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Abstract

In algebraic topology it is well-known that, using the Mayer-Vietoris sequence, the homology of a space
X can be studied splitting X into subspaces A and B and computing the homology of A, B, A∩B. A natural
question is to which an extent persistent homology benefits of a similar property. In this paper we show that
persistent homology has a Mayer-Vietoris sequence that in general is not exact but only of order two. However,
we obtain a Mayer-Vietoris formula involving the ranks of the persistent homology groups of X , A, B and A∩B
plus three extra terms. This implies that topological features of A and B either survive as topological features
of X or are hidden in A∩B. As an application of this result, we show that persistence diagrams are able to
recognize an occluded shape by showing a common subset of points.

Keywords: Čech homology, Mayer-Vietoris sequence, persistence diagram, partial matching, shape occlu-
sion
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1 Introduction
Shape matching and retrieval are key aspects in the design of search engines based on visual, rather than keyword,
information. Generally speaking, shape matching methods rely on the computation of a shape description, also
called a signature, that effectively captures some essential features of the object.

Persistent homology is a method for shape description and matching that is suitable for any multidimensional
data set that can be modeled as a topological space X , and whose shape properties can be described by a con-
tinuous function ϕ defined on it (e.g., a domain of R2 and the height function may model terrain elevations).
Persistent homology groups are defined in terms of lifetime of homology classes along the filtration of X given
by the lower level sets of ϕ . Surveys on persistent homology include those by Edelsbrunner and Harer [9] and
Carlsson [2]. In Biasotti et al. [1] persistent homology is described in relation to other methods that are grounded
in Morse theory.

A natural question concerning persistent homology groups is whether there is some sort of Mayer-Vietoris
formula applicable to their ranks. In algebraic topology, the Mayer-Vietoris formula is a powerful tool for study-
ing the homology of a space X by splitting it into subspaces whose homology is simpler to compute. So, on the
one hand, the interest in an analog of the Mayer-Vietoris formula also in persistent homology stems from the
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wish of developing a similar procedure to compute persistent homology groups. On the other hand, it also seems
the right tool to deal with partial matching problems.

The ability to perform not only global matching, but also partial matching, is regarded as one of the most
meaningful properties in order to evaluate the performance of a shape matching method (cf., e.g., [23]). Persistent
homology groups, like most methods of their class, work on a shape as a whole. In general, it is argued that global
object methods are not well suited for partial matching, whereas methods based on computing local features may
be more suited to this task.

In this paper we tackle the problem of finding a Mayer-Vietoris formula for persistent homology groups. We
show that persistent homology has a Mayer-Vietoris sequence that in general is not exact but only of order two.
Nevertheless, we present a Mayer-Vietoris formula for persistent homology groups of a space X that is the union
of two subspaces A and B, which involves the ranks of the persistent homology groups of X , A, B and A∩B plus
three extra terms. Furthermore, we prove that, when persistent homology groups are represented through the
so-called persistence diagrams as collections of points in the plane, the persistence diagrams of A and B leave
a fingerprint in the persistence diagram of X . Indeed, persistence diagrams are able to detect a partial matching
between two shapes by showing a common subset of points.

As an application of partial matching detection, we consider the problem of shape recognition in the pres-
ence of occlusions. Basically, the interest in robustness against partial occlusions is motivated by the problem
of recognizing an object partially hidden by some other foreground object in the same image. The ability to
recognize shapes, even when they are partially occluded by another pattern, has been investigated in the Com-
puter Vision literature by various authors, with reference to a variety of shape recognition methods (see, e.g.,
[4, 13, 15, 19, 21, 22]). We experimentally show that the ranks of the 0th degree persistent homology groups,
also known as size function [11], are able to preserve local information, so that they can manage uncertainty due
to the presence of occluded shapes.

