A boundary estimate for non-negative solutions to Kolmogorov
operators in non-divergence form
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Abstract: We consider non-negative solutions to a class of second order degnerate Kolmogorov
equations in the form

m N
Lu(z,t) = Z i j(2,t) O, u(, ) + Z bi jwi0z;u(z,t) — Opu(w,t) = 0,
i,j=1 i,j=1

where (z,t) belongs to an open set 2 C RY xR, and 1 < m < N. Let Z € Q, let K be a
compact subset of €, and let ¥ C 0 be such that K N 9Q C X. We give some sufficient
geometric conditions for the validity of the following Carleson type inequality. There exists
a positive constant C'xr, only depending on 2,%, K,z and on .Z, such that

supu < Cx u(z),
K
for every non-negative solution u of Zu = 0 in (2 such that u5; = 0.
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1 Introduction

In the study of local Fatou theorems, Carleson proves in [6] the following estimate for positive
harmonic functions. Let D C R™ be a bounded Lipschitz domain with Lipschitz constant M,
let we dD, 0 <r <rg, and suppose that u is a non-negative continuous harmonic function
in DN B(w,2r). Suppose that u =0 on D N B(w,2r). Then there exists a positive constant
c¢=c(n,M) and a point az(w) satisfying |az(w) — w| =7, dist(az(w),dD) > /M, such that
if ¥ =r/c, then

< ~ .
X U S cu(az(w))
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The above estimate is now referred to as Carleson estimate. Important generalization of
this results to more general second order elliptic and parabolic equations have been given by
Caffarelli, Fabes, Mortola and Salsa in [5], and by Salsa in [17], respectively. The purpose of
this paper is to establish a general version of the Carleson’s results for non-negative solutions
to operators of Kolmogorov type.

Our research is a part of a thorough study of the boundary behavior for non-negative so-
lutions to operators of Kolmogorov type (see [9], [11], [16]), motivated by several applications
to Physics and Finance.

Throughout the paper we consider a class of second order differential operators of Kol-
mogorov type of the form

m m N
L= ()00, + D ai(2)00, + Y bijuids, — O, (1.1)
=1

ij=1 4,j=1

where z = (x,t) € RN xR, 1 < m < N and the coefficients a; ; and a; are bounded continuous
functions. The matrix B = (b; ;)i j=1,..~ has real constant entries. Concerning structural
assumptions on the operator .Z we assume the following.

[H.1] The matrix Ag(z) = (@i ;(2))ij=1,.,m is symmetric and uniformly positive definite in
R™: there exists a positive constant A such that

ATHEP <) ai ()88 < A[EP,  VEER™, z e RVFL
ij=1

[H.2] The constant coefficients operator

m N
H = Z az-,j6ximj + Z bi,jxiazj — O (1.2)

i,j=1 1,j=1

is hypoelliptic, i.e. every distributional solution of J#u = f is a smooth classical solution,
whenever f is smooth. Here Ag = (ai,j),;J:l,m,m is a constant, symmetric and positive
matrix.

[H.3] The coefficients a; ; and a; belong to the space C%*(RNT1) of Holder continuous
functions (defined in (2.5) below), for some « €]0, 1].

Note that the operator £ can be written as
m
H =) X} +Y,
i=1

where

m
Xi:zai,jaxjv izl?"'am7 Y:<$,Bv>*8t, (13)
j=1



and the a; ;'s are the entries of the unique positive matrix Ap such that Ag = fl%.
We recall that hypothesis [H.2] is equivalent to Hérmander condition [12]:

rank Lie (X1,...,X,,,Y)(2) =N+1, VzeRNL (1.4)

It is known that the natural framework to study operators satisfying a Hérmander condition
is the analysis on Lie group. In particular, the relevant Lie group related to the operator J&
in (1.2) is defined using the group law

(z,t) o (&,7) = (£ + exp(—7 B )z, t + 1), (z,t), (€,7) € RNTL, (1.5)

The vector fields Xi,...,X,, and Y are left-invariant with respect to the group law (1.5), in
the sense that

Xj(u(Co ) =(Xju)(Co-), j=1,....m, Y (u(Co-))=Fu)(Co-) (16
for every ¢ € RN+ (hence .# (u(Co -)) = (A u) (Co -)).

We next introduce the integral trajectories of Kolmogorov equations. We say that a path
v :10,T] — RN+ is Z-admissible if it is absolutely continuous and satisfies

7(s) = Y wil)X;(1(s) + AS)Y (1(s)),  for ace. s €[0,T], (1.7)
j=1
where w; € L%([0,T]) for j =1,...,m, and X is a non-negative measurable function. We say

that v connects zy to z if v(0) = 29 and y(T') = z. Concerning the problem of the ezistence
of admissible paths, we recall that it is a controllability problem, and that [H.2] is equivalent
to the following Kalman condition:

rank (A4 BTA - (BT)"'4) = N. (1.8)

Ay 0
0 0
and Ag is the m x m constant matrix introduced in (1.3). We recall that (1.8) is a sufficient

condition for the existence of a solution of (1.7), in the case of Q = RN x|Tp, T1[ (see [14],
Theorem 5, p. 81).

We denote by

Here A is the N x N matrix defined by

A, (Q) = {z € Q| there exists an £-admissible 7 : [0, 7] — Q connecting zo to z}, (1.9)

and we define o7, = ., () = A () as the closure (in R¥*1) of A, (Q2). We will refer to
oy, as the attainable set.



We recall that [H.2] is equivalent to the following structural assumption on B [13]: there
exists a basis for RN such that the matriz B has the form

* By 0 -+ 0
x % By -+ 0
o (1.10)
* % x .- By
where Bj is a mj_1 xm; matriz of rank m; forj e {1,...,k},1<m, <...<my <mo=m

and m +mq + ...+ mx = N, while x represents arbitrary matrices with constant entries.
Based on (1.10), we introduce the family of dilations (d,),~o on RV+! defined by

6p = (D, 7r?) = diag(rlpn, Iy, ..., 72", 72), (1.11)

where I, k € N, is the k-dimensional unit matrix. To simplify our presentation, we will also
assume the following technical condition:

[H.4] the operator ¢ in (1.2) is d,-homogeneous of degree two, i.e.

H 06, =1%(8p0 ), Vr>0.

We explicitly remark that [H.4] is satisfied if (and only if) all the blocks denoted by * in
(1.10) are null (see [13]).

