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Abstract: We consider non-negative solutions to a class of second order degnerate Kolmogorov
equations in the form

L u(x, t) =
m∑

i,j=1

ai,j(x, t)∂xixju(x, t) +
N∑

i,j=1

bi,jxi∂xju(x, t)− ∂tu(x, t) = 0,

where (x, t) belongs to an open set Ω ⊂ RN × R, and 1 ≤ m ≤ N . Let z̃ ∈ Ω, let K be a
compact subset of Ω, and let Σ ⊂ ∂Ω be such that K ∩ ∂Ω ⊂ Σ. We give some sufficient
geometric conditions for the validity of the following Carleson type inequality. There exists
a positive constant CK , only depending on Ω,Σ,K, z̃ and on L , such that

sup
K
u ≤ CK u(z̃),

for every non-negative solution u of L u = 0 in Ω such that u|Σ = 0.
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1 Introduction

In the study of local Fatou theorems, Carleson proves in [6] the following estimate for positive
harmonic functions. Let D ⊂ Rn be a bounded Lipschitz domain with Lipschitz constant M ,
let w ∈ ∂D, 0 < r < r0, and suppose that u is a non-negative continuous harmonic function
in D̄∩B(w, 2r). Suppose that u = 0 on ∂D∩B(w, 2r). Then there exists a positive constant
c = c(n,M) and a point ar̃(w) satisfying |ar̃(w)− w| = r̃, dist(ar̃(w), ∂D) > r̃/M , such that
if r̃ = r/c, then

max
D∩B(w,r̃)

u ≤ c u(ar̃(w)).
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The above estimate is now referred to as Carleson estimate. Important generalization of
this results to more general second order elliptic and parabolic equations have been given by
Caffarelli, Fabes, Mortola and Salsa in [5], and by Salsa in [17], respectively. The purpose of
this paper is to establish a general version of the Carleson’s results for non-negative solutions
to operators of Kolmogorov type.

Our research is a part of a thorough study of the boundary behavior for non-negative so-
lutions to operators of Kolmogorov type (see [9], [11], [16]), motivated by several applications
to Physics and Finance.

Throughout the paper we consider a class of second order differential operators of Kol-
mogorov type of the form

L =
m∑

i,j=1

ai,j(z)∂xixj +
m∑
i=1

ai(z)∂xi +
N∑

i,j=1

bi,jxi∂xj − ∂t, (1.1)

where z = (x, t) ∈ RN×R, 1 ≤ m ≤ N and the coefficients ai,j and ai are bounded continuous
functions. The matrix B = (bi,j)i,j=1,...,N has real constant entries. Concerning structural
assumptions on the operator L we assume the following.

[H.1] The matrix A0(z) = (ai,j(z))i,j=1,...,m is symmetric and uniformly positive definite in
Rm: there exists a positive constant Λ such that

Λ−1|ξ|2 ≤
m∑

i,j=1

ai,j(z)ξiξj ≤ Λ|ξ|2, ∀ ξ ∈ Rm0 , z ∈ RN+1.

[H.2] The constant coefficients operator

K =
m∑

i,j=1

ai,j∂xixj +
N∑

i,j=1

bi,jxi∂xj − ∂t (1.2)

is hypoelliptic, i.e. every distributional solution of K u = f is a smooth classical solution,
whenever f is smooth. Here A0 = (ai,j)i,j=1,...,m is a constant, symmetric and positive
matrix.

[H.3] The coefficients ai,j and ai belong to the space C0,α
K (RN+1) of Hölder continuous

functions (defined in (2.5) below), for some α ∈]0, 1].

Note that the operator K can be written as

K =
m∑
i=1

X2
i + Y,

where

Xi =
m∑
j=1

āi,j∂xj , i = 1, . . . ,m, Y = 〈x,B∇〉 − ∂t, (1.3)

2



and the āi,j ’s are the entries of the unique positive matrix Ā0 such that A0 = Ā2
0.

We recall that hypothesis [H.2] is equivalent to Hörmander condition [12]:

rank Lie (X1, . . . , Xm, Y ) (z) = N + 1, ∀ z ∈ RN+1. (1.4)

It is known that the natural framework to study operators satisfying a Hörmander condition
is the analysis on Lie group. In particular, the relevant Lie group related to the operator K
in (1.2) is defined using the group law

(x, t) ◦ (ξ, τ) = (ξ + exp(−τBT )x, t+ τ), (x, t), (ξ, τ) ∈ RN+1. (1.5)

The vector fields X1, . . . , Xm and Y are left-invariant with respect to the group law (1.5), in
the sense that

Xj (u(ζ ◦ · )) = (Xju) (ζ ◦ · ), j = 1, . . . ,m, Y (u(ζ ◦ · )) = (Y u) (ζ ◦ · ) (1.6)

for every ζ ∈ RN+1 (hence K (u(ζ ◦ · )) = (K u) (ζ ◦ · )).

We next introduce the integral trajectories of Kolmogorov equations. We say that a path
γ : [0, T ]→ RN+1 is L -admissible if it is absolutely continuous and satisfies

γ′(s) =
m∑
j=1

ωj(s)Xj(γ(s)) + λ(s)Y (γ(s)), for a.e. s ∈ [0, T ], (1.7)

where ωj ∈ L2([0, T ]) for j = 1, . . . ,m, and λ is a non-negative measurable function. We say
that γ connects z0 to z if γ(0) = z0 and γ(T ) = z. Concerning the problem of the existence
of admissible paths, we recall that it is a controllability problem, and that [H.2] is equivalent
to the following Kalman condition:

rank
(
Ā BTĀ · · ·

(
BT
)N−1

Ā
)

= N. (1.8)

Here Ā is the N ×N matrix defined by (
Ā0 0
0 0

)
and Ā0 is the m×m constant matrix introduced in (1.3). We recall that (1.8) is a sufficient
condition for the existence of a solution of (1.7), in the case of Ω = RN×]T0, T1[ (see [14],
Theorem 5, p. 81).

We denote by

Az0(Ω) =
{
z ∈ Ω | there exists an L -admissible γ : [0, T ]→ Ω connecting z0 to z

}
, (1.9)

and we define Az0 = Az0(Ω) = Az0(Ω) as the closure (in RN+1) of Az0(Ω). We will refer to
Az0 as the attainable set.
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We recall that [H.2] is equivalent to the following structural assumption on B [13]: there
exists a basis for RN such that the matrix B has the form

∗ B1 0 · · · 0
∗ ∗ B2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · Bκ
∗ ∗ ∗ · · · ∗

 (1.10)

where Bj is a mj−1×mj matrix of rank mj for j ∈ {1, . . . , κ}, 1 ≤ mκ ≤ . . . ≤ m1 ≤ m0 = m
and m + m1 + . . . + mκ = N , while ∗ represents arbitrary matrices with constant entries.
Based on (1.10), we introduce the family of dilations (δr)r>0 on RN+1 defined by

δr := (Dr, r
2) = diag(rIm, r3Im1 , . . . , r

2κ+1Imκ , r
2), (1.11)

where Ik, k ∈ N, is the k-dimensional unit matrix. To simplify our presentation, we will also
assume the following technical condition:

[H.4] the operator K in (1.2) is δr-homogeneous of degree two, i.e.

K ◦ δr = r2(δr◦K ), ∀ r > 0.

We explicitly remark that [H.4] is satisfied if (and only if) all the blocks denoted by ∗ in
(1.10) are null (see [13]).

We next introduce some definitions based on the dilations (1.11) and on the translations
(1.5). For any given z0 ∈ RN+1, x̄ ∈ RN , t̄ ∈ R+ we consider an open neighborhood U ⊂ RN

of x̄, and we denote by Z−
x̄,t̄,U

(z0) and Z+
x̄,t̄,U

(z0) the following tusk-shaped cones

Z−
x̄,t̄,U

(z0) =
{
z0 ◦ δs(x,−t̄) | x ∈ U, 0 < s ≤ 1

}
;

Z+
x̄,t̄,U

(z0) =
{
z0 ◦ δs(x, t̄) | x ∈ U, 0 < s ≤ 1

}
.

(1.12)

In the sequel, aiming to simplify the notations, we shall write Z±(z0) instead of Z±
x̄,t̄,U

(z0).
Note that Z−(z0) and Z+(z0) are cones with the same vertex at z0, while the basis of Z−(z0)
is at the time level t0 − t̄ < t0, and the basis of Z+(z0) is at the time level t0 + t̄ > t0.