The paper is organized as follows. In Section 2 we recall background notions about persistent homology in
the Čech homology setting. In Section 3 we introduce the Mayer-Vietoris sequence of persistent Čech homology
groups and prove our main result concerning the Mayer-Vietoris relationship among the persistent homology
groups of X , A, B, and A∩B in terms of their ranks. Section 4 is devoted to the consequent relationship among
points of persistence diagrams in terms of their coordinates and multiplicities. Before concluding the paper with a
brief discussion of our results, we show some experiments in Section 5 related to the shape recognition problem in
the presence of occlusions, thus demonstrating the usefulness of our Mayer-Vietoris formula in partial matching
problems. Any reader not familiar with Čech homology and the Mayer-Vietoris sequence can find a brief survey
of the subject in Appendix A. The proofs of some non-central results are deferred to Appendix B.

2 Background on persistent homology
In this section we give a brief review of concepts related to persistent homology that will be used in the sequel.
Following [3], each topological space considered here will be assumed to be triangulable, i.e., homeomorphic to
the body of a finite simplicial complex, and endowed with a continuous real-valued function. This function is
used to construct a filtration of the space aimed at capturing its topological features.

Given a space X and a continuous function ϕ : X → R, for every u ∈ R, we denote by Xu the lower level set
{P ∈ X : ϕ(P) ≤ u}. The sets Xu, u ∈ R, give a filtration of X . Since ϕ is just continuous, Xu is not necessarily
triangulable.

We use the following notations: ∆∗ = {(u,v) ∈ R
2 : u < v}∪{(u,∞) : u ∈ R}, ∆ is the diagonal of R2, and

∆∗ = ∆∗∪∆. In the sequel, points (u,v) ∈ ∆∗ such that v < ∞ are called proper points; points (u,v) ∈ ∆∗ such that
v = ∞ are said to be points at infinity.

Given a proper point (u,v)∈∆∗, let ιu,v be the inclusion of Xu into Xv. This mapping induces a homomorphism
of Čech homology groups ιu,v

k : Ȟk(Xu)→ Ȟk(Xv) for each integer k, leading to the definition of persistent(Čech
) homology groups.
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Definition 2.1. Let X be a triangulable space, and ϕ : X → R a continuous function. Given a proper point
(u,v)∈ ∆∗, the kth persistent (Čech ) homology group Ȟu,v

k (X ,ϕ) is the image of the homomorphism ιu,v
k between

kth Čech homology groups induced by the inclusion mapping of Xu into Xv: Ȟu,v
k (X,ϕ) = imιu,v

k .

Throughout the paper the homology coefficients will be taken in a vector space over a field. In this way,
from [10], we know that Ȟu,v

k (X ,ϕ) is a vector space over the same field. Hence, persistent homology groups are
torsion free and thus completely determined by their rank. In plain words, the rank of the k-persistent homology
group at (u,v), denoted by rkȞu,v

k (X ,ϕ), counts the maximum number of independent non-bounding k-cycles
born before u and still alive at v, according to the filtration of X constituted by the lower level sets of ϕ .

Given a space X filtered by ϕ , a global description of all the groups Ȟu,v
k (X ,ϕ), with (u,v) a proper point

varying in ∆∗, is provided by the so-called persistence diagrams (see Definition 2.4). These are multisets of points
(i.e., sets of points equipped with a multiplicity) of ∆∗. Before giving the definition of a persistence diagram, we
recall the definitions of multiplicity of a proper point and multiplicity of a point at infinity.

Definition 2.2. Let k ∈ Z and let p = (u,v) ∈ ∆∗ be a proper point. The multiplicity µ(X ,ϕ),k(p) of p is the finite
non-negative number defined by

lim
ε→0+

(

rkȞu+ε,v−ε
k (X ,ϕ)− rkȞu−ε,v−ε

k (X ,ϕ)− rkȞu+ε,v+ε
k (X ,ϕ)+ rkȞu−ε,v+ε

k (X ,ϕ)
)

.

Definition 2.3. Let k ∈ Z and let r be the vertical line with equation u = u in the plane u,v, identified with the
point at infinity (u,∞) ∈ ∆∗. The multiplicity µ(X ,ϕ),k(r) of r is the finite non-negative number defined by

lim
ε→0+

(

rkȞu+ε,1/ε
k (X ,ϕ)− rkȞu−ε,1/ε

k (X ,ϕ)
)

.

