . . ,Mr is F = Md

1 +· · ·+Md
r with r > s. We show that if s+r ≤ 2d+1

then such a decomposition of F can be split in two parts: one of them is uniquely
determined by linear forms that can be written using only two variables, the other
part is algorithmically computable. We also show that the 0-dimensional scheme
Z of degree s that is contained in Xm,d and such that F ∈ 〈Z〉 is uniquely
determined by F itself.

Introduction

The decomposition of a homogeneous polynomial that combines a minimum number of ad-
denda and that involves a minimum number of variables is a problem arising form classical
algebraic geometry (see e.g. [1], [14]), computational complexity (see e.g. [20], [4]) and signal
processing (see e.g. [11], [6], [33]).

The so called Big Waring problem (coming from a question in number theory stated by E.
Waring in 1770, see [34]) asked which is the minimum positive integer s such that the generic
polynomial of degree d in m+1 variables can be written as a sum of s d-th powers of linear forms.
That problem was solved for polynomials over an algebraically closed field of characteristic zero
by J. Alexander and A. Hirshowitz in 1995 by computing the dimensions of all s-th secant
varieties to Veronese varieties (see [1] for the original proof and [5] for a recent proof).
In fact the Veronese variety Xm,d ⊂ P(m+d

d )−1 parameterizes those polynomials of degree d
in m + 1 variables that can be written as a d-th power of a linear form (see (4)). The s-th
secant variety σs(Xm,d) ⊂ P(m+d

d )−1 of the Veronese variety Xm,d is the Zariski closure of the
set σ0

s(Xm,d) ⊂ P(m+d
d )−1 that parameterizes homogeneous polynomials of degree d in m + 1

variables that can be written as a sum of at most s d-th powers of linear forms (see Definition
3 and Notation 3 respectively).

If we call the symmetric rank of a homogeneous polynomial F the minimum positive integer
s such that F can be written as a sum of s d-th powers of linear forms (cfr. Remark 1), we can
explicit a question that is crucial in many applications:

“Which is the symmetric rank of a given homogeneous polynomial F?”

1991 Mathematics Subject Classification. 15A21, 15A69, 14N15.
Key words and phrases. Waring problem, Polynomial decomposition, Symmetric rank, Symmetric tensors,

Veronese varieties, Secant varieties.
The authors were partially supported by CIRM - FBK (TN - Italy), MIUR and GNSAGA of INdAM (Italy).

1



2 EDOARDO BALLICO, ALESSANDRA BERNARDI

Applications are interested in the cases of polynomials defined both over an algebraically closed
field of characteristic zero and over the real numbers (see [27], [24], [23], [12]). In this paper we
will restrict our attention on the cases of polynomials defined over an algebraically closed field
K of characteristic 0.

By the definition of secant varieties of Veronese varieties (cfr. Definition 3) we see that,
even if we were able to compute their equations (it is not needless to underline here that the
knowledge of such equations is still an open problem, see [15], [7], [18], [19]), in general they will
not be sufficient in order to compute the symmetric rank of a homogeneous polynomial, because
σs(Xm,d) is the Zariski closure of σ0

s(Xm,d) and σs(Xm,d) \ σ0
s(Xm,d) is, in general, not empty

and, when this case occurs, it contains polynomials whose symmetric rank is bigger than s (see
Remark 2).
If m = 1 there is the very well known Sylvester’s algorithm (due firstly to J. J. Sylvester himself in
1886, see [31], then reformulated in 2001 by G. Comas and M. Seiguer, see [9], and more recently
different versions of the same appeared in [10], in [3] and in [2]) that, given a homogeneous
polynomial of degree d in 2 variables, turns out its symmetric rank. If m ≥ 2 the generalizations
of the Sylvester’s algorithm work effectively for small values of m and theoretically for all m’s
(cfr. [10], [3] and in [2]).

The notion of symmetric rank of a homogeneous polynomial is derived from the language
of tensors. In fact the vector space K[x0, . . . , xm]d of homogeneous polynomials of degree d in
m + 1 variables over an algebraically closed field K of characteristic 0 is isomorphic to SdV ∗

where V is an (m + 1)-dimensional vector space over K. Now SdV ∗ is the linear subset of
symmetric tensors of V ⊗d. Then there is a 1:1 correspondence between homogeneous polynomials
of degree d in m + 1 variables and SdV ∗. Therefore we can describe the Veronese variety both
as Xm,d ⊂ P(K[x0, . . . , xm]d) parameterizing the projective classes of those polynomials that
can be written as the d-th power of linear forms, and as Xm,d ⊂ SdV ∗ that parameterizes the
projective classes of the symmetric tensors of the type v⊗d ∈ SdV ∗ with v ∈ V ∗ (see (3)). Hence
the symmetric rank for symmetric tensors is nothing else than the minimum positive integer s
such that a symmetric tensor T ∈ SdV ∗ can be written as T = v⊗d1 + · · · + v⊗ds (see Definition
4).

Assume now that we are in one of the cases in which it is possible to compute the sym-
metric rank either of a homogeneous polynomial or of a symmetric tensors (because of the
above identification we will use those two notions indifferently). Suppose therefore to be able
to find M1, . . . ,Ms ∈ K[x0, . . . , xm]1 such that a given F ∈ K[x0, . . . , xm]d can be written as
F = Md

1 + · · · + Md
s . Is that decomposition unique? If it is not unique, is at least possible to

write a canonical decomposition in such a way that some of the addenda are unique and the
others can be algorithmically computable? For some references on the uniqueness questions see
[22], [32], [26], [25], [16], [17], [30].
Moreover, is it possible to find such a canonical decomposition of F ∈ K[x0, . . . , xm]d in such
a way that the appearing addenda use the minimum number of variables as possible? More
precisely:

“Is it possible to find a linear change of coordinates such that F ∈ K[x0, . . . , xm]d
can be written as

F = Ld1 + · · ·+ Ldq +Md
1 + · · ·+Md

t

with L1, . . . , Lq ∈ K[x0, x1]1 and M1, . . . ,Mt ∈ K[x0, . . . , xm]1? Under which
conditions? Is such a decomposition unique? Is it algorithmically computable?”