Definition 1.1 Let Ω be an open subset of RN+1 and let Σ ⊂ ∂Ω.

i) We say that Σ satisfies the uniform exterior cone condition if there exist x̄ ∈ RN , t̄ > 0
and an open neighborhood U ⊆ RN of x̄ such that

Z−(z0) ∩ Ω = ∅ for every z0 ∈ Σ,

where Z−(z0) = Z−
x̄,t̄,U

(z0);

ii) we say that Z+
x̄,t̄,U

(z0) satisfies the Harnack connectivity condition if z0 ◦ δs0(x̄, t̄) ∈
Int
(
Az0◦(x̄,t̄)(Z

+(z0))
)

for some s0 ∈ ]0, 1[;
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iii) we say that Σ satisfies the uniform interior cone condition if there exist x̄ ∈ RN , t̄ > 0
and an open neighborhood U ⊆ RN of x̄ such that

Z+(z0) ⊂ Ω for every z0 ∈ Σ,

where Z+(z0) = Z+
x̄,t̄,U

(z0) satisfies ii).

We point out that, by its very construction, Z+
x̄,t̄,U

(z0) satisfies the Harnack connectivity
condition for every z0 ∈ RN+1 if Z+

x̄,t̄,U
(w0) does satisfy it for some w0 ∈ RN+1.

We are now ready to formulate our main result.

Theorem 1.2 Let L be an operator in the form (1.1), satisfying assumptions [H.1-4]. Let
Ω be an open subset of RN+1, let Σ be an open subset of ∂Ω, let K be a compact subset of Ω
and let z̃ ∈ Ω. Assume that ∂Ω∩K ⊂ Σ, and that K ⊂ Int(Az̃) (with respect to the topology
of Ω). Suppose that Σ satisfies both interior and exterior uniform cone condition and that
there exist an open set V ⊂ RN+1 and a positive constant c̄, such that

i) K ∩ Σ ⊆ V ,

ii) for every z ∈ V ∩ Ω there exists a pair (w, s) ∈ Σ × R+ with z = w ◦ δs(x̄, t̄), and
dK(w ◦ δs(x̄, t̄),Σ) ≥ c̄ s.

Then there exists a positive constant CK , only depending on Ω,Σ,K, z̃ and on L , such that

sup
K
u ≤ CK u(z̃),

for every non-negative solution u of L u = 0 in Ω such that u|Σ = 0.

Remark 1.3 The exterior cone condition yields the existence of barrier functions for the
boundary value problem (see Manfredini [15]), then it gives an uniform continuity modulus of
the solution near the boundary. We also note that, when L is an uniformly parabolic operator,
then assumptions i) and ii) made in Theorem 1.2 are satisfied by Lip

(
1, 1

2

)
surfaces.

Next proposition provides us with a simple sufficient condition for these assumptions in
the case of degenerate operators L . We say that a bounded open set Ω is regular if Ω =
Int
(
Ω
)

and its boundary is covered by a finite set of manifolds. In the following ν denotes
the outer normal on ∂Ω.

Proposition 1.4 Let Ω ⊂ RN+1 be a bounded open regular set, let Σ be an open subset of
∂Ω. Let z̃ ∈ Ω, w̃ ∈ Σ be such that w̃ ∈ Int(Az̃) (with respect to the topology of Ω). Assume
that there exists an open neighborhood W ⊂ RN+1 of w̃ such that Σ∩W is a N -dimensional
C1 manifold, and suppose that either

a) (ν1(w̃), . . . , νm(w̃)) 6= 0,

or
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b) (ν1(z), . . . , νm(z)) = 0 at every z ∈W ∩ Σ, and 〈Y (w̃), ν(w̃)〉 > 0.

Then there exists an open neighborhood W̃ ⊂W of w̃ such that

i) Σ ∩ W̃ satisfies both interior and exterior uniform cone conditions,

ii) W̃ ⊂ Int(Az̃),

iii) for any z ∈ W̃ ∩ Ω there exists a pair (w, s) ∈ Σ × R+ with z = w ◦ δs(x̄, t̄), and
dK(w ◦ δs(x̄, t̄),Σ) ≥ c̄ s, for some positive constant c̄.

As a consequence of Proposition 1.4, the assumptions made in Theorem 1.2 are satisfied
by any compact set K ⊂ W̃ ∪ Σ. Then there exists a positive constant CK such that
supK u ≤ CK u(z̃), for every non-negative solution u of L u = 0 in Ω such that u|Σ = 0.

Remark 1.5 The above condition (ν1(w), . . . , νm(w)) 6= 0 can be used also in the case of
cylinders. More precisely, if Ω = Ω̃ ∩

{
(x, t) ∈ RN+1 | t > t0

}
, and Ω̃ satisfies condition a)

of Proposition 1.4 at some point w = (x0, t0) ∈ Σ, then cones build at every point of ∂Ω̃ can
be used for ∂Ω as well.

This paper is organized as follows. In Section 2 we recall some notations and a Harnack
type inequality for Kolmogorov equations. Then we prove in Theorem 2.4 a geometric version
of the Harnack inequality, formulated in terms of L -admissible paths. In Section 3 we prove
some results about the behavior of the solution to L u = 0 near the boundary of its domain.
In Section 4 we show that the uniform Harnack connectivity condition required in Theorem
1.2 is not a technical assumption but it is needed by the strong degeneracy of Kolmogorov
operators. Section 5 is devoted to the Proof of Theorem 1.2 and Proposition 1.4.

2 Preliminaries and Interior Harnack inequalities

In this Section we introduce some notations, then we state some Harnack type inequalities
for Kolmogorov equations.

We split the coordinate x ∈ RN as

x =
(
x(0), x(1), . . . , x(κ)

)
, x(0)∈ Rm, x(j)∈ Rmj , j ∈ {1, . . . , κ}. (2.1)

Based on this we define

|x|K =
κ∑
j=0

∣∣x(j)
∣∣ 1
2j+1 , ‖(x, t)‖K = |x|K + |t|

1
2 .

We note that ‖δrz‖K = r‖z‖K for every r > 0 and z ∈ RN+1. We recall the following
pseudo-triangular inequality: there exists a positive constant c such that

‖z−1‖K ≤ c‖z‖K , ‖z ◦ ζ‖K ≤ c(‖z‖K + ‖ζ‖K), z, ζ ∈ RN+1. (2.2)
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We also define the quasi-distance dK by setting

dK(z, ζ) := ‖ζ−1 ◦ z‖K , z, ζ ∈ RN+1, (2.3)

and the ball
BK(z0, r) := {z ∈ RN+1 | dK(z, z0) < r}. (2.4)

Note that from (2.2) it directly follows

dK(z, ζ) ≤ c(dK(z, w) + dK(w, ζ)), z, ζ, w ∈ RN+1.

We say that a function f : Ω → R is Hölder continuous of exponent α ∈]0, 1], in short
f ∈ C0,α

K (Ω), if there exists a positive constant C such that

|f(z)− f(ζ)| ≤ C dK(z, ζ)α, for every z, ζ ∈ Ω. (2.5)

For any positive R and (x0, t0) ∈ RN+1, we put Q− =
(
B1(1

2 e1) ∩B1(−1
2 e1)

)
× [−1, 0],

and Q−R(x0, t0) = (x0, t0) ◦ δR (Q−). For α, β, γ, θ ∈ R, with 0 < α < β < γ < θ2, we set

Q̃−R(x0, t0) =
{

(x, t) ∈ Q−θR(x0, t0) | t0 − γR2 ≤ t ≤ t0 − βR2
}
,

Q̃+
R(x0, t0) =

{
(x, t) ∈ Q−θR(x0, t0) | t0 − αR2 ≤ t ≤ t0

}
.

We recall the following invariant Harnack inequality for non-negative solutions u of L u = 0.

Theorem 2.1 (Theorem 1.2 in [10]) Under assumptions [H.1-3], there exist constants
R0 > 0, M > 1 and α, β, γ, θ ∈]0, 1[, with 0 < α < β < γ < θ2, depending only on the
operator L , such that

sup
Q̃−R(x0,t0)

u ≤M inf
Q̃+
R(x0,t0)

u,

for every non-negative solution u of L u = 0 in Q−R(x0, t0) and for any R ∈]0, R0], (x0, t0) ∈
RN+1.