Points with a positive multiplicity are particularly interesting. Indeed, the abscissa and the ordinate of a proper
point p with µ(X ,ϕ),k(p) > 0 identify, respectively, the level at which a new k-homology class is created and the
level at which it is annihilated through the filtration. The abscissa of a point at infinity r with µ(X ,ϕ),k(r) > 0
encodes the level at which a new k-homology class of X is born. The real values at which the lower level sets
undergo a topological change are called homological critical values (see Definition B.1). This intuition about
the link between points with a positive multiplicity and homological critical values needs some attention, and is
treated in detail in Appendix B.

Let us observe that under our mild assumption that ϕ is just continuous, infinitely many proper points with
a positive multiplicity can occur, accumulating onto the diagonal of R

2. An example of this phenomenon is
illustrated in Figure 5. Instead, when stronger assumptions on ϕ are made, only finitely many of these points
exist. For this reason, our definitions of multiplicity slightly differ from the one given in [5].

Definition 2.4. The persistence diagram Dk(X ,ϕ) is the multiset of all points (u,v)∈∆∗ such that µ(X ,ϕ),k(u,v)>
0, counted with their multiplicity, union the points of ∆, counted with infinite multiplicity.

Obviously, the knowledge of the persistent homology groups allows one to compute the associated persistence
diagrams. It is worth emphasizing that the converse is also true, thus clarifying the importance of persistence
diagrams in persistent homology. This is precisely stated by the following theorem.

Theorem 2.5. For every proper point (u,v) ∈ ∆∗, and k ∈ Z, we have

rkȞu,v
k (X ,ϕ) = ∑

(u,v)∈∆∗
u≤u,v>v

µ(X ,ϕ),k(u,v).

An example of persistence diagram in 0th homology degree is displayed in Figure 1. We recall that, in the
case k = 0, rkȞu,v

k (X ,ϕ) counts the number of connected components born before the level u and still alive at
level v. In this example we consider a curve X of R2 represented by the solid line in Figure 1(A), and the function
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Figure 1: (A) A curve X ⊆ R
2 represented by a continuous line, and the function ϕ : X → R such that ϕ(P) = y for every P = (x,y) ∈ X .

(B) The points (proper and at infinity) of the persistence diagram D0(X ,ϕ). (C) Computation of multiplicities seen through lens.

ϕ : X → R that associates with each point P ∈ X its ordinate in the plane. The sole points (both proper and at
infinity) of the associated persistence diagram D0(X ,ϕ) are p, q, and r, and are shown in Figure 1(B). Here,
solid lines divide ∆∗ into regions where the rank of the 0th persistence homology group is constant. The value
displayed in each region is the value taken by the rank of 0th persistence homology groups for (u,v) varying in
that region. For instance, when c ≤ v < d, Xv has three connected components. Only one of them contains at
least one point of Xu, when a ≤ u < b; two of them contain at least one point of Xu, when b ≤ u < c; all of them
contain at least one point of Xu, when c ≤ u < v < d. Therefore, when c ≤ v < d, rkȞu,v

0 (X ,ϕ) = 1 for a ≤ u < b;
rkȞu,v

0 (X ,ϕ) = 2 for b ≤ u < c; rkȞu,v
0 (X ,ϕ) = 3 for c ≤ u < v.

Figure 1(C) zooms in on two points of the persistence diagram (one proper p, and one at infinity r) to explain
how their multiplicity is computed. The alternating sum of the rank of the 0th persistent homology group at four
points around p is 2− 1− 1+ 1, giving µ(X ,ϕ),0(p) = 1. The alternating sum of the rank of the 0th persistent
homology group at two points next to r is 1−0, giving µ(X ,ϕ),0(r) = 1.

Let us conclude this section with some observations.
The fact that persistence diagrams uniquely determine persistent homology groups allows one to translate

the comparison between persistent homology groups into distances between multisets of points, in a way that is
robust against deformations [3, 5, 18].