On the canonical decomposition of homogeneous polynomials see [26], [25], [32], [21], [11], [14],
[28], [29]
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In this paper, after a section of some preliminaries and of the geometric construction that
will be necessary for the sequel (Section 1), we will state in Section 2 the main theorem of the
paper, that is the following:

Theorem 1. Let P ∈ PN and let sbr(P ) be the symmetric border rank of P ,
i.e. sbr(P ) is the minimum positive integer s such that P ∈ σs(Xm,d). Suppose
that:

sbr(P ) < sr(P )
and

sbr(P ) + sr(P ) ≤ 2d+ 1.
Let S ⊂ Xm,d be a 0-dimensional reduced sub-scheme that realizes the symmetric
rank of P , and let Z ⊂ Xm,d be a 0-dimensional non-reduced sub-scheme such
that P ∈ 〈Z〉, degZ ≤ sbr(P ) and P /∈ 〈Z ′〉 for any 0-dimensional non-reduced
sub-scheme Z ′ ⊂ Xm,d with deg(Z ′) < deg(Z). Let also Cd ⊂ Xm,d be the
unique rational normal curve that intersects S ∪ Z in degree at least d+ 2.

Then, for all points P ∈ PN as above we have that:

S = S1 t S2,(1)
Z = Z1 t S2,(2)

where S1 = S ∩ Cd, Z1 = Z ∩ Cd and S2 = (S ∩ Z) \ S1.
Moreover in Proposition 2 we prove the uniqueness of Z, Cd and S2 and then we conclude that
the scheme S can be algorithmically computed.

Theorem 1 and Proposition 2 can be rephrased in terms of homogeneous polynomials as
follows:

Corollary 2. Let F ∈ K[x0, . . . , xm]d be a homogeneous polynomial of degree d
in m+ 1 variables such that [F ] ∈ σs(Xm,d) \ σ0

s(Xm,d) and s+ sr(F ) ≤ 2d+ 1.
Then, after a linear change of coordinates, there exist L1, . . . , Lq ∈ K[x0, x1]1
and M1, . . . ,Mt ∈ K[x0, . . . , xm]1 such that

F = Ld1 + · · ·+ Ldq +Md
1 + · · ·+Md

t .

Moreover [L1], . . . , [Lq] ∈ P(K[x0, x1]1) are uniquely determined by [F ] ∈ P(K[x0, . . . , xm]d)
and M1, . . . ,Mt ∈ K[x0, . . . , xm]1 are algorithmically computable via the Sylvester
algorithm (see [31], [9], [10], [3], [2]).

In Remark 2 and in Remark 3 we will show how to check the symmetric rank s of a homo-
geneous polynomial of degree d and the uniqueness of the decomposition in the cases s ≤ d and
s = d+ 1 respectively.

Finally in Section 3 we will improve Theorem 1 in the case of homogeneous polynomials of
degree d in 3 variables. Actually we will prove the following:

Theorem 2. Fix an integer d ≥ 7. Fix P ∈ P(d+2
2 )−1 such that sr(P )+sbr(P ) ≤

3d−1 and sr(P ) 6= sbr(P ). Fix Z, S ⊂ P2 such that νd(Z) = Z computes sbr(P )
and νd(S) = S computes sr(X). Assume that Z and S are not as described in
Theorem 1, i.e. assume that there is no line L ⊂ P2 such that Z = (Z ∩L)t S2

and S = (S ∩L)tS2. Then there are a smooth conic E ⊂ P2, a set S2 ⊂ P2 \E,
two schemes Z1, S1 ⊂ E and a point P1 ∈ 〈νd(E)〉 such that S = S1 t S2,
Z = Z1 t S2, P ∈ 〈{P1} ∪ S2〉, Z1 computes brνd(E)(P1) and S1 computes
rνd(E)(P1) (for the definitions of brνd(E)(P1) and of rνd(E)(P1) see 8).

The converse holds in the following sense. Fix a smooth conic E ⊂ P2,
S2 ⊂ P2 \ E such that 2 · ](S2) ≤ d − 3, and any S1 ⊂ E, Z1 ⊂ E such that
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S1 is reduced and the pair (Z1, S1) computes (brνd(E)(P1), rνd(E)(P1)) for some
P1 ∈ 〈νd(E)〉. Set S := S1 tS2, Z := Z1 tS2 and take any P ∈ 〈{P1} ∪S2〉 not
in the linear span of a proper subset {P1}∪S2. Then Z computes the symmetric
border rank of P , while S computes the symmetric rank of P .

1. Preliminaries and Construction

As already observed in the introduction, we can give the notion of Veronese variety in two
equivalent ways. We start with the one given by symmetric tensors and we suddenly relate it to
the one given by homogeneous polynomials.

Notation 1. For all this paper, V will be a vector space of dimension m + 1 defined over an
algebraically closed field K of characteristic 0.
With SdV we indicate the linear subspace of V ⊗d made by symmetric tensors of order d.

Definition 1. Let T ∈ SdV be a symmetric tensor of order d. The symmetric rank sr(T ) of T
is the minimum integer r such that there exist v1, . . . , vr ∈ V such that T =

∑r
i=1 v

⊗d
i .

A way of defining Veronese variety via symmetric tensors is the following.

Definition 2. The Veronese variety Xm,d ⊂ P(SdV ) is the variety parameterizing projective
classes of symmetric tensors T ∈ SdV such that sr(T ) = 1.

With this definition, the Veronese variety can be obviously viewed as the image of the following
map:

(3)
νm,d : P(V ) → P(SdV )

[v] 7→ [v⊗d].

Now, consider V ∗ the dual space of V as the vector space K[x0, . . . , xm]1 of homogeneous
linear forms in m+1 variables defined over the field K. Then, in the map (3), we can replace the
space V with the space K[x0, . . . , xm]1 and give the analogous definition of Veronese variety in
terms of homogeneous polynomials of degree d (in fact SdV ∗ will be the space of homogeneous
polynomials K[x1, . . . , xm]d in m + 1 variables of degree d over K). With this notation the
Veronese variety can be interpreted also as the image of the following map:

(4)
νm,d : P(K[x0, . . . , xm]1) → P(K[x0, . . . , xm]d)

[L] 7→ [Ld].

Therefore the Veronese variety Xm,d can be also viewed as the variety that parameterizes
homogeneous polynomials of degree d in m + 1 variables over K that can be written as d-th
powers of linear forms.

Obviously, the map νm,d of (3) and (4) is nothing else than the embedding of a Pm into
P(m+d

d )−1 given by the sections of the sheaf O(d) (the image of such embedding is in fact the
classical way of defining Veronese variety).

Notation 2. We will always refer to the projective space P(m+d
d )−1 = P(SdV ) = 〈νm,d(P(V ))〉 '

〈νm,d(P(V ∗))〉 = P(SdV ∗) = P(K[x0, . . . , xm]d) with PN .