Remark 2.2 As noticed in Section 1, unlike the uniform parabolic case, in Theorem 2.1 the
constants α, β, γ, θ cannot be arbitrarily chosen. Indeed, according to [7, Proposition 4.5], the
cylinder Q̃−R(x0, t0) has to be contained in Int

(
A(x0,t0)

)
.

We next formulate and prove a non-local Harnack inequality which is stated in terms of
L -admissible paths. This result is the analogous of [7, Theorem 3.2] for operators satisfying
[H.1-3]. Note that here, unlike in [7, Theorem 3.2], we don’t require assumption [H.4]. We
first introduce some notations based on (2.3). For any z ∈ RN+1 and H ⊂ RN+1, we define

dK(z,H) := inf{dK(z, ζ) | ζ ∈ H}.

Finally, for any open set Ω ⊂ RN+1 and for any ε ∈]0, 1[, we define

Ωε = {z ∈ Ω | dK(z, ∂Ω) ≥ ε}. (2.6)
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Theorem 2.3 Let L be an operator in the form (1.1), satisfying assumptions [H.1-3]. Let
Ω be an open subset of RN+1, and let ε ∈]0, 1] be so small that Ωε 6= ∅. Consider a L -
admissible path γ, contained in Ωε, with inf [0,T ] λ > 0 . Then there exists a positive constant
C(γ, ε), that also depends on the constants appearing in [H.1-3], such that

u(ξ, τ) ≤ C(γ, ε)u(x, t), (x, t) = γ(0), (ξ, τ) = γ(T ),

for every non-negative solution u of L u = 0 in Ω. Moreover

C(γ, ε) = exp
(
c0 + c1

t− τ
ε2

+ c2

∫ T

0

ω2
1(s) + · · ·+ ω2

m(s)
λ(s)

ds

)
,

where c0, c1 and c2 are positive constants only depending on the operator L .

Proof. We follow the same argument used in [7, Theorem 3.2]. We summarize the proof for
the reader’s convenience.

We first assume λ ≡ 1, so that T = t − τ . We claim that there exists a finite sequence
σ0, σ1, . . . , σk ∈ [0, t− τ ] with 0 = σ0 < σ1 < · · · < σk = t− τ , such that

u(γ(σj)) ≤M u(γ(σj−1)), j = 1, . . . , k, (2.7)

where M > 1 is the constant in Theorem 2.1. Hence

u(γ(t− τ)) ≤Mku(γ(0)), (2.8)

and the claim follows by establishing a suitable bound for k. In order to apply Theorem 2.1,
we have to show that there exist r0, r1, . . . , rk−1 ∈ ]0, R0], with

Q−rj (γ(σj)) ⊂ Ω, γ(σj+1) ∈ Q̃−rj (γ(σj)) j = 0, 1, . . . , k − 1. (2.9)

Since γ([0, t− τ ]) ⊂ Ωε, there exists µ ∈
]
0,min

{
1, R0

ε

}[
such that

Q−µε(γ(σ)) ⊂ BK(γ(σ), ε) ⊂ Ω, for every σ ∈ [0, t− τ ]. (2.10)

Moreover, in [3, Lemma 2.2] it is shown that there exists a positive constant h, only dependent
on L , such that, for any 0 ≤ a < b ≤ t− τ ,∫ b

a
|ω(s)|2ds ≤ h ⇒ γ(b) ∈ Q̃−r (γ(a)), with r =

√
b− a
β

. (2.11)

We are now in position to choose the σj ’s. We set σ0 = 0, and we recursively define

σj+1 = min
{
σj + β(µε)2, inf

{
σ ∈]σj , t− τ ] :

∫ σ

σj

|ω(s)|2

h
ds > 1

}}
. (2.12)

Note that, as the L2 norm of ω is assumed to be finite, there exists a integer j =: k− 1 such
that the integral in (2.12) does not exceed 1. In this case we agree to set σk = t− τ . Then,
we let

rj =
√
σj+1 − σj

β
, j = 0, . . . , k − 1.
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The sequences {σj}kj=0 and {rj}k−1
j=0 satisfy (2.9). Indeed, we have rj ≤ µε, so that the first

part of (2.9) follows from (2.10). On the other hand, since 0 ≤ σj < σj+1 ≤ t − τ and∫ σj+1

σj
|ω(s)|2 ds ≤ h, also the second requirement of (2.9) is fulfilled by (2.11).

In order to estimate k, the definition in (2.12) yields that

k − 1 <
k−1∑
j=0

∫ σj+1

σj

(
|ω(s)|2

h
+

1
β(µε)2

)
ds ≤ 2k,

and therefore

k ≤ 1 +
t− τ
c ε2

+
1
h

∫ t−τ

0
|ω(s)|2ds. (2.13)

Hence, in the case λ ≡ 1, the proof is a direct consequence of (2.8) and (2.13), by setting

c0 = log(M), c1 =
log(M)

c
, c2 =

log(M)
h

. (2.14)

Next consider any measurable function λ : [0, T ]→ R such that inf [0,T ] λ > 0, and set

ϕ : [0, T ]→ [0, t− τ ], ϕ(s) =
∫ s

0
λ(ρ)dρ, s ∈ [0, T ].

Then, the function γ̃(s) := γ(ϕ−1(s)) satisfies

γ̃ : [0, t− τ ]→ Ω, γ̃(0) = (x, t), γ̃(t− τ) = (ξ, τ)

γ̃′(s) =
m∑
j=1

ωj(ϕ−1(s))
λ(ϕ−1(s))

Xj(γ̃(s)) + Y (γ̃(s)), for a.e. s ∈ [0, t− τ ].

By applying the first part of the proof to γ̃, we obtain∫ t−τ

0

(
ω1(ϕ−1(s))
λ(ϕ−1(s))

)2

+ · · ·+
(
ωm(ϕ−1(s))
λ(ϕ−1(s))

)2

ds =
∫ T

0

ω2
1(ρ) + · · ·+ ω2

m(ρ)
λ(ρ)

dρ.

This accomplishes the proof. �

Theorem 2.4 Let L be an operator in the form (1.1), satisfying assumptions [H.1-3]. Let
Ω be an open subset of RN+1 and let z0 ∈ Ω. For every compact set K ⊆ Int(Az0), there
exists a positive constant CK , only dependent on Ω, z0,K and on the operator L , such that

sup
K
u ≤ CK u(z0),

for every non-negative solution u of L u = 0 in Ω.

Proof. Let K be a compact subset of Int(Az0). Then, if (x, t) ∈ K, we have

Q−r (x̄, t̄) ⊂ Az0 , (x̄, t̄) = (x, t) ◦
(

0, r2β + γ

2

)
,
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for a sufficiently small r ∈ ]0, R0]. Here β, γ are as in Theorem 2.1, which gives

sup
Q̃−r (x̄,t̄)

u ≤M inf
Q̃+
r (x̄,t̄)

u.

Note that Q̃−r (x̄, t̄) is a neighborhood of (x, t). We next show that there exists a positive
constant C̃ only depending on (x, t) such that

inf
Q̃+
r (x̄,t̄)

u ≤ C̃ u(z0). (2.15)

The proof of Theorem 2.4 will follow from a standard covering argument.
We prove (2.15). There exists a L -admissible path γ : [0, T ]→ Ω defined by ω1, ..., ωm, λ

and connecting z0 to (x̄, t̄) ∈ Int(Az0). For every positive ε, denote by γε the solution to

γε : [0, T ]→ RN+1, γε(0) = z0,

γ′ε(s) =
m∑
j=1

ωj(s)Xj(γε(s)) + (λ(s) + ε)Y (γε(s)), for a.e. s ∈ [0, T ].

In particular, since γε converges uniformly to γ as ε → 0, and γ([0, T ]) is a compact subset
of Ω, it is possible to choose ε such that γε([0, T ]) ⊂ Ω. Note that γε(T ) = (xε, t̄− εT ), then
γε(T ) ∈ Q̃+

r (x̄, t̄), provided that ε is suitably small. Since inf [0,T ](λ(s) + ε) ≥ ε, Theorem 2.3
implies that there exists a constant C(γ, ε) > 0 such that

u(γε(T )) ≤ C(γ, ε)u(z0).

This gives (2.15) and ends the proof. �

3 Basic Boundary estimates

In this section we prove some results on the behavior of the solution to L u = 0 near the
boundary of its domain. We fist recall the definition of the ball BK(z0, r) in (2.4).