The motivation for using Čech homology rather than a more ordinary homology theory is given by the fol-
lowing fact, that is a consequence of the continuity axiom (see Appendix A).

Remark 2.6. Using singular rather than Čech homology causes Theorem 2.5 to be valid only outside a set of
zero measure.

We emphasize that, in our setting, Čech homology satisfies all the ordinary homological axioms (see Ap-
pendix A), so that it can be used in the same way as the singular and simplicial theories.

3 The Mayer-Vietoris sequence of persistent homology groups
In this section, we look for a relation expressing the rank of the persistent homology groups of X filtered by
ϕ in terms of the ranks of the persistent homology groups of two subspaces A and B filtered by ϕ|A and ϕ|B,
respectively. We require A and B to be triangulable subsets of X such that X = A∪B and A∩B is triangulable.
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Let us observe that the functions ϕ|A∩B, ϕ|A, and ϕ|B are continuous, as restrictions of the continuous function
ϕ : X → R to spaces endowed with the relative topology induced by the topology of X . This justifies the choice
of taking ϕ just continuous. These hypotheses on X , A, B and A∩B will be maintained throughout the paper.
Moreover, since from now on ϕ : X → R is fixed, we will simply write rkȞu,v

k (X), Dk(X), and µX ,k instead of
rkȞu,v

k (X ,ϕ), Dk(X ,ϕ), and µ(X ,ϕ),k, respectively. Analogously for A, B, and A∩B, since also ϕ|A, ϕ|B, ϕ|A∩B are
fixed.

Our main tool for finding such a relation is the Mayer-Vietoris sequence of the triad (X ,A,B):

· · · −→ Ȟk+1(X)
δk−→ Ȟk(A∩B)

αk−→ Ȟk(A)⊕ Ȟk(B)
βk−→ Ȟk(X)

δk−1
−→ ·· · −→ Ȟ0(X) −→ 0,

where δk is the homomorphism Ȟk+1(X) 3 [z] 7→ [∂ (z|A)] ∈ Ȟk(A∩B), αk is the homomorphism Ȟk(A∩B) 3
[z] 7→ ([z], [−z]) ∈ Ȟk(A)⊕ Ȟk(B), and βk is the homomorphism Ȟk(A)⊕ Ȟk(B) 3 ([z], [z′]) 7→ [z+ z′] ∈ Ȟk(X).
Intuitively, the homomorphisms δk, αk, and βk are described in Figure 2 for the case k = 0.

PSfrag replacements

A BX = A∪B

a b

c0

c1

Figure 2: For this triad (X ,A,B), a+b is a 1-cycle in X , c0 and c1 are 0-cycles in A∩B (and hence also in A and B). Moreover, c0 and c1
are cobordant in A and B but not in A∩B. We have that δ0([a+b]) = [c1 − c0], α0([ci]) = ([ci],−[ci]), β0([ci], [c j]) = [ci]+ [c j].

Under our assumptions, the Mayer-Vietoris sequence above is exact (see Appendix A). It is well known that
the exactness of such a sequence provides a relation among the ranks of Ȟk(X), Ȟk(A), Ȟk(B), Ȟk(A∩B), and of
the kernels of homomorphisms αk (see, e.g., [8, 10]):

rkȞk(X) = rkȞk(A)+ rkȞk(B)− rkȞk(A∩B)+ rkkerαk + rkkerαk−1. (1)

This relation can be easily checked in the example of Figure 2.
The novelty of our approach is the study of Mayer-Vietoris sequences for different triads of lower level sets

(Xu,Au,Bu), interlacing them with long exact sequences of the pair (diagram (2)). This involves considering
also a relative Mayer-Vietoris sequence (see Appendix A). In this way, we are able to generalize formula (1) to
persistent homology (Theorem 3.7).

We shall apply this Mayer-Vietoris formula for persistent homology in the next section in order to show that
it is possible to match a subset of the points of Dk(X) to points of either Dk(A) or Dk(B), under suitable conditions.