We next introduce some definitions based on the dilations (1.11) and on the translations
(1.5). For any given zp € RNt z € RN 7 € RT we consider an open neighborhood U c R¥

of z, and we denote by ng_,t_,U(ZO) and ZT i (20) the following tusk-shaped cones

Z-ru(20) = {z000s(x,~1) |2 €U, 0 <5 < 1}

(1.12)
20) = {z0 0 0s(z,8) |z €U, 0 < s < 1}.

In the sequel, aiming to simplify the notations, we shall write Z*(z) instead of Z;t{U(zo).
Note that Z~(z9) and Z*(zg) are cones with the same vertex at zp, while the basis of Z~(zp)
is at the time level ¢ty — < t(, and the basis of Z7(2g) is at the time level to + ¢ > tg.

Definition 1.1 Let Q be an open subset of RN*! and let ¥ C 99.

i) We say that 3 satisfies the uniform exterior cone condition if there exist € RV, & > 0
and an open neighborhood U C RN of T such that

Z 7 (20)NQ =10 for every zp € X,
where Z~(20) = Z_; ;(20);

i1) we say that Z,tU( 0) satisfies the Harnack connectivity condition if zg o ds,(Z,t) €
Int (,0z.5(Z7 (20))) for some so €]0,1[;



i) we say that ¥ satisfies the uniform interior cone condition if there exist € RV, > 0
and an open neighborhood U C RN of & such that

Zt(20) CQ for every zp € X,

where Z*(29) = Z+

- u(20) satisfies ii).

We point out that, by its very construction, Z; EU(ZO) satisfies the Harnack connectivity

condition for every zy € RN*1 if Z;r (wo) does satisfy it for some wy € RN+
We are now ready to formulate our main result.

Theorem 1.2 Let £ be an operator in the form (1.1), satisfying assumptions [H.1-4]. Let
Q be an open subset of RNFL let 3 be an open subset of 00, let K be a compact subset of Q
and let Z € Q. Assume that 0QN K C X, and that K C Int(e#%) (with respect to the topology
of Q). Suppose that ¥ satisfies both interior and exterior uniform cone condition and that
there exist an open set V.C RNT! and a positive constant ¢, such that

i) KNXCV,

ii) for every z € V N Q there exists a pair (w,s) € ¥ x R with z = w o §4(z,t), and
dg(w o 0s(Z,t),X) > ¢s.

Then there exists a positive constant Cg, only depending on Q, %, K,z and on £, such that

supu < Ck u(z),
K

for every non-negative solution u of Zu =0 in Q such that us, = 0.

Remark 1.3 The exterior cone condition yields the existence of barrier functions for the
boundary value problem (see Manfredini [15]), then it gives an uniform continuity modulus of
the solution near the boundary. We also note that, when £ is an uniformly parabolic operator,
then assumptions i) and ii) made in Theorem 1.2 are satisfied by Lip(l, %) surfaces.

Next proposition provides us with a simple sufficient condition for these assumptions in
the case of degenerate operators .. We say that a bounded open set 2 is regular if ) =
Int (ﬁ) and its boundary is covered by a finite set of manifolds. In the following v denotes
the outer normal on 9f2.

Proposition 1.4 Let Q C RN¥*! be a bounded open regular set, let ¥ be an open subset of
00. Let Z € Q,w € X be such that w € Int(<%) (with respect to the topology of Q). Assume
that there exists an open neighborhood W C RNTY of w such that S N'W is a N-dimensional
C! manifold, and suppose that either

a) (v (w),...,vp(w)) #0,

or



b) (vi(z),...,vm(2)) =0 at every z € WNE, and (Y (w),v(w)) > 0.
Then there exists an open neighborhood Wcw of w such that
i) XN w satisfies both interior and exterior uniform cone conditions,
i) W C Int(%),
i11) for any z € W N Q there exists a pair (w,s) € ¥ x RT with z = w o d5(Z,t), and

dg(w o 05(Z,t),X) > ¢s, for some positive constant c.

As a consequence of Proposition 1.4, the assumptions made in Theorem 1.2 are satisfied
by any compact set K C W U X. Then there exists a positive constant Cg such that
sup u < Ck u(z), for every non-negative solution u of £u = 0 in €2 such that uy, = 0.

Remark 1.5 The above condition (vi(w),...,vm(w)) # 0 can be used also in the case of
cylinders. More precisely, if @ = QN {(z,t) e RNTL | t > 1o}, and Q satisfies condition a)
of Proposition 1.4 at some point w = (xg,tg) € X, then cones build at every point of Q can
be used for 02 as well.

This paper is organized as follows. In Section 2 we recall some notations and a Harnack
type inequality for Kolmogorov equations. Then we prove in Theorem 2.4 a geometric version
of the Harnack inequality, formulated in terms of .Z-admissible paths. In Section 3 we prove
some results about the behavior of the solution to .Zu = 0 near the boundary of its domain.
In Section 4 we show that the uniform Harnack connectivity condition required in Theorem
1.2 is not a technical assumption but it is needed by the strong degeneracy of Kolmogorov
operators. Section 5 is devoted to the Proof of Theorem 1.2 and Proposition 1.4.

2 Preliminaries and Interior Harnack inequalities

In this Section we introduce some notations, then we state some Harnack type inequalities
for Kolmogorov equations.
We split the coordinate z € RV as

x = (33(0),:U(1),...,:E(“)), tOerm z0DeR™, je{l,... k). (2.1)

Based on this we define
10| :
jalxe = [« 7, [(z, )]l = [2|Kk + [t]2.
=0

We note that ||6,z||x = 7||z||x for every r > 0 and z € R¥*L. We recall the following
pseudo-triangular inequality: there exists a positive constant ¢ such that

Ik <ellellxe,  lzodln <clllzlx +l¢lx), 2 ¢ e RV (2.2)



We also define the quasi-distance di by setting
di(z,Q) =T ozllk, 2 ¢ eRVH, (2.3)

and the ball
Bi(z0,7) := {z € RN " | dy (2, 20) < 7} (2.4)

Note that from (2.2) it directly follows
dK(Z7<) SC(dK(Z,U))'i‘dK('lU,C)), Z?vaeRN+1'

We say that a function f : Q@ — R is Holder continuous of exponent « €]0, 1], in short
fe C?(’a(Q), if there exists a positive constant C' such that

1f(z) = f(O] < Cdr(z,(), for every z,( € L. (2.5)

For any positive R and (zo,t9) € RN, we put Q= = (Bi(3e1) N Bi(—%e1)) x [-1,0],
and Qx(zo,t0) = (z0,t0) 0 6r (Q7). For o, 3,7,0 € R, with 0 < a < 8 < v < 6%, we set

Qg (xo,t0) = {(z,t) € Qgp(wo,to) | to — YR* < t <t — BR?},
Qi (o, t0) = {(x,t) € Qyp(wo,t0) | to — aR? <t <to}.