Lemma 3.1 Let Ω ⊆ RN+1 be an open set, and let Σ be an open subset of ∂Ω satisfying
exterior uniform cone condition i) in Definition 1.1. Then, for every θ ∈ ]0, 1[ there exists
ρθ ∈ ]0, 1] such that

sup
Ω∩BK(z0,rρθ)

u ≤ θ sup
Ω∩BK(z0,r)

u (3.1)

for every non-negative solution u of L u = 0 in Ω such that u|Σ = 0, and for every z0 ∈ Σ
and r > 0 such that BK(z0, r) ∩ ∂Ω ⊂ Σ.

Proof. We rely on a standard local barrier argument. Let x̄ ∈ RN , t̄ > 0 and U ⊆ RN be such
that

Z−(z0) = Z−
x̄,t̄,U

(z0) ⊂ RN+1 \ Ω for every z0 ∈ Σ.
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Then, [15, Theorem 6.3] implies that every z0 ∈ Σ is a L -regular point in the sense of the
abstract potential theory (see, e.g., [1],[8]). We next show that the uniform cone condition
gives a uniform estimate of the continuity modulus of the solution u near the boundary.

By [1, Satz 4.3.3] (see also [8, Proposition 2.4.5]) and the Lie group invariance, there
exists a neighborhood V0 of 0 and a barrier function w : V0\ Z−(0)→ R such that

w(0) = 0, Lw ≤ 0 in Int(V0\ Z−(0)), w > 0 in V0\ Z−(0) \ {0}.

It is not restrictive to assume that V0 = BK(0, R) for some positive R, and

inf
∂BK(0,R)\Z−(0)

w = 1. (3.2)

Being w continuous at 0, for every θ ∈ ]0, 1[ there exists ρθ ∈ ]0, 1] such that

sup
BK(0,Rρθ)\Z−(0)

w < θ. (3.3)

Let z0 ∈ Σ, and let r > 0 be such that BK(z0, r) ∩ ∂Ω ⊂ Σ. We consider the function

v(z) = w(δR/r(z
−1
0 ◦ z)).

Since Z−(0) is invariant with respect to dilations, (3.2) and (3.3) read as

inf
∂BK(z0,r)\Z−(z0)

v = 1, sup
BK(z0,rρθ)\Z−(z0)

v < θ. (3.4)

Let u ≥ 0 be a solution to L u = 0 in Ω, u|Σ = 0. The classical maximum principle together
with the first equation in (3.4) yield

u ≤ v sup
Ω∩BK(z0,r)

u in Ω ∩ BK(z0, r).

Then, the claim directly follows from the second assertion of (3.4). �

Proposition 3.2 Let L be an operator in the form (1.1), satisfying assumptions [H.1-
4]. Let Ω be an open subset of RN+1, and let z0 ∈ ∂Ω. Suppose that there exists a cone
Z+
x̄,t̄,U

(z0) ⊂ Ω, satisfying the Harnack connectivity condition ii) in Definition 1.1. Then
there exist two positive constants C and β, such that

u(z0 ◦ δs(x̄, t̄)) ≤
C

‖δs(x̄, t̄)‖βK
sup

r∈[s0,1]
u(z0 ◦ δr(x̄, t̄)) 0 < s < s0,

for every non-negative solution u of L u = 0 in Ω.

Proof. For any positive ρ we set Z̃+(z0) = Int
(
z0 ◦ δρ(Z+

x̄,t̄,U
(0))

)
. Since Z+(z0) is a bounded

set and Ω is open, there exists ρ > 1 such that

z0 ◦ (x̄, t̄) ∈ Z̃+(z0) ⊂ Ω and Az0◦(x̄,t̄)(Z
+(z0)) ⊂ Az0◦(x̄,t̄)

(
Z̃+(z0)

)
.
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Then, by applying Theorem 2.4 to the compact set K =
{
z0◦δs0(x̄, t̄)

}
, there exists a positive

constant C̃ = C̃(z0, s0, x̄, t̄, U) such that

u(z0 ◦ δs0(x̄, t̄)) ≤ C̃ u(z0 ◦ (x̄, t̄)), (3.5)

for every solution u ≥ 0 of L u = 0 in Z̃+(z0).
We are now in position to conclude the proof. For a given s ∈ ]0, s0[, the function

us : Z̃+(z0)→ R, us = u
(
z0 ◦ δs/s0(z−1

0 ◦ ·)
)

is a non-negative solution to Lsus = 0, where

Ls =
m∑

i,j=1

ai,j
(
z0 ◦ δs/s0(z−1

0 ◦ z)
)
∂xixj +

m∑
i=1

s

s0
ai
(
z0 ◦ δs/s0(z−1

0 ◦ z)
)
∂xi +

N∑
i,j=1

bi,jxi∂xj − ∂t.

Since Ls satisfies assumptions [H.1-3], then (3.5) also applies to us. As a consequence,

u(z0 ◦ δs(x̄, t̄)) = us(z0 ◦ δs0(x̄, t̄)) ≤ C̃ us(z0 ◦ (x̄, t̄)) = C̃ u(z0 ◦ δs/s0(x̄, t̄)). (3.6)

Now let n be the unique positive integer such that sn+1
0 ≤ s < sn0 . By applying n times (3.6)

we find
u(z0 ◦ δs(x̄, t̄)) ≤ C̃n u(z0 ◦ δr(x̄, t̄)), r = s/(s0)n.

On the other hand, the δr-homogeneity of the norm ‖ · ‖K yields

n =
ln
∥∥δsn0 (x̄, t̄)

∥∥
K
− ln ‖(x̄, t̄)‖K

ln s0
,

so that
C̃n = C

∥∥δsn0 (x̄, t̄)
∥∥−β
K
, (3.7)

with C = exp
(
− ln C̃

ln s0
ln ‖(x̄, t̄)‖K

)
, and β = − ln C̃

ln s0
> 0.

Finally, since s < sn0 and β > 0, from (3.7) it follows that C̃n < C
∥∥δs(x̄, t̄)∥∥−βK , so that

u
(
z0 ◦ δs(x̄, t̄)

)
≤ C∥∥δs(x̄, t̄)∥∥βK sup

r∈[s0,1]
u(z0 ◦ δr(x̄, t̄)).

This accomplishes the proof. �

4 About the Harnack connectivity condition

We next give some comments about the Harnack connectivity condition required in Proposi-
tion 3.2.

When L is an uniformly parabolic operator, it is easy to see that A(x̄,t̄)(Z+(0, 0)) =
Z+(0, 0), provided that U is connected. Hence δs0(x̄, t̄) ∈ Int

(
A(x̄,t̄)(Z+(0, 0))

)
is trivially

12



satisfied for any s0 ∈ ]0, 1[ and the statement of Proposition 3.2 restores the usual parabolic
bound (see (3.5) in [17]):

u(x0 + sx̄, t0 + s2t̄) ≤ C

sβ‖(x̄, t̄)‖β
u(x0 + x̄, t0 + t̄) 0 < s < 1. (4.1)

When considering degenerate Kolmogorov equations, the Harnack connectivity condition is
not always satisfied, as the following Example 4.1 shows. Moreover, this assumption is
relevant. Indeed, in Remark 4.2 we give an example of a domain such that the analogous of
(4.1) fails.

Consider the simplest degenerate Kolmogorov equation in the form (1.2),

∂tu = ∂2
x1
u+ x1∂x2u, (x, t) ∈ R2 × R, (4.2)

and note that it can be written in terms of vector fields (1.3) as follows

X2u+ Y u = 0, X = ∂x1 , and Y = x1∂x2 − ∂t.

Recall that the composition law and the dilations related to the operator in (4.2) are

(x, y, t) ◦ (ξ, η, τ) = (x+ ξ, y + η − xτ, t+ τ), δr(x, y, t) =
(
rx, r3y, r2t

)
,

respectively. Example 4.1 shows that we can easily find a cone Z+(0, 0) and a point (x̄, t̄)
such that δs(x̄, t̄) 6∈ Int

(
A(x̄,t̄)(Z+(0, 0))

)
for every positive s.

Example 4.1 In the setting of the Kolmogorov operator in (4.2), we let (x̄, t̄) = (1, 0, 1) and
Z+(0, 0, 0) ⊂

{
(x, t) ∈ R3 | x1 > 0

}
. Then A(x̄,t̄) (Z+(0, 0, 0)) ⊂

{
(x, t) ∈ R3 | x2 ≥ 0

}
and

δs(x̄, t̄) = (s, 0, s2).