We begin by underlining some simple properties of the lower level sets of X , A, B, and A∩B. Then we
show that there exists a Mayer-Vietoris sequence for persistent homology groups that is of order 2 (Proposition
3.4), and that, under proper assumptions, it induces a short exact sequence involving the kth persistent homology
groups of X , A, B, and A∩B (Proposition 3.9).

Lemma 3.1. Let u ∈ R. Let us endow Xu with the relative topology induced by the topology of X. Then Au and
Bu are closed sets in Xu. Moreover, Xu = Au ∪Bu and Au ∩Bu = (A∩B)u.

Proof. Let us recall that the relative topology induced on Xu by the topology of X is that in which the open
(closed, respectively) sets are the intersections with Xu of open (closed, respectively) sets of X [10]. Therefore,
Au is closed in Xu since Au = A∩Xu, with A triangulable, and hence closed in X . Analogously for Bu. Showing
that Xu = Au ∪Bu and Au ∩Bu = (A∩B)u is trivial.
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Lemma 3.1 ensures that, for every proper point (u,v) ∈ ∆∗, we can consider the following diagram:

...
...

...
...





y





y





y





y

· · · −→ Ȟk+1(Xu)
δ u

k−→ Ȟk((A∩B)u)
αu

k−→ Ȟk(Au)⊕ Ȟk(Bu)
β u

k−→ Ȟk(Xu) −→ ·· ·





y
hk+1





y
fk





y
gk





y
hk

· · · −→ Ȟk+1(Xv)
δ v

k−→ Ȟk((A∩B)v)
αv

k−→ Ȟk(Av)⊕ Ȟk(Bv)
β v

k−→ Ȟk(Xv) −→ ·· ·





y
h′k+1





y
f ′k





y
g′k





y
h′k

· · · −→ Ȟk+1(Xv,Xu)
δ v,u

k−→ Ȟk((A∩B)v,(A∩B)u)
αv,u

k−→ Ȟk(Av,Au)⊕ Ȟk(Bv,Bu)
β v,u

k−→ Ȟk(Xv,Xu) −→ ·· ·





y





y





y





y

...
...

...
...

(2)

where the top horizontal line belongs to the Mayer-Vietoris sequence of the triad (Xu,Au,Bu), the second hor-
izontal line belongs to the Mayer-Vietoris sequence of the triad (Xv,Av,Bv), and the third one belongs to the
relative Mayer-Vietoris sequence of the triad ((Xv,Xu),(Av,Au),(Bv,Bu)). The leftmost and rightmost vertical
lines belong to the long sequence of the pair (Xv,Xu), the second vertical line belongs to the long sequence of the
pair (A∩Bv,A∩Bu), and the third one belongs to the direct sum of the long sequences of the pairs (Av,Au) and
(Bv,Bu).

Lemma 3.2. Each vertical and horizontal line in diagram (2) is exact. Moreover, each square in the same
diagram is commutative.

Proof. We recall that we are assuming that X is compact and ϕ continuous, therefore Xu and Xv are compact, as
well as Au, Av, Bu and Bv by Lemma 3.1. Moreover, since we are also assuming that the coefficient group is a
vector space over a field, it holds that the homology sequences of the pairs (Xv,Xu), ((A∩B)v,(A∩B)u), (Av,Au),
(Bv,Bu) (vertical lines) are exact (cf. Theorem A.1 in Appendix A).

Analogously, the Mayer-Vietoris sequences of (Xu,Au,Bu) and (Xv,Av,Bv), and the relative Mayer-Vietoris
sequence of ((Xv,Xu),(Av,Au),(Bv,Bu)) (horizontal lines) are exact (cf. Theorems A.2 and A.4 in Appendix A).

About the commutativity of the top squares, it is sufficient to apply Theorem A.3 in Appendix A. The same
conclusion can be drawn for the commutativity of the bottom squares, with Xv replaced by (Xv, /0), Av by (Av, /0)
and Bv by (Bv, /0), respectively, applying Theorem A.5.