We recall the following invariant Harnack inequality for non-negative solutions u of Zu = 0.

Theorem 2.1 (THEOREM 1.2 IN [10]) Under assumptions [H.1-3], there exist constants
Ry >0, M > 1 and o, f3,7,0 €]0,1[, with 0 < o < B < v < 62, depending only on the
operator £, such that
sup u <M inf |,
Qp(z0,t0) QF (wo,to)

fo;ﬁ)ery non-negative solution u of Lu =0 in Qx(xo,t0) and for any R €]0, Ro], (xo,t0) €
R .

Remark 2.2 As noticed in Section 1, unlike the uniform parabolic case, in Theorem 2.1 the
constants «, 3,7,0 cannot be arbitrarily chosen. Indeed, according to [7, Proposition 4.5], the
cylinder Qg (xo,t0) has to be contained in Int (ﬂ/(xo,to)).

We next formulate and prove a non-local Harnack inequality which is stated in terms of
Z-admissible paths. This result is the analogous of [7, Theorem 3.2] for operators satisfying
[H.1-3]. Note that here, unlike in [7, Theorem 3.2], we don’t require assumption [H.4]. We
first introduce some notations based on (2.3). For any z € RY*! and H c RV*!, we define

di(z,H) :=inf{dk(2,() | ¢ € H}.
Finally, for any open set Q C R¥+! and for any ¢ €]0, 1[, we define

Qe ={2€Q|dg(2,00) > €}. (2.6)



Theorem 2.3 Let £ be an operator in the form (1.1), satisfying assumptions [H.1-3]. Let
Q be an open subset of RN*1 and let ¢ €]0,1] be so small that Q. # 0. Consider a £-
admissible path v, contained in e, with inflg 7y A > 0 . Then there exists a positive constant
C(v,€), that also depends on the constants appearing in [H.1-3], such that

u(éa T) < 0(775) u(l‘,t), (‘T’t) = ’Y(O)’ (677—) = ’Y(T)7

for every non-negative solution u of Zu =0 in . Moreover

B t—17 T wd(s) + - +wi(s)
C(v,e) = exp (co +01672 +02/0 o) ds> )

where cg,c1 and co are positive constants only depending on the operator £ .

Proof. We follow the same argument used in [7, Theorem 3.2]. We summarize the proof for
the reader’s convenience.

We first assume A = 1, so that T' = ¢t — 7. We claim that there exists a finite sequence
00,01, --.,0% € [0,t — 7] with 0 =09 < 01 < -+ < 0 =t — T, such that

u(y(oj)) < Mu(vy(oj-1)), j=1,...,k, (2.7)
where M > 1 is the constant in Theorem 2.1. Hence
u((t = 1)) < MPu(y(0)), (2.8)
and the claim follows by establishing a suitable bound for k. In order to apply Theorem 2.1,
we have to show that there exist ro,71,...,7rx—1 €]0, Ro|, with
Qr,(7(0)) CQ, A(oj11) €Q,,(v(0y)  F=0,1,.... k-1 (2.9)

Since ([0, ¢ — 7]) C Qe, there exists p € |0, min {1, %} [ such that
Q,:(7(0)) C Br(y(0),e) C Q, for every o € [0,t — 7. (2.10)

Moreover, in [3, Lemma 2.2] it is shown that there exists a positive constant h, only dependent
on .Z, such that, for any 0 <a<b<t—rT,

b
~ bh—
/ lw(s)Pds <h = ~(b) € Q, (v(a)), withr= 5 a (2.11)
We are now in position to choose the o;’s. We set o9 = 0, and we recursively define
o 2
0j+1 = min {oj + B(pe)?, inf {a €loj, t—1]: / ‘w(}‘j)‘ ds > 1}} (2.12)
oj

Note that, as the L? norm of w is assumed to be finite, there exists a integer j =: k — 1 such
that the integral in (2.12) does not exceed 1. In this case we agree to set o =t — 7. Then,

e N

8

we let



The sequences {O’j}?zo and {r; ?;S satisfy (2.9). Indeed, we have r; < pue, so that the first
part of (2.9) follows from (2.10). On the other hand, since 0 < 0; < 0j41 < t — 7 and
[ lw(s)|*ds < h, also the second requirement of (2.9) is fulfilled by (2.11).

J

In order to estimate k, the definition in (2.12) yields that

k—1 )
e fw(s)? 1
k—1 ds < 2k
<;0/a ( ho Be)

J

and therefore
t

k<14 _T+1/tTy (s)]2d (2.13)
— w(s)|*ds. .

- ce2  hJ

Hence, in the case A = 1, the proof is a direct consequence of (2.8) and (2.13), by setting

log(M log(M
togan), o o)

(2.14)

Next consider any measurable function A : [0,7] — R such that infjy 7y A > 0, and set

¢ :10,T) — [0,t — 7], go(s):/s/\(p)dp, s €[0,T].
0
Then, the function 5(s) := v(p~1(s)) satisfies
7: 00t =71 =9, 5(0) = (z,8), Ft—-7)=(7)

w7 (s
A(s) = CaC) X;(7(s)) +Y(H(s)), forae. sel0,t—rT].

TSN ()

By applying the first part of the proof to 7, we obtain

[ GRS e (i) oo [ 2555

This accomplishes the proof. O

Theorem 2.4 Let £ be an operator in the form (1.1), satisfying assumptions [H.1-3]. Let
Q be an open subset of RNT! and let zg € Q. For every compact set K C Int(<,,), there
exists a positive constant C, only dependent on S, zg, K and on the operator £, such that

supu < Ck u(zp),
K

for every non-negative solution u of Zu =0 in €.

Proof. Let K be a compact subset of Int(<7,). Then, if (z,t) € K, we have

Q @Dty @D = i)o (02T,

9



for a sufficiently small r €0, Ry]. Here (3, are as in Theorem 2.1, which gives

sup v <M inf w.
Qr (@.9) QF @)

Note that~@; (z,t) is a neighborhood of (x,t). We next show that there exists a positive
constant C' only depending on (z,t) such that

_inf w< C u(z). (2.15)
QF (@)

The proof of Theorem 2.4 will follow from a standard covering argument.
We prove (2.15). There exists a .Z-admissible path v : [0,7] — Q defined by w1, ..., W, A
and connecting zg to (Z,t) € Int(,). For every positive &, denote by v, the solution to

Ve : [O,T] - RN—Ha '76(0) = 20,

VL(s) = ij(s)Xj('yg(s)) + (A(s) +2)Y(1e(s)), fora.e. se0,T].