We consider the attainable set of (0, 0, 0) in the following open set

Ω = ]−R,R[×]− 1, 1[×]− 1, 1[, (4.3)

where R is a given positive constant. A direct computation shows that

A(0,0,0) =
{

(x, t) ∈ Ω : |x2| ≤M |t|
}
, (4.4)

In [7, Proposition 4.5] it is proved that there exists a non-negative solution of (4.2) such that
u ≡ 0 in A(0,0,0), and u > 0 in Ω \A(0,0,0). As a consequence, a Harnack inequality as stated
in Theorem 2.4 cannot hold in a set K that is not contained in Int

(
A(0,0,0)

)
.

The following remark deals with the boundary behavior of a positive solution to L u = 0.

Remark 4.2 Let Ω be the set defined in (4.3), with R ∈
]
1, 3

2

[
. Let u be the function

built in [7, Proposition 4.5], which solves (4.2) and satisfies u ≡ 0 in A(0,0,0)(Ω), u > 0 in
Ω \ A(0,0,0)(Ω). Let z0 = (0, 1,−1), (x̄, t̄) = (0,−1, 1), and let U =] − R,R[×] − 2, 0[. Then
the cone Z+

x̄,t̄,U
(z0) ⊂ Ω, but the following inequality

sup
s∈[0,1]

u(z0 ◦ δs(x̄, t̄)) ≤
C

‖(x̄, t̄)‖βK
u(z0 ◦ (x̄, t̄)),
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which is the analogous of (4.1), does not hold.
Indeed, if we set

η(s) = z0 ◦ δs(x̄, t̄) =
(
0, 1− s3, s2− 1

)
,

there exists a s̃ ∈ ]0, 1[ such that η(s) ∈ A(0,0,0)(Ω) for every s ∈ ]0, s̃], and η(s) 6∈ A(0,0,0)(Ω)
for every s ∈ ]s̃, 1[. On the other hand, we have z0 ◦ (x̄, t̄) = (0, 0, 0), so that u(η(s)) > 0 =
u(z0 ◦ (x̄, t̄)) for every s ∈ ]s̃, 1[.

Hence, the assumption on s0 ∈]0, 1[ made in Proposition 3.2 cannot be avoided.

5 Proof of our main results

Proof of Theorem 1.2. We denote by K̃ and ˜̃
K the following compact sets:

K̃ =
{
z ∈ Ω | dK(z,K) ≤ ρ

}
,

˜̃
K =

{
z ∈ Ω | dK(z, K̃) ≤ ρ

}
,

where ρ is a positive constant such that ∂Ω∩ ˜̃K ⊂ Σ∩V , and that ˜̃K ⊂ Int(Az̃) with respect
to the topology of Ω. We also require that

ρ < min
{
c−1, ρθ

}
, (5.1)

where c is the constant in (2.2), ρθ ∈]0, 1] is the constant in Lemma 3.1 related to any given
θ ∈]0, c−β[, and β is as in Proposition 3.2.

We next claim that Ω satisfies an uniform interior cone condition with respect to a suitable
Z̃+(w) = Z+

x̃,t̃,Ũ
(w), such that

Z̃+(w) ⊂ BK(w, c−1ρ2) for every w ∈ RN+1. (5.2)

To this aim, we set (x̃, t̃) = δη(x̄, t̄) and Ũ = Dη(U) for some η ∈]0, 1[. Note that Z̃+(w) =
w ◦ δη

(
Z+
x̄,t̄,U

(0)
)
. Then, since Z+

x̄,t̄,U
(0) is bounded, we can choose a small η such that

δη
(
Z+
x̄,t̄,U

(0)
)
⊂ BK(0, c−1ρ2). This proves (5.2). As a plain consequence we have

Z̃+(w) ⊆ ˜̃K for every w ∈ K̃ ∩ Σ. (5.3)

Moreover, the Lie group invariance implies w ◦ δs0(x̃, t̃) ∈ Int
(
A(x̃,t̃)(Z

+(w))
)

with the same
s0 ∈]0, 1[ as Z+

x̄,t̄,U
(w). We also remark that condition ii) can be equivalently stated in terms

of (x̃, t̃), since

dK(w ◦ δs(x̃, t̃),Σ) = dK(w ◦ δsη(x̄, t̄),Σ) ≥ c̃ s with c̃ = c̄ η. (5.4)

We finally remark that Proposition 3.2 applies to Z̃+(w) with the same β as Z+(w).
Recalling notation (2.6), we set

Kε = K \ Ωε = {z ∈ K | dK(z, ∂Ω) < ε}. (5.5)
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We next choose a sufficiently small ε ∈ ]0, c̃ s0[ such that if z ∈ ˜̃K satisfies dK(z,Σ) < ε, then
z ∈ V . In particular, if z ∈ Kε we have z ∈ V , so that there exists a unique (w, s) ∈ Σ×R+

with z = w ◦ δs(x̃, t̃). We note that

dK(z,Σ) ≤ dK(z, w) = dK(w ◦ δs(x̃, t̃), w) = s‖(x̃, t̃)‖K , and c̃ s ≤ dK(z,Σ) < ε.

Since c̃ s < ε < c̃ s0, we have s < s0 < 1, then z = w ◦ δs(x̃, t̃) ∈ Z̃+(w). By (5.2) and (2.2)
we get w ∈ BK(z, ρ), hence w ∈ K̃ ∩ Σ ⊂ V .

In conclusion, if z ∈ Kε, then there exists a unique pair (w, s) ∈
(
K̃ ∩ Σ

)
×]0, s0[ such

that z = w ◦ δs(x̃, t̃). Moreover, if w ∈ K̃ ∩Σ and s ∈ [s0, 1], by using (5.3) and (5.4) we find

w ◦ δs(x̃, t̃) ∈
˜̃
K ∩ Ωε. (5.6)

We are now in position to conclude the proof of Theorem 1.2. By Theorem 2.4, there

exists a positive constant C̃ = C̃
( ˜̃
K ∩ Ωε, z̃,Ω

)
such that

sup˜̃
K∩Ωε

u ≤ C̃ u(z̃). (5.7)

It is not restrictive to assume u(z̃) 6= 0, otherwise the statement would be a plain consequence
of Bony’s maximum principle [2, Théorème 3.2]. Hence, up to a multiplication by a positive
constant, we can suppose C̃ u(z̃) = 1.

We fix a constant λ > 1, which will be suitably chosen later. By contradiction, we suppose

that there exists z1 ∈ K satisfying u(z1) > λ. Since K ⊂ ˜̃
K, we have z1 ∈ Kε. Then, there

exists a unique (w1, s1) ∈
(
K̃ ∩Σ

)
×]0, s0[ such that z1 = w1 ◦ δs1(x̃, t̃). From Proposition 3.2

it follows that

λ < u(z1) = u(w1 ◦ δs1(x̃, t̃)) ≤ C

‖δs1(x̃, t̃)‖βK
sup

s∈[s0,1]
u(w1 ◦ δs(x̃, t̃)). (5.8)

Hence, (5.6), (5.7) and (5.8) give

ρ1 := s1‖(x̃, t̃)‖K < C
1
β λ
− 1
β . (5.9)

Since s1 < s0 < 1, we have z1 ∈ Z̃+(w1) ⊂ BK(w1, c−1ρ2), by (5.2). Then ρ1 = dK(z1, w1) <
c−1ρ2. Since ρ < ρθ we have ρ−1

θ ρ1 < ρ, then BK(w1, ρ
−1
θ ρ1) ∩ ∂Ω ⊂ Σ. By Lemma 3.1, we

then have
λ < u(z1) ≤ sup

Ω∩BK(w1,ρ1)
u ≤ θ sup

Ω∩BK(w1,ρ
−1
θ ρ1)

u.

Hence, there exists z2 ∈ Ω ∩ BK(w1, ρ
−1
θ ρ1) such that

u(z2) > λθ−1. (5.10)

We next show that z2 ∈ K̃, provided that λ is big enough. We have

dK(z2, z1) ≤ c (dK(z2, w1) + dK(w1, z1)) ≤ c
(
ρ−1
θ ρ1 + cρ1

)
< c

(
ρ−1
θ + c

)
C

1
β λ
− 1
β .
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If we choose λ > C
(
c
(
ρ−1
θ + c

))β
ρ−β we obtain z2 ∈ BK(z1, ρ) ⊂ K̃.