This correspondence allows to speak of symmetric rank of a homogeneous polynomial F ∈
K[x0, . . . , xm]d as the minimum number r of linear forms L1, . . . , Lr ∈ K[x0, . . . , xm]1 such that
F =

∑r
i=1 L

d
i .

Both in the case of a symmetric tensor T ∈ SdV , with dim(V ) = m + 1, and in the case of
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a homogeneous polynomial F ∈ K[x0, . . . , xm]d, the notion of symmetric rank can be resumed
in the minimum number of points belonging to the Veronese variety Xm,d ⊂ PN whose span
contains [T ] ∈ P(SdV ) or [F ] ∈ P(K[x0, . . . , xm]d). We will be more precise in the following
remark.

Remark 1. A symmetric tensor T ∈ SdV , with dim(V ) = m+1 (or a homogeneous polynomial
F ∈ K[x0, . . . , xm]d) has symmetric rank r if and only if the two following conditions are both
satisfied:

• there exists a set S of r distinct points S = {P1, . . . , Pr} ⊂ Xm,d such that [T ] ∈ 〈S〉 (or
[F ] ∈ 〈S〉) and dim(〈S〉) = r − 1,

• for any set of points S ′ ⊂ Xm,d such that ](S ′) < r we have that [T ] /∈ 〈S ′〉 (or
[F ] /∈ 〈S ′〉).

This remark allows us to use the notion of symmetric rank for symmetric tensors, for homo-
geneous polynomials and, more generally, for points in P ∈ PN where PN is as in Notation 2, i.e.
PN ' P(K[x0, . . . , xm]d) ' P(SdV ). Hence, with an abuse of notation, we will say that a point
P ∈ PN has symmetric rank r if there exisits a symmetric tensor T ∈ SdV such that [T ] = P
has sr(T ) = r, i.e. if r is the minimum number of different points P1 . . . , Pr ∈ Xm,d such that
P ∈ 〈P1, . . . , Pr〉.

Notation 3. We indicate with σ0
r(Xm,d) ⊂ P(SdV ) the set of points P ∈ P(SdV ) whose

symmetric rank is at most r:

σ0
r(Xm,d) :=

⋃
P1,...Pr∈Xm,d

〈P1, . . . , Pr〉.

Definition 3. Let X ⊂ Pn be a projective variety. The s-th secant variety σs(X) of X is defined
as follows:

σs(X) :=
⋃

P1,...Ps∈X
〈P1, . . . , Ps〉.

Definition 4. Let T ∈ SdV be a symmetric tensor. The minimum integer s such that [T ] ∈
σs(Xm,d) \ σs−1(Xm,d) is called the symmetric border rank of T and we write sbr(T ) = s (we
will often use the same definition for the projective class [T ], and more generally for any point
P ∈ P(SdV ) = PN ).

Remark 2. Let now P ∈ σs(Xm,d) \ σ0
s(Xm,d) ( PN . In [2] (see Proposition 2.8), it is proved

that there exists a non-reduced sub-scheme Z ⊂ Xm,d of degree s such that the projective
dimension of 〈Z〉 ⊂ PN is s − 1 and P ∈ 〈Z〉. By definition of symmetric border rank we
also have that P /∈ 〈Z ′〉 for any other 0-dimensional non-reduced sub-scheme Z ′ ⊂ Xm,d with
deg(Z ′) < s.

Moreover, since P ∈ σs(Xm,d) \ σ0
s(Xm,d), then sr(P ) > sbr(P ).

Notation 4. Let P ∈ PN be a point such that sbr(P ) = s < sr(P ) = r. We fix here the notation
that we will use all along the paper for the schemes that realize the symmetric border rank and
the symmetric rank of P respectively.

• We will indicate with Z ⊂ Xm,d a non-reduced 0-dimensional sub-scheme of degree at
most s such that P ∈ 〈Z〉 and P /∈ 〈Z ′〉 for a 0-dimensional non-reduced sub-scheme
Z ′ ⊂ Xm,d such that deg(Z ′) < deg(Z) (i.e. Z as in Remark 2).

• We indicate also with S ⊂ Xm,d a reduced 0-dimensional sub-scheme of degree r com-
puting the symmetric rank of P ∈ PN (i.e. S as in Remark 1).
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From now on we will always consider a point P ∈ PN = P(SdV ), as in Notation 2, such that
sbr(P ) = s < sr(P ) = r and

sbr(P ) < sr(P ),(5)
sbr(P ) + sr(P ) ≤ 2d+ 1.(6)

Notation 5. Let now Z, S ⊂ P(V ) = Pm be the pre-images via the Veronese map νm,d of
Z,S ⊂ PN respectively as in Notation 4. I.e. Z, S ⊂ Pm are two 0-dimensional sub-schemes
such that

(7) νm,d(Z) = Z and νm,d(S) = S

with Z and S realizing the symmetric border rank and the symmetric rank of P respectively.

Remark 3. Obviously we have that:
• deg(S) = deg(S) = sr(P ),
• deg(Z) = deg(Z) = sbr(P ),
• dim(〈S〉) = dim(〈S〉) = sr(P )− 1,
• dim(〈Z〉) = dim(〈Z〉) ≤ sbr(P )− 1,
• ](Supp(S)) = ](Supp(S)),
• ](Supp(Z)) = ](Supp(Z)).

Notation 6. Now define a 0-dimensional scheme W ⊂ Pm as the union of Z and S as above in
Notation 4:

(8) W := Z ∪ S.

Then define also:

(9) W := νm,d(W )

in such a way that W ⊂ PN is a scheme obtained by the union of S ⊂ PN that realizes the
symmetric rank of P and Z ⊂ PN that realizes its symmetric border rank.

Remark 4. The hypothesis (6) on the relation between the symmetric rank and the symmetric
border rank of P ∈ PN assures that deg(W ) ≤ 2d+ 1.

This Remark allows us to apply the Lemma 4.6 proved in [2] that assures the existence of a
line L ⊂ Pm that intersects the scheme W ⊂ Pm defined in (8) with multiplicity at least d+ 2.
We prove now the uniqueness of such a line L.

Lemma 1. Fix an integer d ≥ 1. Let W ⊂ Pm with m ≥ 2, be a zero-dimensional scheme of
degree deg(W ) ≤ 2d+ 1 and such that h1(IW (d)) > 0. Then there is a unique line L ⊂ Pm such
that deg(L ∩W ) ≥ d+ 2 and

deg(W ∩ L) = d+ 1 + h1(IW (d)).