In particular, since v, converges uniformly to v as € — 0, and ~([0,7]) is a compact subset
of Q, it is possible to choose € such that v.([0,7]) C Q. Note that 7.(T) = (x,t —T), then
ve(T) € Qi (z,1), provided that ¢ is suitably small. Since infjg 77(A(s) +€) > &, Theorem 2.3
implies that there exists a constant C'(v, ) > 0 such that

u(7e(T)) < C(v,¢) ulz0)-

This gives (2.15) and ends the proof. O

3 Basic Boundary estimates

In this section we prove some results on the behavior of the solution to Zu = 0 near the
boundary of its domain. We fist recall the definition of the ball Bx (zo,7) in (2.4).

Lemma 3.1 Let Q C RY*! be an open set, and let ¥ be an open subset of O satisfying
exterior uniform cone condition i) in Definition 1.1. Then, for every 6 €]0,1| there exists
po €10, 1] such that
sup u<f sup u (3.1)
QNBx (z0,7pg) QNBx (z0,r)
for every non-negative solution u of ZLu = 0 in  such that w, = 0, and for every 2o € X
and r > 0 such that B (z0,7) N0 C X.

Proof. We rely on a standard local barrier argument. Let Z € RY,# > 0 and U C R be such

that
Z (20) = Z_;(20) C RN\ O for every zp € X.

10



Then, [15, Theorem 6.3] implies that every zp € ¥ is a .Z-regular point in the sense of the
abstract potential theory (see, e.g., [1],[8]). We next show that the uniform cone condition
gives a uniform estimate of the continuity modulus of the solution u near the boundary.

By [1, Satz 4.3.3] (see also [8, Proposition 2.4.5]) and the Lie group invariance, there
exists a neighborhood V) of 0 and a barrier function w : V5\ Z7(0) — R such that

w(0) =0, Lw<0 in Int(Vp\Z (0)), w>0 in Vp\Z(0)\ {0}
It is not restrictive to assume that Vy = Bx (0, R) for some positive R, and

inf w=1. (3.2)
OBk (0,R)\Z~(0)

Being w continuous at 0, for every 6 €10, 1] there exists py €0, 1] such that

sup w < 6. (3.3)
Bx(0,Rpo)\Z~ (0)

Let zp € X, and let r > 0 be such that Bg(zp,7) N 02 C X. We consider the function
v(z) = w(éR/T(zal 0 2)).
Since Z~(0) is invariant with respect to dilations, (3.2) and (3.3) read as

inf v=1, sup v <0. (3.4)
OBk (20,m)\Z~ (20) B (z0,7p9)\Z~ (20)

Let w > 0 be a solution to Zu = 0 in 2, ujx, = 0. The classical maximum principle together
with the first equation in (3.4) yield

u<v sup wu in QN Bk(zo,7).
QHBK(ZU,T‘)

Then, the claim directly follows from the second assertion of (3.4). O
Proposition 3.2 Let £ be an operator in the form (1.1), satisfying assumptions [H.1-
4]. Let Q be an open subset of RNT1 and let zy € 0. Suppose that there exists a cone

Z;EU(zo) C Q, satisfying the Harnack connectivity condition ii) in Definition 1.1. Then
there exist two positive constants C and (3, such that

u(zp 0 85(7, 1)) < % sup u(zg o 0,(Z,1)) 0< s < s,
||58(5Ua£)||}< r€[s0,1]

for every non-negative solution u of Lu =0 in €.

Proof. For any positive p we set Zt(zp) = Int (29 0 ,(Z (0))). Since Z(2) is a bounded

x7{7
set and €2 is open, there exists p > 1 such that

200 (5,8) € ZV(20) CQ and A ozn(Z27(20)) C Frgo(ai (£ (20)).

11



Then, by applying Theorem 2.4 to the compact set K = {zo 005, (7, f)}, there exists a positive
constant C' = C(zo, S0, T, t, U) such that

u(20 0 8 (7, 7)) < Culzg 0 (7,1)), (3.5)

for every solution u > 0 of Lu =0 in Z* ().
We are now in position to conclude the proof. For a given s €0, so[, the function

us : Z(z0) — R, uS:u(zoods/SO(zO_lo-))
is a non-negative solution to Z;us = 0, where
m m N
Y, = mz_l a;j (zo o 55/50(2510 Z))axixj + Z_Zl % a; (zo 0 0g/s0 (zalo z))@xi + igl bi j1i0z; — O
Since .Z; satisfies assumptions [H.1-3], then (3.5) also applies to us. As a consequence,

u(z 0 0s(Z, 1)) = (20 0 6y (Z, 7)) < Cug(20 0 (,1)) = Cuz 0s/s0 (T, 1)) (3.6)

Now let n be the unique positive integer such that 88+1 < s < s(. By applying n times (3.6)

we find B
u(zo 0 85(Z, 1)) < C"u(zg 0 0,(Z, 1)), r=s/(so)".

On the other hand, the §,-homogeneity of the norm || - | x yields

g (@D~ In (@)
B 1118() ’

so that N ,
C" = C o5 (@ D) ¢ (3.7)
with € = exp (— 28 In ||(#,9)]1x), and # = ~2€ > 0.

In sg In sg

Finally, since s < s and 8 > 0, from (3.7) it follows that C" < C Hés(i?,ﬂ”;(ﬁ, so that

u(zo 0 65(Z,1)) sup u(zg o 0,(Z,1)).

< B
6., D rebon

This accomplishes the proof. O

4 About the Harnack connectivity condition

We next give some comments about the Harnack connectivity condition required in Proposi-
tion 3.2.

When .# is an uniformly parabolic operator, it is easy to see that ;7 (Z7(0,0)) =
Z%(0,0), provided that U is connected. Hence ds,(Z,) € Int (/5 7(Z71(0,0))) is trivially
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satisfied for any sg €0, 1[ and the statement of Proposition 3.2 restores the usual parabolic
bound (see (3.5) in [17]):

u(xg + s, to + 8%) < To+T,tg+1)  0<s<l. (4.1)

LS
sPll(z, )17

When considering degenerate Kolmogorov equations, the Harnack connectivity condition is
not always satisfied, as the following Example 4.1 shows. Moreover, this assumption is
relevant. Indeed, in Remark 4.2 we give an example of a domain such that the analogous of
(4.1) fails.