We note that z2 ∈ K̃ε by (5.10), then z2 ∈ V . Hence there exists a unique (w2, s2) ∈
Σ×]0, s0[ such that z2 = w2 ◦ δs2(x̃, t̃). We next show that, if λ is sufficiently large, then
w2 ∈ K̃ ∩ Σ. We set ρ2 = s2‖(x̃, t̃)‖K , and we see

dK(w2, z1) ≤ c (dK(w2, z2) + dK(z2, z1)) < c2
(
ρ2 +

(
ρ−1
θ + c

)
C

1
β λ
− 1
β

)
.

Since s2 < s0 < 1 and Z̃+(w2) ⊂ BK(w2, c−1ρ2), we have ρ2 < c−1ρ2. Then

dK(w2, z1) < c
(
ρ2+ c

(
ρ−1
θ + c

)
C

1
β λ
− 1
β

)
< ρ,

provided that λ > C
(

c(ρ−1
θ +c)

ρ(c−1−ρ)

)β
. Note that last expression is well defined, since ρ < c−1.

We next show that s2‖(x̃, t̃)‖K < C
1
β λ
− 1
β θ

1
β . Indeed, as in (5.8), it is easy to see that

λ θ−1 < u(z2) ≤ C

‖δs2(x̃, t̃)‖βK
sup

s∈[s0,1]
u(w2 ◦ δs(x̃, t̃)) ≤

C

(s2‖(x̃, t̃)‖K)β
.

We next iterate the above argument. We set c0 := c
(
ρ−1
θ + c

)
, and we prove that, if

λ >
C

θ

(
c0
∑∞

k=1

(
θ

1
β c
)k

ρ(c−1 − ρ)

)β
, (5.11)

then there exists a sequence {zj} such that zj = wj ◦ δsj (x̃, t̃), 0 < sj < s0,

zj ∈ K̃ε, wj ∈ K̃ ∩ Σ, u(zj) > λθ1−j , sj‖(x̃, t̃)‖K < C
1
β λ
− 1
β θ

j−1
β , (5.12)

for every j ∈ N. Note that the series in (5.11) is convergent since θ ∈]0, c−β[, and that ρ < c−1

by (5.1). As a consequence of last inequality in (5.12) we get dk(zj ,Σ) ≤ dk(zj , wj) → 0 as
j →∞, then u(zj) vanishes as j →∞, and we reach a contradiction. This shows that

sup
K
u ≤ λ C̃ u(z̃),

and the proof is accomplished.
We next prove (5.12) by induction. The claim has previously been proved for j = 1 and

j = 2. Assume that (5.12) is satisfied for j = k, and set ρk = sk‖(x̃, t̃)‖K . Since sk < s0 < 1
we have ρk < c−1ρ2, then ρ−1

θ ρk < ρ and BK(wk, ρk) ∩ ∂Ω ⊂ Σ. Hence, by Lemma 3.1 there
exists zk+1 ∈ Ω ∩ BK(wk, ρk) such that u(zk+1) > λθ−k.

We next show that zk+1 ∈ K̃ε. We have

dK(zk+1, z1) ≤ c (dK(zk+1, z2) + dK(z2, z1)) ≤
k∑
j=1

(
cjdK(zj+1, zj)

)
. (5.13)
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We also have

dK(zj+1, zj) ≤ c (dK(zj+1, wj) + dK(wj , zj)) ≤ c
(
ρ−1
θ ρj + cρj

)
< c0C

1
β λ
− 1
β θ

j−1
β ,

by (5.12). By using the above inequality in (5.13) we find

dK(zk+1, z1) < c0C
1
β (λ θ)−

1
β

∞∑
j=1

(
θ

1
β c
)j
< ρ,

because of our choice of λ in (5.11). This proves that zk+1 ∈ K̃. Since u(zk+1) > λθ−k > 1,
we actually have zk+1 ∈ K̃ε. In particular, zk+1 ∈ V, then there exists a unique (wj+1, sj+1) ∈
Σ×]0, s0[ such that zj+1 = wj+1 ◦ δsj+1(x̃, t̃).

We next show that wk+1 ∈ K̃ ∩ Σ. We see that

dK(wk+1, z1) ≤ c (dK(wk+1, zk+1) + dK(zk+1, z1))

< c
(

cρk+1 + c0C
1
β (λ θ)−

1
β

∞∑
j=1

(
θ

1
β c
)j)

< c
(
ρ2+ c0C

1
β (λ θ)−

1
β

∞∑
j=1

(
θ

1
β c
)j)

< ρ,

again by (5.11).
From Proposition 3.2 it follows that

λ θ−k < u(zk+1) ≤ C

‖δsk+1
(x̃, t̃)‖βK

sup
s∈[s0,1]

u(wk+1 ◦ δs(x̃, t̃)) ≤
C

(sk+1‖(x̃, t̃)‖K)β
,

then sk+1‖(x̃, t̃)‖K < C
1
β λ
− 1
β θ

k
β . This proves (5.12) for j = k + 1. �

Proof of Proposition 1.4. In both cases a) and b), there exist an open neighborhood W1 ⊆W
of w̃ and a C1 function F : W1 → R such that Σ∩W1 = {z ∈W1 : F (z) = 0}, and ν = ∇F 6= 0
in Σ ∩W1. Moreover, it is possible to choose F such that Ω ∩W1 = {z ∈ W1 : F (z) < 0}.
By Dini’s theorem, there exist an open neighborhood O ⊂ RN of 0, an open neighborhood
W2 ⊆ W of w̃, and a C1 diffeomorphism ϕ : O → W2 ∩ Σ with ϕ(0) = w̃, such that the
Jacobian matrix Jϕ(0) has rank N . It is not restrictive to suppose that W1 = W2 = W , and
that W ⊂ Int(Az̃). We next rely on the function ϕ to check the uniform cone conditions.

Assume that a) is satisfied. We first prove that the interior uniform cone condition holds
in a neighborhood of w̃. To this aim we carefully choose a point x̃, a neighborhood Ũ of
x̃, and we consider the cone Z+

x̃,1,Ũ
(w), for every w ∈ Σ ∩W . As noticed in Example 4.1,

the Harnack connectivity condition is not trivially satisfied by any cone Z+. According to
notation (2.1), we first choose the first component x̃(0), then the other ones x̃(1), . . . , x̃(κ) in
order to guarantee the existence of an s0 ∈ ]0, 1[ as required in Definition 1.1 iii). We actually
prove that, in this setting, the condition is fulfilled for any s0 ∈ ]0, 1[.

17



We choose x̃(0)∈ Rm such that

m∑
j=1

x̃jνj(w̃) < 0. (5.14)

We consider the solution γ : [0, 1]→ RN+1 of

γ′(s) =
m∑
j=1

ωjXj(γ(s)) + Y (γ(s)), γ(0) = (x̃, 1), (5.15)

where the constant vector (ω1, . . . , ωm) equals c Ā−1
0 x̃(0), for a suitable constant c which will

be chosen in the sequel. Note that γ is a L -admissible path. Since (5.15) is equivalent to

γ′(s) = c x̃(0) + (BT− ∂t)γ(s), γ(0) = (x̃, 1), (5.16)

a direct computation shows that

γ(s) =
(

exp
(
sBT

)
x̃+ c

∫ s

0
exp

(
(s− τ)BT

)
(x̃(0), 0, . . . , 0) dτ, 1− s

)
. (5.17)

By using the same block decomposition as in (1.10), the matrix

exp
(
sBT

)
= E(−s) = (Eij(−s))i,j=0,...,κ

is given by

E0,0(−s) = Im, Ej,j(−s) = Imj , j = 1, . . . , κ,

Ej,k(−s) =
sj−k

(j − k)!
BT
j . . . B

T
κ+1, j = 1, . . . κ, k = 0, . . . j − 1.

We fix any r ∈ ]0, 1[, and we set s0 =
√

1− r. We aim to choose c and (x̃(1), . . . , x̃(κ)) such
that

γ(r) = δs0(x̃, 1). (5.18)

The equality between the time variables follows from r = 1− s2
0. Moreover, we find

γ(0)(r) = x̃(0)+ crx̃(0) = s0x̃
(0);

γ(1)(r) = rBT
1 x̃

(0)+ x̃(1)+ c
r2

2
BT

1 x̃
(0) = s3

0x̃
(1);

. . .