Proof. For the existence of the line L ⊂ Pm see [2], Lemma 4.6. We prove here the uniqueness.
Since deg(W ) ≤ 2d + 1 and since the scheme-theoretic intersection of two different lines has
length at most one, the uniqueness of the line L will follow once we will have proved the formula
deg(W ∩ L) = d+ 1 + h1(IW (d)) of the statement. We will prove it by induction on m.

First assume m = 2. In this case L is a Cartier divisor of Pm, hence the residual scheme
ResL(W ) of W with respect to L has degree deg(ResL(W )) = deg(W ) − deg(W ∩ L). Look at
the exact sequence that defines the residual scheme ResL(W ):

(10) 0→ IResL(W )(d− 1)→ IW (d)→ IW∩L,L(d)→ 0.
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Since dim(ResL(W )) ≤ dim(W ) ≤ 0 and d − 1 ≥ −2, we have h2(IResL(W )(d − 2)) = 0. Since
deg(W∩L) ≥ d+1, we have h0(L, IW∩L(d)) = 0. Since deg(ResL(W )) = deg(W )−deg(W∩L) ≤
d, we have h1(IResL(W )(d− 1)) = 0 (e.g. use [2]), Thus the cohomology exact sequence of (10)
gives h1(IW (d)) = deg(W ∩ L)− d− 1, proving the lemma for m = 2.

Now assume m ≥ 3 and that the result is true for Pm−1.
Take a general hyperplane H ⊂ Pm containing L and set W ′ := W∩L. The inductive assumption
gives h1(H, IW ′(d)) = deg(W ′ ∩ L) − d − 1. Since deg(ResH(W )) ≤ d − 1, as above we get
h1(IResH(W )(d− 1)) = 0. Consider now the analogue exact sequence to (10) with H instead of
L:

0→ IResH(W )(d− 1)→ IW (d)→ IW∩H,H(d)→ 0.

Then, since W ∩ L = W ′ ∩ L, we get, as above, that h1(IW (d)) = deg(W ∩ L)− d− 1. �

Now, let W,L ⊂ Pm be as in Lemma 1, then if we indicate with Cd ⊂ Xm,d the image of L
via the Veronese map νm,d, i.e.

(11) Cd := νm,d(L),

then we can translate Lemma 1 in terms of an unique rational normal curve Cd ⊂ Xm,d that
intersects W in degree at least d+ 2.

Proposition 1. Let P ∈ PN = P(m+d
d )−1 be such that sbr(P ) < sr(P ) and sbr(P ) + sr(P ) ≤

2d + 1. Let S,Z ⊂ Xm,d be as in Notation 4. Let also W ⊂ Xm,d be as in (9), i.e. the 0-
dimensional sub-scheme obtained as the union of S ⊂ PN that realizes the symmetric rank of P
and Z ⊂ PN . Then there exists a unique rational normal curve Cd ⊂ Xm,d of degree d such that
the degree of the schematic intersection Cd ∩W is at least d+ 2 and

deg(Cd ∩W) = d+ 1 + h1(IW(1)).

Proof. Let Z, S ⊂ Pm be 0-dimensional schemes such that νm,d(Z) = Z and νm,d(S) = S as
in (7), and let W = S ∪ Z, i.e. νm,d(W ) = W. Therefore, by the hypothesis on sbr(P ) and
sr(P ), we have that deg(W ) ≤ 2d + 1, hence we can apply Lemma 1 to the scheme W ⊂ Pm
in order to get the existence of an unique line L that intersects W with multiplicity at least
d + 2 and such that deg(L ∩W ) = d + 1 + h1(IW (d)). Now the unique rational normal curve
Cd ⊂ Xm,d of the statement of this proposition is nothing but νd(L) ⊂ Xm,d. Since obviously
h1(IW (d)) = h1(IW(1)) we get the statement. �

We state here the following remark because it is an obvious consequence of Lemma 1 but we
will use it in the next section.

Remark 5. Let W,L ⊂ Pm be as in Lemma 1. Observe that, since obviously lenght(W ∩ L) =
lenght((W ∩ L) ∩ L), we have, as a consequence of Lemma 1, that

h1(IW (d)) = h1(IW∩L(d))

and also that
h0(IW (d)) = h0(IL∩W (d)) + deg(W )− deg(W ∩ L).

Both those equalities can be expressed in terms of Cd = νm,d(L) and W = νm,d(W ):

h1(IW(1)) = h1(IW∩Cd
(1))

and
h0(IW(1)) = h0(IW∩Cd

(1)) + deg(W)− deg(W ∩ Cd).
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What we will do in the sequel of the paper is to study the intersection of the schemes Z,S ⊂
Xm,d given in Notation 4 with the unique rational normal curve Cd ⊂ Xm,d of the previous
proposition. Hence we need to introduce the notation that we will use in order to give names
to all the parts in which it is possible to split the schemes Z and S with respect to the curve
Cd. The notation that we are going to introduce it will be coherent and functional to the main
result of the paper that is Theorem 1 which describes the structure of the schemes that realize
the symmetric rank and the symmetric border rank of a point P ∈ PN satisfying the relation
sbr(P ) + sr(P ) ≤ 2d+ 1 given in (6).

Notation 7. Let P ∈ Pm be such that sbr(P ) < sr(P ) and sbr(P ) + sr(P ) ≤ 2d + 1. Let
Z, S,W ⊂ Pm as in (4) and (8) respectively. Let also L ⊂ Pm be the line of Lemma 1 that
intersects W in degree at least d+ 2 and Cd = νm,d(L) as in Proposition 1. Then we call:

• Z1 := Z ∩ L ⊂ Pm,
• S1 := S ∩ L ⊂ Pm,
• S2 := (S ∩ Z) \ S1 ⊂ Pm,
• S3 := S \ (S1 ∪ S2) ⊂ Pm

and
• Z1 := νm,d(Z1) = Z ∩ Cd ⊂ Xm,d,
• Si := νm,d(Si) ⊂ Xm,d for i = 1, 2, 3.

In this way we write the reduced sub-scheme S ⊂ Xm,d that realizes the symmetric rank of P
as the union of three disjoint sub-schemes:

• S1 is the intersection of S with Cd,
• S2 is the part that S and Z have in common out of S1,
• S3 is the remaining part of S.