Consider the simplest degenerate Kolmogorov equation in the form (1.2),
Oyu = 92 u + 2105,u, (z,t) € R? x R, (4.2)
and note that it can be written in terms of vector fields (1.3) as follows
X2u+Yu=0, X =0, and Y =210, — O,
Recall that the composition law and the dilations related to the operator in (4.2) are
(x,y,t)o (&,my1)=(x+&y+n—a7,t+7), or(z,y,t) = (rfn,r?’y,er),

respectively. Example 4.1 shows that we can easily find a cone Z*(0,0) and a point (,1)
such that 6,(z,%) & Int (7,7 (Z7(0,0))) for every positive s.

Example 4.1 In the setting of the Kolmogorov operator in (4.2), we let (Z,t) = (1,0,1) and
Z%(0,0,0) € {(x,t) € R® | 2y > 0}. Then /55 (21(0,0,0)) C {(z,t) € R® | 23 > 0} and
5s(7,t) = (s,0,5%).

We consider the attainable set of (0,0,0) in the following open set
Q=]—-R,R[x]—1,1[x] —1,1], (4.3)
where R is a given positive constant. A direct computation shows that
Ho0,0) = {(x,t) € Q: |xa] < Mt]}, (4.4)

In [7, Proposition 4.5] it is proved that there exists a non-negative solution of (4.2) such that
u =0 in g ,), and u > 0 in O \ 0,0,0)- As a consequence, a Harnack inequality as stated
in Theorem 2.4 cannot hold in a set K that is not contained in Int (@7(0,070)).

The following remark deals with the boundary behavior of a positive solution to Zu = 0.

Remark 4.2 Let Q2 be the set defined in (4.3), with R € ]1,%[. Let u be the function
built in [7, Proposition 4.5], which solves (4.2) and satisfies u = 0 in /g0,0)(€2), u > 0 in
QN H0,0,0)(R). Let z0 = (0,1,-1),(z,t) = (0,—-1,1), and let U =] — R, R[x] — 2,0[. Then
the cone Z;:E,U(ZO) C Q, but the following inequality

sup u(z0 © 05(Z,1)) < ———u
sef0,1] (2, 1)]%

(ZO o ('ﬂ E))v

13



which is the analogous of (4.1), does not hold.
Indeed, if we set
n(s) = z9005(z, 1) = (0,1 — 8%, s>~ 1),

there exists a 5 €0, 1[ such that n(s) € (0,0,0)(2) for every s €]0,5], and n(s) & (0,0,0)(2
for every s €]5,1[. On the other hand, we have 2z o (Z,t) = (0,0,0), so that u(n(s)) >0 =
u(zp o (Z,t)) for every s €]s,1].

Hence, the assumption on sg €]0,1[ made in Proposition 3.2 cannot be avoided.

5 Proof of our main results

Proof of Theorem 1.2. We denote by K and K the following compact sets:
K=1{2eQldg(,K)<p}, K=1{2€Q|dr(z,K)<p},

where p is a positive constant such that 92N K C ©NV, and that K C Int(@%) with respect
to the topology of £2. We also require that

p < min {cfl,pg}, (5.1)

where c is the constant in (2.2), pp €]0, 1] is the constant in Lemma 3.1 related to any given
6 €]0,c=?[, and 3 is as in Proposition 3.2.

We next claim that {2 satisfies an uniform interior cone condition with respect to a suitable
7t (w) = Z;'?ﬁ(w), such that

Zt(w) C Bg(w,c™'p?) for every w e RMTL, (5.2)

To this aim, we set (7,¢) = d,(%,) and U= D, (U) for some n €]0,1[. Note that 7t (w) =
w o 577(2;“1(0)). Then, since Z1. (0) is bounded, we can choose a small 5 such that

z,t,U
oy (Z;F,E,U(O)) C Bk (0,c'p?). This proves (5.2). As a plain consequence we have

Zt(w) C K for every we KNY. (5.3)

Moreover, the Lie group invariance implies w o &, (%, ) € Int (szf(g ;)(Z+(w))) with the same

s0 €]0,1[ as Z7 ;. (w). We also remark that condition i) can be equivalently stated in terms

of (z,t), since
di (w0 85(7,1), %) = d (w0 §¢y(7,7), %) > s with ¢=én. (5.4)

We finally remark that Proposition 3.2 applies to Z*(w) with the same 8 as Z*(w).
Recalling notation (2.6), we set

Ke=K\Q.={z¢€ K |dg(z,090) < e} (5.5)

14



We next choose a sufficiently small € €0, so[ such that if z € K satisfies dg (z, %) < €, then
z € V. In particular, if 2 € K¢ we have z € V, so that there exists a unique (w,s) € ¥ x Rt
with z = w o §5(7,t). We note that

di(2,%) < dg(z,w) =drg(wods(z,t),w) = s||(z,t)||xk, and ¢s<dg(z,X)<e.

Since ¢s < € < &sg, we have s < sy < 1, then z = w o 84(%,1) € Z(w). By (5.2) and (2.2)
we get w € Br(z,p), hence w e KN C V.

In conclusion, if z € K¢, then there exists a unique pair (w,s) € (f( N E)X]O, so[ such
that z = w o 84(F, ). Moreover, if w € KNY and s € [so, 1], by using (5.3) and (5.4) we find

w o 84(%,1) € K N Q.. (5.6)

We are now in position to conclude the proof of Theorem 1.2. By Theorem 2.4, there
exists a positive constant C= 5’(I~( NQ., z, Q) such that

sup u < Cu(?). (5.7)
KNQ.

It is not restrictive to assume u(z) # 0, otherwise the statement would be a plain consequence
of Bony’s maximum principle [2, Théoreme 3.2]. Hence, up to a multiplication by a positive
constant, we can suppose C u(Z) = 1.