γ(κ)(r) =
κ∑
i=1

ri

i!
BT
κ . . . B

T
κ−i+1x̃

(κ−i)+ x̃(κ)

+ c
rκ+1

(κ+ 1)!
BT
κ . . . B

T
1 x̃

(0) = s2κ+1
0 x̃(κ).
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As a consequence, in order to satisfy (5.18), it is sufficient to choose c = s0−1
r , and

x̃(j) =
1

c
∑2j

k=0 s
k
0

( j∑
i=1

ri−1

i!
BT
j . . . B

T
j−i+1x̃

(j−i)+ c
rj

(j + 1)!
BT
j . . . B

T
1 x̃

(0)

)
, (5.19)

for every j = 1, . . . , κ.
In order to prove that Σ satisfies an uniform interior cone condition for every w in a

neighborhood of w̃, we have to show that the values of the path γ in (5.16) and (5.18) belong
to the cone Z+

x̃,1,Ũ
(w). To this aim, we fix a suitably small r and we show that γ(s) belongs

to a prescribed neighborhood of (x̃, 1) for any s ∈ [0, r]. Since the definition of x̃ depends on
r, we make a careful construction in order to avoid recursive arguments. We define ỹ ∈ RN

by setting

ỹ(0) = x̃(0), ỹ(j) = − 2
(2j + 1)

BT
j ỹ

(j−1), j = 1, . . . , κ,

and, by (5.19), we find x̃ = x̃(r) → ỹ as r → 0. By (5.17) and the above fact, we have: for
every neighborhood Ṽ of (ỹ, 1) there exists r ∈ ]0, 1[ such that

γ(s) ∈ Ṽ for any s ∈ [0, r]. (5.20)

We next use the point (ỹ, 1) to build the needed interior cone. We first find a suitable
neighborhood Ũ of ỹ to define the cone Z+

ỹ,1,Ũ
(ϕ(y)). Then, we choose a small positive r such

that, according to (5.19), x̃ = x̃(r) ∈ Ũ , so that Z+

x̃,1,Ũ
(ϕ(y)) = Z+

ỹ,1,Ũ
(ϕ(y)). With the aim

to find a such Ũ , we first remark that the function Φỹ,1 : O× ]− σ, σ[→ RN+1,

Φỹ,1(y, s) = ϕ(y) ◦ δs(ỹ, 1) = (Ds ỹ + exp(−s2BT )ϕx(y), ϕt(y) + s2), (5.21)

is a local diffeomorphism. Indeed, we have

det JΦỹ,1(0, 0) = det
(
Jϕ(0) (x̃(0), 0, . . . , 0)T

)
6= 0, (5.22)

since rank Jϕ(0) = N and, by (5.14),

〈(x̃(0), 0, . . . , 0), ν(w̃)〉 6= 0.

By choosing σ > 0 so small as Φỹ,1(y, s) ∈W , we define

g : ]− σ, σ[→ R, g(s) = F
(
Φỹ,1(y, s)

)
.

Note that g′(0) = 〈∇F (ϕ(y)), (x̃(0), 0, . . . , 0)〉 tends to
∑m

j=1 x̃jνj(w̃) < 0 as y → 0, so that
g(s) < 0 for s > 0. Then, there exist σ1 > 0 and a neighborhood O1 of 0 ∈ RN such that
Φỹ,1(y, s) ∈ Ω for (y, s) ∈ O1× ]0, σ1].

Next, let Ŵ be an open neighborhood of (ŷ, t̂) := δσ1(ỹ, 1). For any (η, τ) ∈ Ŵ we consider
the function Φη,τ (y, s) defined as in (5.21). We have

d

ds
Φη,τ (y, s)|s=0 = (η(0), 0, . . . , 0),
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and
〈(η(0), 0, . . . , 0), ν(ϕ(y))〉 → σ1〈(x̃(0), 0, . . . , 0), ν(w̃)〉 < 0,

as (η, τ)→ (ŷ, t̂) and y → 0. We choose Ŵ suitably small, a σ2 > 0 and a neighborhood O2

of 0 ∈ RN such that

Φη,τ (y, s) ∈ Ω ∩W, for every (η, τ) ∈ Ŵ and (y, s) ∈ O2× ]0, σ2].

Since the function (x, ρ) 7→ δρ(x, 1) is continuous, there exists a neighborhood Ũ of ỹ and
ε ∈ ]0, 1[ such that

V̂ :=
{
δρ(x, 1) | x ∈ Ũ , σ1(1− ε) < ρ < σ1(1 + ε)

}
⊂ Ŵ .

The set Ṽ := δ1/σ1

(
V̂
)

is an open neighborhood of (ỹ, 1). Then, we choose r ∈ ]0, 2ε − ε2[
such that (5.20) holds. In particular, γ(0) = (x̃, 1) ∈ Ṽ , where x̃ = x̃(r) ∈ Ũ is as in (5.19).
Moreover, by (5.17),

γ(s) ∈ Ṽ ∩ {(x, t) | t ∈ [s2
0, 1]} =

{
δρ(x, 1) | x ∈ Ũ , 1− ε < ρ ≤ 1

}
, (5.23)

for all s ∈ [0, r].
We are now in position to verify that i), ii), iii) hold under condition a). We set

W̃ =
{
ϕ(y) ◦ δρ(x̃, 1) | y ∈ O2, 0 ≤ ρ ≤ σ1σ2

}
.

Since σ1 < 1, we have W̃ ⊂ W ⊂ Int(Az̃), then condition ii) of Proposition 1.4 is satisfied.
We set (x̄, t̄) = δσ1σ2(x̃, 1), and U = Dσ1σ2

(
Ũ
)
. In order to check the first statement of iii),

we consider the function

G(y, s) = ϕ(y) ◦ δs(x̄, t̄) = Φx̃,1(y, σ1σ2s).

As in (5.22), it is easy to check that it is a local diffeomorphism. Then, by shrinking a bit σ2

if necessary, the function G is surjective onto W̃ , and this proves the first statement of iii).
We next show that Z+

x̄,t̄,U
(ϕ(y)) satisfies the uniform interior cone condition, for every

y ∈ O2. We have

Z+
x̄,t̄,U

(ϕ(y)) =
{
ϕ(y) ◦ δρ/σ2

(x, t̄) | x ∈ U, 0 < ρ ≤ σ2

}
=
{
ϕ(y) ◦ δρ(δσ1(x, 1)) | x ∈ Ũ , 0 < ρ ≤ σ2

}
⊂
{
ϕ(y) ◦ δρ(η, τ) | (η, τ) ∈ Ŵ , 0 < ρ ≤ σ2

}
⊆ Ω.

Note that, by construction, there exists r̄ > 0 such that, for every s ∈ ]0, 1
2 σ1σ2[, the ball

BK(ϕ(y) ◦ δs(x̄, t̄), r̄s) is contained in Z+
x̄,t̄,U

(ϕ(y)). Thus, we get dK(ϕ(y) ◦ δs(x̄, t̄),Σ) ≥ r̄s,
for every y ∈ O2. This concludes the proof of condition iii).

We finally check the Harnack connectivity condition. We claim that

ϕ(y) ◦ δs0(x̄, t̄) ∈ Int
(
Aϕ(y)◦(x̄,t̄)

(
Z+
x̄,t̄,U

(ϕ(y))
))
, for every y ∈ O2. (5.24)
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For any y ∈ O2, the path defined as

γy(s) = ϕ(y) ◦ δσ1σ2(γ(s)), s ∈ [0, r],

is an L -admissible curve connecting ϕ(y) ◦ (x̄, t̄) to ϕ(y) ◦ δs0(x̄, t̄). Moreover, we have

γy(s) ∈ Z+
x̄,t̄,U

(ϕ(y)), for every s ∈ [0, r]. (5.25)

Indeed, by (5.23),

γy([0, r]) ⊆
{
ϕ(y) ◦ δσ1σ2

(
δρ(x, 1)

)
| x ∈ Ũ , 1− ε < ρ ≤ 1

}
=
{
ϕ(y) ◦ δρ(x, t̄) | x ∈ U, 1− ε < ρ ≤ 1

}
⊂ Z+

x̄,t̄,U
(ϕ(y)).

We have shown that
ϕ(y) ◦ δs0(x̄, t̄) ∈ Aϕ(y)◦(x̄,t̄)

(
Z+
x̄,t̄,U

(ϕ(y))
)
.