This notation will be functional to the proof of the main theorem of this paper (Theorem 1)
where we will show the structure of the schemes Z and S that realizes the symmetric border rank
and the symmetric rank of a point P ∈ PN such that sbr(P ) < sr(P ) and sbr(P )+sr(P ) ≤ 2d+1.
In fact we will prove that, once one has fixed the point P ∈ PN such that sbr(P ) < sr(P ) and
sbr(P ) + sr(P ) ≤ 2d+ 1, then if Z,S ⊂ Xm,d are two 0-dimensional sub-schemes as in Notation
4 that realize the symmetric rank and the symmetric border rank of P respectively, then the
scheme S is actually equal to S1 ∪S2 (hence S3 = ∅ that means that the scheme S is made only
by its part on Cd and the part that it has in common with Z) and the scheme Z is made by its
intersection with Cd ⊂ Xm,d and its intersection with S, i.e. Z = Z1 ∪ S2.

2. Results

In this section we give the main result of the paper: Theorem 1. The following two lemmas
are functional to the main theorem that will follow.

Lemma 2. Let A ⊂ Pm, m ≥ 2, be a 0-dimensional scheme. Let L ⊂ Pm be a line. Set A1 :=
L ∩ A, A := νm,d(A), A1 := νm,d(A1) and Cd := νm,d(L). Assume deg(A) − deg(A1) ≤ d − 1.
Then:

(12) h0(IA∪L(d)) =
(
m+ d

m

)
− d− 1− deg(A) + deg(A1),

(13) dim〈Cd ∪ A〉 = d+ deg(A)− deg(A1)

and

(14) 〈A〉 ∩ 〈Cd〉 = 〈A1〉.
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Proof. We first prove equation (12) adapting the proof of Lemma 1.
First assume m = 2. Let ResL(A) be the residual scheme of A with respect to the line L. We have
deg(ResL(A)) = deg(A)−deg(A1). Obviously h0(P2, IA∪L(d)) = h0(P2, IResL(A)(d− 1)). Since
deg(A)−deg(A1) ≤ d−1, we have h1(P2, IResL(A)(d−1)) = 0. Hence h0(P2, IResL(A)(d−1)) =(
d+1
2

)
− deg(A) + deg(A1). Since

(
d+2
2

)
−
(
d+1
2

)
= d+ 1, we get (12) when m = 2.

In the case m > 2 the proof works by induction on m as in the proof of Lemma 1.
For the equation (13) we simply have to observe that h0(IA∪Cd

(1)) = h0(IA∪L(d)) and to
apply the equation (12) to h0(IA∪Cd

(1)).
For the equation (14) we need to apply equation (13) to the Grassmann formula dim(〈A〉 ∩

〈Cd〉) = dim(〈Cd〉) + dim(〈A〉)− dim(〈Cd ∪ A〉) and get the result. �

Lemma 3. In the same setting of Lemma 2, consider a scheme A2 ⊂ Xm,d disjoint from A and
such that deg(A)− deg(A1) + ](A2) ≤ d− 1. Then 〈A ∪ A2〉 ∩ 〈Cd ∪ A2〉 = 〈A1 ∪ A2〉.

Proof. By applying Lemma 2 to the scheme A∪A2 instead of A, we get from (12) that dim(〈Cd∪
A ∪ A2〉) = d + deg(A ∪ A2) − deg(A1). Then by Grassmann formula we get that dim(〈Cd ∪
A2〉 ∩ 〈A ∪ A2〉) = dim(〈Cd ∪ A2〉) + deg(A1) − d. Now dim(〈Cd ∪ A2〉) = d + ](A2) then
dim(〈Cd ∪A2〉 ∩ 〈A∪A2〉) = deg(A1) + ](A2) that is equal to dim(〈A1 ∪A2〉). Then 〈A∪A2〉 ∩
〈Cd ∪ A2〉 = 〈A1 ∪ A2〉. �

We can now prove the main theorem of this paper. We will need all the construction given
in the previous section.

Theorem 1. Let P ∈ PN be such that:

sbr(P ) < sr(P )

and
sbr(P ) + sr(P ) ≤ 2d+ 1.

Let S,Z ⊂ Xm,d be as in Notation 4, i.e. S ⊂ Xm,d is a 0-dimensional reduced sub-scheme that
realizes the symmetric rank of P , and Z ⊂ Xm,d is a 0-dimensional non-reduced sub-scheme
such that P ∈ 〈Z〉, degZ ≤ sbr(P ) and P /∈ 〈Z ′〉 for any 0-dimensional non-reduced sub-scheme
Z ′ ⊂ Xm,d with deg(Z ′) < deg(Z). Let also Cd ⊂ Xm,d be the unique rational normal curve
that intersects S ∪ Z in degree at least d+ 2 (as proved in Proposition 1).

Then, for all points P ∈ PN as above we have that:

S = S1 t S2,(15)
Z = Z1 t S2,(16)

where S1 = S ∩ Cd, Z1 = Z ∩ Cd and S2 = (S ∩ Z) \ S1 (as in Notation 7).

Proof. The existence of the scheme Z ⊂ Xm,d is assured by Proposition 2.8 in [2]. Set W :=
Z ∪ S.

(a) Here we check that the scheme W ⊂ Xm,d is linearly dependent in PN , i.e. we check
that:

(17) h1(IW(1)) > 0.

Since sbr(P ) < sr(P ) by hypothesis, there exists a point Q ∈ S such that Q /∈ Zred. Clearly
h0(IW\{Q}(1)) − 1 ≤ h0(IW(1)) ≤ h0(IW\{Q}(1)) and h1(IW(1)) = h1(IW\{Q}(1)) + 1 +
(h0(IW(1))− h0(IW\{Q}(1))). Thus to prove (17) it is sufficient to prove that

(18) h0(IW(1)) = h0(IW\{Q}(1)).
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Since P ∈ 〈Z〉 and Z ⊂ W \ {Q} we have that f(P ) = 0 for any f ∈ H0(IW\{Q}(1)). Now,
since S is by definition a set of points of Xm,d computing the symmetric rank of P , we have that
P ∈ 〈S〉 and P /∈ 〈S \ {Q}〉, then Q ∈ 〈S ∪ {P}〉. Thus f(Q) = 0 for any f ∈ H0(IW\{Q}(1)),
because f(P ) = 0 as shown above, S\{Q} ⊂ W\{Q} and f(A) = 0 for all A ∈ S\{Q}. We have
then proved that H0(IW\{Q}(1)) ⊆ H0(IW(1)). Since the reverse inclusion is obvious, we have
that H0(IW\{Q}(1)) = H0(IW(1)) that proves (18). Hence W ⊂ Xm,d is linearly dependent.