We fix a constant A > 1, which will be suitably chosen later. By contradiction, we suppose

that there exists z1 € K sa‘gvisfying u(z1) > A. Since K C f(, we have z; € K¢. Then, there

exists a unique (w1,s1) € (K NY)x]0, so[ such that zy = wy 0 d,, (Z,¢). From Proposition 3.2

it follows that

o~ C ~ =

A <u(z) =u(wy ods, (T,1)) < —————7 sup u(wy 0 d5(Z, t)). (5.8)
1051 (Z, D[ & s€ls0.1]

Hence, (5.6), (5.7) and (5.8) give
o~ 11
p1:=s1||(Z,t)||xk < CBN 5. (5.9)

Since s1 < s9 < 1, we have z1 € Z+(w1) C B (w1, ¢ p?), by (5.2). Then p; = dg (21, wy) <
c'p?. Since p < py we have pglpl < p, then BK(wl,pe_lpl) N o C X. By Lemma 3.1, we
then have
A<u(z) < sup u <0 sup u.
QNBg (w1,p1) QHBK(whpglpl)

Hence, there exists zo € QN By (w1, pe_lpl) such that
u(z) > A67L. (5.10)

We next show that z, € K , provided that X is big enough. We have
11
drc (20, 21) < € (e (20, w1) + di (w1, 21)) < ¢ (p; 1 +ep1) <c(p,'+¢)CANA.
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If we choose A > C (c (pe_l—i- c))ﬁp_ﬂ we obtain zy € Bg(z1,p) C K.
We note that zo € K¢ by (5.10), then z, € V. Hence there exists a unique (ws, s2) €
¥x]0, so[ such that zo = wg o ds,(,t). We next show that, if A is sufficiently large, then

we € KNX. We set po = s2||(Z,t)||x, and we see
1 1
dic(wa, 21) < ¢ (di(wa, z0) + d (29, 21)) < € (p2 + (p9_1+ c) Cﬁ)fﬁ) i
Since s9 < s < 1 and Z*(wg) C Bi (wg, ¢ p?), we have ps < ¢ 1p?. Then
2 —1 3
di(wa,21) < ¢ (P +c(p'+c)ChA ") <p,

provided that A > C (%) . Note that last expression is well defined, since p < c1.

~ 1

1 1
We next show that sa||(Z,t)||x < CPA 505. Indeed, as in (5.8), it is easy to see that

Q

sup (s 0 6,(F,) < —

/\971 < u(zg) S P T— <— .
1655 (F, D)5 selso.1] (s, 8[| x)?

We next iterate the above argument. We set ¢y :=c¢ (pe_l—i— c), and we prove that, if

00 1 k\ B
A > C<COZ/€1 95;}) ) , (511)

then there exists a sequence {z;} such that z; = w; o ds,(7,1), 0 < 55 < sp,

~ ~ . ~ j—1
G eRe, w e KNS, ulz) >0, s|(@ Dk <CFNF0T (5.12)

for every j € N. Note that the series in (5.11) is convergent since  €]0,c?[, and that p < ¢~*
by (5.1). As a consequence of last inequality in (5.12) we get di(z;,%) < di(z;,w;) — 0 as
J — 00, then u(z;) vanishes as j — oo, and we reach a contradiction. This shows that

supu < ACu(3),
K

and the proof is accomplished.

We next prove (5.12) by induction. The claim has previously been proved for j = 1 and
§ = 2. Assume that (5.12) is satisfied for j = k, and set pg = s1||(Z,1)||x. Since s < 59 < 1
we have p;, < ¢~ !p?, then pe_lpk < p and Bk (wg, pr) N0 C 2. Hence, by Lemma 3.1 there
exists zpy1 € QN Bx(wy, pr) such that u(zp 1) > A07F.

We next show that zp+1 € K¢. We have

k
i (2he1,21) < € (dic (241, 22) + dic (22, 21)) < (Vdc (241, 7)) - (5.13)
j=1
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We also have
11 g1
dK(Zj+1, Zj) <c (dK(sz,wj) + dK(w]', Zj)) <c (p;lpj + ij) < cgCBN B8O B |
by (5.12). By using the above inequality in (5.13) we find
1 1 ° 1 ;
di (241, 21) < €oCP (AO) 5 Z (65c)’ <p,
j=1

because of our choice of A in (5.11). This proves that zp41 € K. Since u(zj41) > A0~F > 1,
we actually have 2z, € K. In particular, z,y1 € V, then there exists a unique (wjt1, sj41) €
¥x]0, so[ such that zj11 = wjyq 0 65].“(5,?).

We next show that wgy1 € K NY. We see that

di (W1, 21) < ¢ (dg (W1, 2e+1) + di (Zk+1, 21))

< c(cpk+1 + COC%(/\ 9)_% Z (Géc)j)

j=1
1 ° 1
<c<p —I—coCﬂ A0)T5 Y (07c) ) < p,
j=1
again by (5.11).
From Proposition 3.2 it follows that
C ~ = C
A < u(zpy1) < —————=——= sup u(wgy1 0 95(7,t)) < —— ,
1852 (@ D)1 selso (k1@ )l k)P
~ k
then sp41|/(Z, )]k < CFA"565. This proves (5.12) for j =k + 1. O

Proof of Proposition 1.4. In both cases a) and b), there exist an open neighborhood W; C W
of w and a C! function F : W7 — R such that SNW; = {z € Wy : F(2) =0},andv = VF # 0
in ¥ N W;. Moreover, it is possible to choose F' such that QNW; = {z € Wy : F(z) < 0}.
By Dini’s theorem, there exist an open neighborhood O c R of 0, an open neighborhood
Wo € W of w, and a C! diffeomorphism ¢ : O — Wo N with »(0) = w, such that the
Jacobian matrix J,(0) has rank N. It is not restrictive to suppose that Wy = Wy = W, and
that W C Int(<%). We next rely on the function ¢ to check the uniform cone conditions.
Assume that a) is satisfied. We first prove that the interior uniform cone condition holds
in a neighborhood of w. To this aim we carefully choose a point Z, a neighborhood U of
Z, and we consider the cone Z7 _(w), for every w € ¥ N W. As noticed in Example 4.1,

z,1,U
the Harnack connectivity condition is not trivially satisfied by any cone ZT. According to
notation (2.1), we first choose the first component Z(?), then the other ones 1), ..., #*) in

order to guarantee the existence of an sg €10, 1[ as required in Definition 1.1 4ii). We actually
prove that, in this setting, the condition is fulfilled for any sy €10, 1].
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We choose 70 € R™ such that