In order to get (5.24), it is enough to prove that

ϕ(y) ◦ δs0(x̄, t̄) ∈ Int
(
Aϕ(y)◦(x̄,t̄)

(
Z+
x̄,t̄,U

(ϕ(y))
))
, for every y ∈ O2. (5.26)

To this aim we first recall that the map L∞([0, 1],Rm) 3 ω 7→ γ(1), where γ is the solution
to (5.15), is differentiable (see for instance [4, Theorem 3.2.6]). Moreover its differential is
surjective by (1.8), which is a controllability condition for the system (5.15). Therefore, by the
Implicit Function Theorem, as ω varies in a neighborhood of the constant vector c Ā−1

0 x̃(0),
the image of the map ω 7→ γ(1) covers a neighborhood of ϕ(y) ◦ δs0(x̄, t̄). This proves (5.26)
and, then, (5.24). This proves that the uniform interior cone condition on W̃ ∩Σ is satisfied.

In order to show the uniform exterior cone condition, it is sufficient to consider the function
Φ−x̃,1 : O× ]− σ, σ[→ RN+1,

Φ−x̃,1(y, s) = ϕ(y) ◦ (−δs(x̃, 1)) = (−Ds x̃+ exp(s2BT )ϕx(y), ϕt(y)− s2).

By following the same argument as before, we plainly check that Z−−x̄,t̄,−U (ϕ(y)) ⊆ RN+1 \Ω.

This implies the uniform exterior cone condition in Σ ∩ W̃ . This accomplishes the proof of
Proposition 1.4 under the assumption a).

We next suppose that condition b) is verified. In this case, we set x̄ = 0 to define
the cone Z+

x̄,t̄,U
(ϕ(y)). We next choose a neighborhood U of 0 and a positive t̄ such that

Z+
0,t̄,U

(ϕ(y)) ⊆ Ω. To this aim, we introduce the function Ψ : O×]− σ̃, σ̃[→ RN+1,

Ψ(y, s) = ϕ(y) ◦ (0, s) = (exp(−sBT )ϕx(y), ϕt(y) + s). (5.27)

It is a local diffeomorphism. Indeed,

det JΨ(0, 0) = det
(
Jϕ(0) − Y (ϕ(0))

)
6= 0

since rank Jϕ(0) = N and 〈Y (w̃), ν(w̃)〉 > 0. If σ̃ is small enough, we have Ψ(y, s) ∈W , and
then we can define

h : ]− σ̃, σ̃[→ R, h(s) = F (Ψ(y, s)).
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Note that h′(0) = 〈∇F (ϕ(y)),−Y (ϕ(y))〉 tends to −〈ν(w̃), Y (w̃)〉 < 0 as y → 0, hence
h(s) < 0 for s > 0. As a consequence, there exists σ̃1 > 0 and a neighborhood Õ1 of 0 such
that Ψ(y, s) ∈ Ω for (y, s) ∈ Õ1× ]0, σ̃1]. We recall notation (5.21) and we note that

Ψ(y, s) = ϕ(y) ◦ δ√s(0, 1) = Φ0,1

(
y,
√
s
)

for any s ∈]0, σ̃[.

Let Ŵ be an open neighborhood of (0, σ̃1) such that ϕ(y) ◦ (ξ, τ) ∈ Ω for any (ξ, τ) ∈ Ŵ .
In order to build an inner cone, we need to show that there exist σ3 > 0 and a neighbor-

hood O3 of 0 such that Φξ,τ (y,
√
s) ∈ Ω for every (ξ, τ) ∈ Ŵ and (y,

√
s) ∈ O3× ]0, σ3].

We next prove that there exists an open neighborhood W1 = I1 × I2 × . . .× IN × It of w̃
such that

Ω ∩W1 = I1 × . . .× Im × Ω′, with Ω′ ∈ RN−m+1. (5.28)

To this aim, we show that for every v ∈ Rm there exists ε > 0 satisfying

w + s(v(0), 0, . . . , 0) ∈ Σ, for any s ∈ ]− ε, ε[ and w ∈W1. (5.29)

Since ν = (νx, νt) 6= 0 in Σ ∩W , in the following argument it is not restrictive to assume
νt(w) 6= 0 for every w ∈ Σ ∩ W . By Dini’s theorem, if w = (wx, wt), there exist two
neighborhoods Vx ⊂ RN , Vt ⊂ R of wx, wt with Vx × Vt ⊂ W , and ψ ∈ C1(Vx) such that
Σ ∩ (Vx × Vt) = {(x, ψ(x)) : x ∈ Vx}. We set

f(s) = F
(
wx + s(v(0), 0, . . . , 0), ψ(wx + s(v(0), 0, . . . , 0))

)
, s ∈ ]− ε, ε[,

where ε > 0 is so small as wx + s(v1, . . . , vm) ∈ Vx. Then f ≡ 0, and

f ′(s) =
〈
∇F

(
wx + s(v(0), 0, . . . , 0), ψ(wx + s(v(0), 0, . . . , 0))

)
, (v(0), 0, . . . , 0)

〉
+ ∂tF (. . .) 〈∇ψ(wx + s(v(0), 0, . . . , 0)), (v(0), 0, . . . , 0)〉 = 0, s ∈ ]− ε, ε[.

As a consequence,

d

ds
ψ(wx + s(v(0), 0, . . . , 0)) = 0, s ∈ ]− ε, ε[,

and this proves (5.29), being

ψ(wx + s(v(0), 0, . . . , 0)) = ψ(wx) = wt, s ∈ ]− ε, ε[.

With (5.28) at hands, we consider the projections π1 and π2

π1(x1, . . . , xN , t) = (x1, . . . , xm), π2(x1, . . . , xN , t) = (xm+1, . . . , xN , t).

We claim that there exists a neighborhood O3 of 0 ∈ RN such that

π2

(
Z+

0,t̄,U
(ϕ(y))

)
⊆ Ω′, for every y ∈ O3. (5.30)

Note that
π1

(
Φξ,τ

(
y,
√
s
))
∈ I1 × . . .× Im, (5.31)

22



for every (ξ, τ) ∈ Ŵ and (y, s) ∈ Õ1×]0, σ̃1]. Then, by (5.28) it is sufficient to see that
π2 (Φξ,τ (y,

√
s)) ∈ Ω′ for every (ξ, τ) ∈ Ŵ and (y,

√
s) ∈ O3× ]0, σ3]. We have

d

ds
π2

(
Φξ,τ

(
y,
√
s
))
|s→0 = −τ π2

(
Y (ϕ(y)

)
,

and
−τ
〈
π2

(
Y (ϕ(y)

)
, ν(ϕ(y))

〉
→ −σ̃1〈Y (w̃), ν(w̃)〉 < 0,

as (ξ, τ) → (0, σ̃1) and y → 0. Then, if Ŵ is suitably small, there exist σ3 > 0 and a
neighborhood O3 of 0 such that

π2

(
Φξ,τ

(
y,
√
s
))
∈ Ω′, for every (ξ, τ) ∈ Ŵ and

(
y,
√
s
)
∈ O3× ]0, σ3]. (5.32)

We set t̄ = σ2
3, r = σ3(σ̃1)−

1
2 and we choose a neighborhood U of the origin such that

U ×
{
t̄
}
⊂ δr

(
Ŵ
)
. We finally put

W̃ =
{
ϕ(y) ◦ δρ(ξ, t̄) | y ∈ O3, 0 ≤ ρ ≤ 1, ξ ∈ U

}
.

It is now easy to check that i), ii), iii) hold under condition b). Indeed, (5.30) plainly follows
from (5.32). Then Z+

0,t̄,U
(ϕ(y)) ⊆ Ω for every y ∈ O3, by (5.30) and (5.31). Note that

the function s 7→ ϕ(y) ◦ δ√1−s(0, 1) is an L -admissible path, then the Harnack connectivity
condition ii) in Definition 1.1 is trivially satisfied. In order to show the uniform exterior cone
condition, it is sufficient to consider the function Φ−0,1(y, s) = ϕ(y) ◦ (−δs(0, 1)) instead of Φ,
and to follow the same argument as in the case a).

The first assertion in iii) follows from the fact that the function Ψ in (5.27) is a local
diffeomorphism. Finally, ii) and second assertion in iii) can be easily verified, arguing as in
the case a). �
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