(b) Step (a) gives dim(〈W〉) ≤ length(W) − 2. Since length(W) ≤ length(Z) + length(S) =
sbr(P ) + sr(P ) ≤ 2d + 1, then, by Lemma 4.6 in [2], there is a line L ⊂ Pm whose image
Cd = νm,d(L) in Xm,d contains a sub-scheme of W with length at least d+ 2.
Set S3 := S \ (S1∪S2) where S1,S2 ⊂ S are defined in the statement, set alsoW ′ :=W \S3 and
notice that it is well-defined, because each point of S3 is a connected component of the schemeW.

(c) Here we prove S3 = ∅.
Assume that this is not the case and that ](S3) > 0. Observe that Remark 5 gives that

h1(IW∩Cd
(1)) = h1(IW(1)) and that h0(IW(1)) = h0(ICd∩W(1)) − deg(W) + deg(W ∩ Cd).

Hence we get
dim(〈W〉) = dim(〈W ′〉) + ](S3).

Now, by definition, we have that S ∩W ′ = S1 ∪ S2, W =W ′ t S3 and Z ∪ S1 ∪ S2 =W ′, then
obviously dim(〈W ′〉 ∩ 〈S〉) = dim(〈W ′〉) + dim(〈S〉)− dim(〈W ′ ∪ S〉) = dim(〈S〉)− ](S3). Since
Z ⊆ W ′, we have P ∈ 〈W ′〉∩ 〈S〉 that has dimension dim(S)− ](S3) as just proved. Notice that
dim(〈S1 ∪ S2〉) = dim(〈S〉)− ](S3), hence dim(〈S1 ∪ S2〉) = dim(〈W ′〉 ∩ 〈S〉); since 〈S1 ∪ S2〉 ⊂
〈W ′〉 ∩ 〈S〉 we get that 〈S1 ∪ S2〉 = 〈W ′〉 ∩ 〈S〉. Since P ∈ 〈Z〉 ∩ 〈S〉 ⊂ 〈W ′〉 ∩ 〈S〉 = 〈S1 ∪ S2〉,
we get that P ∈ 〈S1∪S2〉. Since we supposed that S ⊂ Xm,d is a set computing symmetric rank
of P , it is absurd that P belongs to the span a proper subset of S, then necessarily ](S3) = 0,
that is equivalent to the fact that S3 = ∅.

(d) Here we check that Z = Z1 ∪ S2 and that Z1 ∩ S2 = ∅; moreover we show that the equality
Z = Z1 ∪ S2 implies the theorem.

We apply Lemma 3 with A = Z\S2 and A2 = S2, then we get that 〈Z〉∩〈Cd∪S2〉 = 〈Z1∪S2〉.
Since obviously P ∈ 〈Z〉 ∩ 〈Cd ∪ S2〉, by the minimality of Z we have that Z = Z1 ∪ S2. �

Remark 6. Observe that if S,Z ⊂ Xm,d are as in (15) and (16), then all the points P ∈
〈S〉 ∩ 〈Z〉 \ 〈S2〉 are such that sbr(P ) < sr(P ) and sbr(P ) + sr(P ) ≤ 2d+ 1.

We can be more precise one the uniqueness of the construction given above. Actually it
happens that the scheme Z ⊂ Pm (and by consequence the scheme Z ⊂ PN ) can be uniquely
described by P ∈ PN , while the scheme S ⊂ Pm (and hence the scheme S ⊂ PN ) can only be
algorithmically computed from P ∈ Pm, but not in an unique way, at least for the part S1 = S\Z
(the same holds for S1 = S \ Z).

Proposition 2. Fix P ∈ PN such that sbr(P )+sr(P ) ≤ 2d+1 and sbr(P ) < sr(P ) and consider
all the construction given above:

• Z, S ⊂ Pm as in (7) (i.e. Z is a minimal non-reduced 0-dimensional sub-scheme such
that deg(Z) ≤ sbr(P ) and S ⊂ Pm is a reduced 0-dimensional scheme whose image via
νm,d realizes the symmetric rank of P ), and Z = νm,d(Z),S = νm,d(S) ⊂ Xm,d;

• L ⊂ Pm the line that intersects Z ∪ S in degree at least d + 2 (as in Lemma 1) and
Cd = νm,d(L);
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• Z1, S1 ⊂ Pm be the schematic intersections of L with Z and S respectively (as in Notation
7) and Z1 = νm,d(Z1),S1 = νm,d(S1) ⊂ Xm,d;

• S2 = S \ S1 and S2 = νm,d(S2) ⊂ Xm,d.
Let also P1 := 〈Z1〉 ∩ 〈S1〉 ∈ PN .

Then the following sentences hold:
(1) Z, L, S2 ⊂ Pm and P1 ∈ PN are uniquely determined by P ∈ PN ; moreover deg(Z) =

sbr(P );
(2) The line L is the unique line of Pm containing an unreduced connected component of Z;
(3) The scheme Z1 ⊂ Xm,d computes symmetric border rank of P1 ∈ 〈Cd〉 with respect to

the rational normal curve Cd;
(4) The set S1 ⊂ Pm is not uniquely determined by P , but it may be computed using Sylvester

algorithm from P1 (see [31], [9], [10], [3] and [2]). Hence S is algorithmically computable
from P .

Proof. We first show that it is sufficient to prove the uniqueness of Z ⊂ Pm. Indeed, L ⊂ Pm is
uniquely determined by Z, because it is the only line of Pm containing an unreduced connected
component of Z. Thus Z1 := Z ∩ L and S2 := Z \ Z1 are uniquely determined. The point
P1 ∈ 〈νm,d(L)〉 is uniquely determined, because {P1} = 〈{P} ∪ S2〉 ∩ 〈Cd〉.

Now we prove the uniqueness of Z. Assume the existence of Z ′ 6= Z such that deg(Z ′) ≤
sbr(P ), P ∈ 〈νm,d(Z ′)〉, and P /∈ 〈νm,d(Z ′′)〉 for any Z ′′ $ Z ′.
Call L′ ⊂ Pm the unique line that intersects Z ′∪S in degree at least d+2 and set S′2 := S\(S∩L′).
Call P ′1 := 〈νm,d(Z ′ ∩ L′)〉 ∩ 〈νm,d(S ∩ L′)〉. Set Z ′1 := Z ′ ∩ L′′.
We saw in the proof of Theorem 1 that both Z and Z ′ have degree sbr(P ). Thus deg(Z∪Z ′) ≤ 2d.
Since P ∈ 〈νm,d(Z)〉∩〈νm,d(Z ′)〉, Z ′ 6= Z and P /∈ 〈νm,d(Z ′′)〉 for any Z ′′ such that either Z ′′ $ Z
or Z ′′ $ Z ′, the proof of Lemma 1 gives h1(IZ∪Z′(d)) > 0. Hence there is a line R ⊂ Pm such
that deg(Z ∪ B) ≥ d+ 2 ≥ 5. Since no line, except at most L (resp. L′) contains a degree ≥ 3
subscheme of Z (resp. Z ′) we get that either L = R or L′ = R .