> Fy(@) <0, (5.14)

m
V()= wiX;(1s) +Y (1), 7(0) = (1), (5.15)
j=1
where the constant vector (w1, ...,wn,) equals cfla 170) for a suitable constant ¢ which will

be chosen in the sequel. Note that v is a .Z-admissible path. Since (5.15) is equivalent to
Y(s) = O+ (B"=d)v(s),  4(0) = (@ 1), (5.16)
a direct computation shows that
~v(s) = (exp (sBT)E + c/ exp ((s — T)BT) @9,0,...,0)dr, 1 - s). (5.17)
0
By using the same block decomposition as in (1.10), the matrix
exp (sBT) = E(—s) = (Eij(—5))ij=0,..x
is given by
E070(—S) :Im, EJ’J(—S) :Imj, j = 1,...,[-{,
si=k

Ej,k(is):meBg{-la ]:1,:’4/, k::(),]fl

We fix any  €]0,1[, and we set 59 = /T — 7. We aim to choose ¢ and (Z(M,..., %)) such
that

v(r) = 05, (T, 1). (5.18)

The equality between the time variables follows from r = 1 — s2. Moreover, we find
YO ) = 7O 4 rz© = 5,70

2
A (r) = rBTFO 4 70 4 C% BTz = g3z,

Ti ~(k—1 ~(K
V() =35 BE L BE 3 )

v BT BIFEO = @iz,



1

As a consequence, in order to satisfy (5.18), it is sufficient to choose ¢ = *0==, and
L0 S S < ZJ: Mgt gt g0y, T pro BT;E(O)) (5.19)
eXilosg Ny A T T G+t )
for every j =1,...,K.

In order to prove that X satisfies an uniform interior cone condition for every w in a
neighborhood of w, we have to show that the values of the path « in (5.16) and (5.18) belong
to the cone Z;l ﬁ(w). To this aim, we fix a suitably small » and we show that ~y(s) belongs

to a prescribed fleighborhood of (z,1) for any s € [0,r]. Since the definition of Z depends on
r, we make a careful construction in order to avoid recursive arguments. We define 5 € RV
by setting

A ) A
— ~() — _ T~(j—1)
Y v,y A

and, by (5.19), we find ¥ = Z(r) — y as r — 0. By (5.17) and the above fact, we have: for
every neighborhood V' of (y,1) there exists r €0, 1] such that

j=1,...,K,

v(s) €V forany se[0,r]. (5.20)

We next use the point (y,1) to build the needed interior cone. We first find a suitable
neighborhood U of 4 to define the cone Z;l ﬁ(go(y)). Then, we choose a small positive r such

that, according to (5.19), & = Z(r) € U, so that Z;’l ﬁ(go(y)) = Z;fl f](cp(y)) With the aim

to find a such (7, we first remark that the function &3, : O x| —0,0[— RN+L

®5.1(y,5) = (y) 0 0s(,1) = (Ds § + exp(=s*B )pu (1), e (y) + 5%), (5.21)

is a local diffeomorphism. Indeed, we have
det Jp_ , (0,0) = det (J(p(()) @9, 0,... ,O)T) £0, (5.22)
since rank J,(0) = N and, by (5.14),
((@©,0,...,0),v(w)) #0.
By choosing o > 0 so small as @3 ;(y,s) € W, we define
g:]=o0[=R,  g(s) = F(P.(y,5)).

Note that ¢’(0) = (VF(¢(y)), (Z?,0,...,0)) tends to > ey Tjvi(w) < 0 asy — 0, so that
g(s) < 0 for s > 0. Then, there exist o1 > 0 and a neighborhood O7 of 0 € R¥ such that
5 1(y,s) € Q for (y,s) € O1x]0,01].

Next, let W be an open neighborhood of (4,) := 64,(7,1). For any (n,7) € W we consider
the function @, -(y, s) defined as in (5.21). We have

d

%q)?],ﬂ'(y? S)’szo = (77(0), 0,... ,0)7
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and

((1,0,...,0),v(p(y))) = a1 ((@?,0,...,0),v(@)) <0,

as (n,7) — (¢,) and y — 0. We choose W suitably small, a 0o > 0 and a neighborhood O-
of 0 € RY such that

Q- (y,5) € QANW, for every (n,7) € W and (y,s) € O2x 0, 02].

Since the function (z, p) — 0,(z,1) is continuous, there exists a neighborhood U of § and
e €10, 1[ such that

V= {5p(:c,1)\a:6(~], oi(l—e)<p<oi(l+e)} cW.

The set V := 010y (?) is an open neighborhood of (7,1). Then, we choose r €]0,2¢ — 2]
such that (5.20) holds. In particular, y(0) = (%,1) € V, where Z = #(r) € U is as in (5.19).
Moreover, by (5.17),

v(s) € Vn{(a,t) |t €[s3,1]} = {0,(z,1) [z €U, 1 —e < p< 1}, (5.23)

for all s € [0, 7].
We are now in position to verify that i), i), i) hold under condition a). We set

W = {p(y) 06,(F,1) |y € Oz, 0 < p < 0102}

Since o1 < 1, we have WcCcWwc Int(%), then condition i) of Proposition 1.4 is satisfied.
We set (Z,t) = 05,0,(%,1), and U = Dy, (U). In order to check the first statement of i),
we consider the function

G(yv S) = Qp(y) © 63(577?) = (I)i,l(% 01023)'

As in (5.22), it is easy to check that it is a local diffeomorphism. Then, by shrinking a bit o9
if necessary, the function G is surjective onto W, and this proves the first statement of ).
We next show that Z1. (p(y)) satisfies the uniform interior cone condition, for every
z,t,U
y € Oz. We have

Z () = {9() 0 0pjoy (2,1 |2 €U, 0 < p < 02}
= {o(y) 0 6,(65,(z,1)) |z € U, 0<p< o2}
C {e)od,(n,7) [ (n,7) €W, 0<p<op} CAQ
Note that, by construction, there exists # > 0 such that, for every s €]0, % o109[, the ball
B (¢(y) o 05(Z,1),7s) is contained in Z7  (¢(y)). Thus, we get dg(p(y) o 65(Z,1),%) > 7s,

for every y € Oz. This concludes the proof of condition 4ii).
We finally check the Harnack connectivity condition. We claim that

©(y) 0 ds,(Z,t) € Int (ﬁfw(y)o@@ (Z;aU(go(y)))), for every y € Os. (5.24)
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For any y € Os, the path defined as

rYy(S) = 4,0(?/) o 50102 (7(8))7 5 € [0,7’],

is an Z-admissible curve connecting ¢(y) o (Z,t) to p(y) o ds,(Z,t). Moreover, we have

T

Yy(s) € Z -, (¢(y)), for every se€0,7]. (5.25)
Indeed, by (5.23),

([0,7]) € {£(y) 0 0010, (Bp(x, 1)) [z €U, 1 - < p <1}
={p(y) odpla,t) [z €U, 1 —e<p <1} C Z17 ,(0(y))

We have shown that
Qp(y) o 680 (f) E) € Aw(y)O(i,f) (Z;ﬂ[](@(y))) :

In order to get (5.24), it is enough to prove that

o(y) 0 dsy(Z,t) € Int <A(P(y)o(j@ (Z;:E’U(gp(y)))), for every y € Os. (5.26)

To this aim we first recall that the map L*([0,1],R™) > w + (1), where 7 is the solution
to (5.15), is differentiable (see for instance [4, Theorem 3.2.6]). Moreover its differential is
surjective by (1.8), which is a controllability condition for the system (5.15). Therefore, by the
Implicit Function Theorem, as w varies in a neighborhood of the constant vector c[la 1700,
the image of the map w +— ~(1) covers a neighborhood of ¢(y) o ds,(Z,t). This proves (5.26)
and, then, (5.24). This proves that the uniform interior cone condition on WNY is satisfied.

In order to show the uniform exterior cone condition, it is sufficient to consider the function
¢ :O0Ox]—o0,0[— RN+

21 (y:5) = @(y) 0 (=0:(7,1)) = (~Ds T + exp(s*BT)a(y), (y) — 5.

By following the same argument as before, we plainly check that Z~_,  (¢(y)) € RN\ Q.

This implies the uniform exterior cone condition in X N W. This accomplishes the proof of
Proposition 1.4 under the assumption a).

We next suppose that condition b) is verified. In this case, we set £ = 0 to define
the cone Z;EU(go(y)). We next choose a neighborhood U of 0 and a positive ¢ such that

Zatw(cp(y)) C . To this aim, we introduce the function ¥ : Ox] — 7, 5[— RV*1L,
U(y,s) = ¢(y) o (0,5) = (exp(=sB)pa(y), p(y) + 5)- (5.27)
It is a local diffeomorphism. Indeed,

det Jy (0,0) = det (J,(0) — Y (4(0))) #0

since rank J,(0) = N and (Y (w), v(w)) > 0. If ¢ is small enough, we have ¥(y,s) € W, and
then we can define
h:] _575[H ]Ra h(S) :F(\Il(yas))
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Note that h'(0) = (VF(¢(y)), =Y ((y))) tends to —(v(w),Y (w)) < 0 as y — 0, hence
h(s) < 0 for s > 0. As a consequence, there exists 71 > 0 and a neighborhood O; of 0 such
that ¥(y, s) € Q for (y,s) € O1x]0,01]. We recall notation (5.21) and we note that

U(y,s) = @(y) 00 5(0,1) = @1 (y,/s) for any s €]0,7].

Let W be an open neighborhood of (0,01) such that p(y) o (&,7) € Q for any (&,7) € w.
In order to build an inner cone, we need to show that there exist o3 > 0 and a neighbor-
hood Osz of 0 such that ®¢ - (y,+/s) € Q for every (£,7) € W and (y,/s) € O3x 0, 03].
We next prove that there exists an open neighborhood Wy = 17 X Iy X ... X Iy x I; of w
such that
QNWy =1 x...x I, xQ, with @ e RVN-m+ (5.28)

To this aim, we show that for every v € R™ there exists € > 0 satisfying
w+s(®,0,...,0) e, forany se|—e,e[ and we Wi (5.29)

Since v = (v, 1) # 0 in ¥ N W, in the following argument it is not restrictive to assume
vi(w) # 0 for every w € ¥ N W. By Dini’s theorem, if w = (wg,w;), there exist two
neighborhoods V, ¢ RV, V; C R of w,,w; with V, x V; € W, and ¢ € C'(V}) such that
XN (Ve x V) ={(z,¢¥(x)) : x € V,}. We set

£(s) = F(wy + s(v©,0,...,0),9(w, + 5(0©,0,...,0))),  se€]—ee]
where € > 0 is so small as wy + s(v1,...,vy) € V. Then f =0, and

f/(S) :<VF(U}Z—|—8(U(0),0,...,0),w(’wx+S(U(O),O,...,0))),(7_1(0),0,...,0)>
+ O F () (Vip(we + s(0,0,...,0), ©9,0,...,0)) =0, se]—e,el

As a consequence,

%w(wx—i—s(v(o),o,...,())):O, s€]—eel,
and this proves (5.29), being
Y(we + s@0@,0,...,0)) = ¥(wy) = wy, se]—eel
With (5.28) at hands, we consider the projections 71 and o
(T, ..., N, t) = (X1, .., Tm), (1, .., TN, ) = (g1, - - TN, ).
We claim that there exists a neighborhood O3 of 0 € R such that

o (Z(;%,U(go(y))) cqQ, for every y € Os. (5.30)

Note that
Us! ((I)gﬂ— (y, \/g)) el x...x I, (531)

22



for every (£,7) € W and (y,s) € 01x]0,51]. Then, by (5.28) it is sufficient to see that

—~

7o (D¢ - (y,1/5)) € Q' for every (§,7) € W and (y,+/s) € O3x 10, 03]. We have

4 e (B (1) Lo =~ (Y (o).

and
—7(m2 (Y (¢()), v(¢(y))) — —a1(Y (@), v(@)) <0,

as (§,7) — (0,01) and y — 0. Then, if W is suitably small, there exist o3 > 0 and a
neighborhood O3 of 0 such that

o (<I>5,T (y, \/5)) e, for every (§,7) € W and (y, \/E) € O3x10,03].  (5.32)

We set t = o3, r = 03(51)_% and we choose a neighborhood U of the origin such that
U x {t} C 6;(W). We finally put

W ={p(y)0d,(6.0) |y€ 03, 0<p<1L,E€U}

It is now easy to check that i), i), 4ii) hold under condition b). Indeed, (5.30) plainly follows
from (5.32). Then ZSTE,U(SO(Z/)) C Q for every y € Os, by (5.30) and (5.31). Note that
the function s — ¢(y) 0§, 7=5(0,1) is an .Z-admissible path, then the Harnack connectivity
condition #) in Definition 1.1 is trivially satisfied. In order to show the uniform exterior cone
condition, it is sufficient to consider the function @4, (y,s) = p(y) o (—05(0,1)) instead of @,
and to follow the same argument as in the case a).

The first assertion in #3) follows from the fact that the function ¥ in (5.27) is a local
diffeomorphism. Finally, 4i) and second assertion in iii) can be easily verified, arguing as in

the case a). O
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