(a) Here we assume L = L′. Hence S′2 = S \ (S ∩L′) = S2. Notice that {P1} = 〈{P}∪S2〉.
Hence P1 = P ′1 (under the assumption L = L′). Hence both νm,d(Z1) and νm,d(Z ′1) computes
symmetric border rank of P1 ∈ 〈Cd〉 with respect to the rational normal curve Cd. Observe
that since P1 ∈ 〈νm,d(S1)〉 ∩ 〈νm,d(Z1)〉 and since deg(Z1) < deg(S1) we get that the symmetric
border rank of P1 with respect to the rational normal curve Cd is less or equal than (d + 1)/2.
This implies that the scheme computing the symmetric border rank of P1 with respect to Cd
(just use that any zero-dimensional subscheme with degree at most d+ 1 of the rational normal
curve Cd is linearly independent). Hence Z1 = Z ′1. Therefore Z = Z ′1 t S′2 = Z ′.

(b) Here we assume L 6= L′. Just to fix the notation we assume R = L′. Since L 6= L′, we
have deg(Z ∩ L′) ≤ 2. Thus deg((Z ∪ B) ∩ R) ≤ 2 + deg(B ∩ R) ≤ 2 + sbr(P ′1) ≤ d + 1, where
sbr(P ′1) is with respect to Cd. But this last sentence is a contradiction, hence L = L′. �

Corollary 1. In the same setting of Proposition 2, the line L ⊂ Pm is spanned by Z1.

Proof. This is an obvious consequence of the just proved fact that L is the unique line that
contains an unreduced component of the 0-dimensional scheme Z. �

We can interpret Theorem 1 and Proposition 2 in terms of homogeneous polynomials.

Corollary 2. Let F ∈ K[x0, . . . , xm]d be a homogeneous polynomial of degree d in m+1 variables
such that [F ] ∈ σs(Xm,d) \ σ0

s(Xm,d) and s + sr(F ) ≤ 2d + 1. Then, after a linear change of
coordinates, there exist L1, . . . , Lq ∈ K[x0, x1]1 and M1, . . . ,Mt ∈ K[x0, . . . , xm]1 such that

F = Ld1 + · · ·+ Ldq +Md
1 + · · ·+Md

t .
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Moreover [L1], . . . , [Lq] ∈ P(K[x0, x1]1) are uniquely determined by [F ] ∈ P(K[x0, . . . , xm]d) and
M1, . . . ,Mt ∈ K[x0, . . . , xm]1 are algorithmically computable via the Sylvester algorithm (see
[31], [9], [10], [3], [2]).

An analogous corollary can be stated for symmetric tensors if we assume the following iden-
tification. Let W ⊂ V be a linear subspace of dimension 2 of a vector space V of dimension
m+ 1. Now, since SdW ∗ ' K[x0, x1]d ⊂ K[x0, . . . , xm]d ' SdV ∗ and since (SdV ∗)∗ ' SdV for
any finite dimensional vector space over an algebraically closed field of characteristic 0, we may
assume that SdW ⊂ SdV up to certain isomorphism.

Corollary 3. Let T ∈ SdV be a symmetric tensor such that [T ] ∈ σs(Xm,d) \ σ0
s(Xm,d) and

s+ sr(T ) ≤ 2d+ 1. Then there exist an unique subspace W ⊂ V of dimension 2 and an unique
non-reduced 0-dimensional scheme Z ⊂ V of degree s such that [T ] ∈ 〈νm,d(Z)〉. Moreover

T ∈ 〈T1, . . . , Tq, Z1, . . . , Zt〉
with q + t = sr(T ), {Z1, . . . , Zt} is the reduced part of νm,d(Z) and T1, . . . , Tq ∈ SdW are
symmetric tensors of symmetric rank equal to 1. The tenosrs T1, . . . , Tq ∈ SdW are uniquely
determined, up to multiplication by constants, by [T ] ∈ P(SdV ) and the tensors Z1, . . . , Zt ∈
νm,d(Z) can be algorithmically computed using one of the Sylvester’s algorithms described in
[31], [9], [10], [3], [2].

Remark 7. Take P ∈ PN . An obvious consequence of Theorem 1 is that sr(P ) = sbr(P ) if
sr(P ) ≤ d/2. This observation is also a consequence of [2], Lemma 4.6, which was used in the
proof of Theorem 1.

Remark 8. Fix P ∈ PN . If sr(P ) ≤ b(d + 1)/2c, then [2], Lemma 4.6, gives sbr(P ) = sr(P )
and that there is a unique 0-dimensional scheme Z ⊂ Xm,d such that length(Z) = sbr(P ) and
P ∈ 〈Z〉. Since sr(P ) = sbr(P ) and Z is unique and also reduced. It is the only set that
computes sr(P ). Hence sbr(A) = sr(A) for every A ∈ Pn such that sr(A) ≤ b(d+ 1)/2c.

In the proof of Theorem 1 we also pointed out the following statements.

Proposition 3. Let P ∈ PN be such that sbr(P ) + sr(P ) ≤ 2d+ 1. Let z be the minimal length
of a 0-dimensional sub-scheme Z ⊂ Xm,d such that P ∈ 〈Z〉. Then z = sbr(P ). Moreover, such
a scheme Z is uniquely determined by P .

Proposition 4. Let P ∈ PN be such that sbr(P ) = sr(P ) ≤ d and assume the existence of two
0-dimensional sub-schemes Z,S ⊂ Xm,d with length sbr(P ), P ∈ 〈Z〉∩〈S〉 and S reduced. Then
Z,S are as in the statement of Theorem 1, i.e. there are a rational normal curve Cd, and a
subscheme S2 as in that statement such that Z = (Z ∩ Cd) t S2 and S = (S ∩ Cd) t S2.

Remark 9. Fix a reduced set S ⊂ Xm,d such that s := ](S) ≤ d. Fix any P ∈ 〈S〉. Here
we show (thanks to Theorem 1) how to check if srX(P ) = s and S is the only subset of Xm,d

computing srX(P ).
We will also check that, if this condition is satisfied, then sbrX(P ) = s and S is the only subset
computing the symmetric border rank of P .
An obvious necessary condition is that P /∈ 〈S ′〉 for all S ′ ⊂ S such that ](S ′) = s − 1. We
assume that this condition is satisfied.
Let S ⊂ Pm be the only subset such that νm,d(S) = S. Assume the existence of a 0-dimensional
scheme A ⊂ Pm such that P ∈ 〈νm,d(A)〉, deg(A) ≤ s and A 6= S. We apply the proof of
Theorem 1 to these schemes A and S. However, here we want to translate all the conditions in
conditions on S. A necessary condition (that is independent from P ) is the existence of a line
L ⊂ Pm such that ](L∩ S) ≥ d(d+ 1)/2e. Assume that it exists. Then the set S2 := S \ (L∩ S)
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must be contained in any S and each point of S2 must be a connected component of A, i.e.
S2 ⊂ A and A is reduced at each point of S2. We need to have ](A∩L)+deg(S∩L) = d+2 and
there must be a unique P1 ∈ 〈νm,d(A ∩ L)〉 ∩ 〈νm,d(S ∩ L)〉. Moreover, P ∈ 〈νm,d(S2) ∪ {P1}〉.
Conversely, the construction given above the Theorem 1 gives how to get the point P form A∩L,
P1 and S2.

Remark 10. Fix a reduced set S ⊂ Xm,d such that ](S) = d + 1. Fix any P ∈ 〈S〉. Here we
show (thanks to Theorem 1) how to check if sr(P ) = sbr(P ) = d+ 1 and if S is the only subset
of Xm,d computing the symmetric rank of P .
An obvious necessary condition is that P /∈ 〈S ′〉 for all S ′ ⊂ S such that ](S ′) = d. We assume
that this condition is satisfied.
If sbr(P ) ≤ d, then there is a 0-dimensional scheme Z ⊂ Xm,d such that deg(Z) ≤ d and
P ∈ 〈Z〉. Fix any such Z. Let A (resp. B) be the only subscheme of Pm such that νm,d(A) = Z
(resp. νm,d(B) = S). The pair (A,B) must be as in the construction above of Theorem 1. In
particular there is a line L ⊂ Pm such that ](L ∩ B) ≥ d(d + 1)/2e. Assume that it exists.
Then the set F2 := B \ L ∩ B must be contained in any B and each point of F2 must be a
connected component of A, i.e. F2 ⊂ A and A is reduced at each point of F2. We need to have
](A ∩ L) + deg(B ∩ L) = d+ 2 and there must be a unique P1 ∈ 〈νm,d(A ∩ L)〉 ∩ 〈νm,d(B ∩ L).
Moreover, P ∈ 〈νm,d(F2) ∪ {P1}〉.

Question 1. Is it true that sr(P ) ≤ d(sbr(P )− 1) for all P ∈ PN and that equality holds if and
only if P ∈ TXm,d \Xm,d where TXm,d ⊂ PN is the tangential variety of Xm,d?

3. The case of Veronese surface

In the case m = 2 we may use [13], Corollary 2, to go a little bit further on the sentence of
Theorem 1.

We introduce, only for this section, the notion of “X-rank” and “X-border rank” of a point
P ∈ PN with respect to a projective, reduced variety X ⊂ PN (actually we have implicitly used
that concept also in the proof of Theorem 1 but it was useless to introduce that notion there).

Notation 8. Let X ⊂ PN be a projective, reduced variety, and let P ∈ 〈X〉. Then we write

rX(P ) := {min s ∈ N |P ∈ 〈P1, . . . , Ps〉, with Pi ∈ X}
and

brX(P ) := {min s ∈ N |P ∈ σs(X)}.

Remark 11. If X ⊂ PN is the Veronese variety Xm,d, then rX(P ) = sr(P ) and brX(P ) =
sbr(P ).

Remark 12. Obviously if C ⊂ X ⊂ PN is a subvariety of a projective variety X, and if P ∈ 〈C〉
then rX(P ) ≤ rC(P ).

Theorem 2. Fix an integer d ≥ 7. Fix P ∈ P(d+2
2 )−1 such that rX2,d

(P )+brX2,d
(P ) ≤ 3d−1 and

rX2,d
(P ) 6= brX2,d

(P ). Fix Z, S ⊂ P2 such that νd(Z) = Z computes brX2,d
(P ) and νd(S) = S

computes rX2,d
(X). Assume that Z and S are not as described in Theorem 1, i.e. assume that

there is no line L ⊂ P2 such that Z = (Z ∩ L) t S2 and S = (S ∩ L) t S2. Then there are a
smooth conic E ⊂ P2, a set S2 ⊂ P2 \ E, two schemes Z1, S1 ⊂ E and a point P1 ∈ 〈νd(E)〉
such that S = S1 tS2, Z = Z1 tS2, P ∈ 〈{P1}∪S2〉, Z1 computes brνd(E)(P1) and S1 computes
rνd(E)(P1) .

The converse holds in the following sense. Fix a smooth conic E ⊂ P2, S2 ⊂ P2 \ E such
that 2 · ](S2) ≤ d − 3, and any S1 ⊂ E, Z1 ⊂ E such that S1 is reduced and the pair (Z1, S1)
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computes (brνd(E)(P1), rνd(E)(P1)) for some P1 ∈ 〈νd(E)〉. Set S := S1 t S2, Z := Z1 t S2 and
take any P ∈ 〈{P1} ∪ S2〉 not in the linear span of a proper subset {P1} ∪ S2. Then Z computes
the symmetric border rank of P , while S computes the symmetric rank of P .

Proof. Set W := Z∪S. As in the proof of step (a) of Theorem 1 we get h1(P2, IW (d)) > 0. Since
we assumed that Z, S, P are not as in the statement of Theorem 1, its proof gives length(W ) ≥
2d + 2. By assumption and by the proof of Theorem 1 we have that for every line D ⊂ P2 the
degree of W ∩D is less or equal than d + 1. Hence there is a smooth conic E ⊂ P2 such that
W ⊂ E ([13] Remark (i) at p. 116); here we use that deg(W ) ≤ sbr(P ) + sr(P ) < 3d. Then the
proof of Theorem 1 works verbatim.
Now we check the “converse ” part. Notice that deg(Z1) + deg(S1) = 2d+ 2 (either [9] or [21],
Theorem 4.1). Since 2 · ](S2) ≤ d−3, we have h1(P2, IS2(d−2)) = 0. Thus dim(〈S2∪ νd(E)〉) =
dim(〈νd(E)〉) + ](S2). �
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