Remark 3.3. For every k ∈Z, and every proper point (u,v)∈ ∆∗, im fk = Ȟu,v
k (A∩B), imgk = Ȟu,v

k (A)⊕Ȟu,v
k (B),

and imhk = Ȟu,v
k (X).

The following proposition proves that the commutativity of squares in diagram (2) induces a Mayer-Vietoris
sequence of order 2 involving the kth persistent homology groups of X , A, B, and A∩B, for every integer k.

Proposition 3.4. Let us consider the sequence of homomorphisms of persistent homology groups

· · · −→ Ȟu,v
k+1(X)

δ
−→ Ȟu,v

k (A∩B) α
−→ Ȟu,v

k (A)⊕ Ȟu,v
k (B)

β
−→ Ȟu,v

k (X) −→ ·· ·

6



where δ = δ v
k |imhk+1

, α = αv
k |im fk

, and β = β v
k |imgk

. The following statements hold:

(i) imδ ⊆ kerα;

(ii) imα ⊆ kerβ ;

(iii) imβ ⊆ kerδ ,

that is, the sequence is of order 2.

Proof. First of all, we observe that, by Lemma 3.2, imδ ⊆ im fk, imα ⊆ imgk and imβ ⊆ imhk. Now we prove
only claim (i), considering that (ii) and (iii) can be deduced analogously. Let c ∈ imδ . Then c ∈ im fk and
c ∈ imδ v

k = kerαv
k . Therefore c ∈ kerα .

3.1 The persistent homology group of the union of two spaces
This subsection is devoted to provide a Mayer-Vietoris formula for persistent homology (Theorem 3.7). It is
based on the lemma below, that holds for any exact sequence of homomorphisms of finitely generated groups
(Lemma 3.5). For this reason, from now on, all the considered lower level sets will be assumed to have finitely
generated homology groups.

Lemma 3.5. If L,M,N,O are finitely generated groups, and the sequence of homomorphisms

· · ·
ι

−→ L λ
−→ M

µ
−→ N ν

−→ O o
−→ ·· · ,

is exact, then rkN = rkM− rkL+ rkkerλ + rkkero.

Proof. The claim trivially follows from the exactness of the sequence and the dimensional relation linking the
domain of each map with its kernel and its image.

Let us observe that the previous relation (1) can be deduced from Lemma 3.5 replacing the long sequence
above by the Mayer-Vietoris sequence of the triad (X ,A,B).

Applying Lemma 3.5 to the long exact sequence of the pair, we obtain the following result.

Lemma 3.6. For every k ∈ Z, and every proper point (u,v) ∈ ∆∗, it holds that

rkȞu,v
k (Y ) = rkȞk(Yv)− rkȞk(Yv,Yu)+ rkȞk−1(Yu)− rkȞu,v

k−1(Y ).

Proof. It is sufficient to consider the long exact sequence of the pair (Yv,Yu)

· · · −→ Ȟk(Yu)
ιk−→ Ȟk(Yv)

jk−→ Ȟk(Yv,Yu)
∂k−1
−→ Ȟk−1(Yu)

ιk−1
−→ Ȟk−1(Yv)

∂k−2
−→ ·· · ,

and apply Lemma 3.5, with L replaced by Ȟk(Yv), M by Ȟk(Yv,Yu), N by Ȟk−1(Yu), λ by jk, and o by ∂k−2. In
this way, we obtain that rkȞk−1(Yu) = rkȞk(Yv,Yu)− rkȞk(Yv)+ rkker jk + rkker∂k−2. Since, by the exactness,
rkker jk = rkȞu,v

k (Y ), rkker∂k−2 = rkȞu,v
k−1(Y ), reordering the terms, the claim follows.

Theorem 3.7. For every k ∈ Z, and every proper point (u,v) ∈ ∆∗, it holds that

rkȞu,v
k (X) = rkȞu,v

k (A)+ rkȞu,v
k (B)− rkȞu,v

k (A∩B)+ rkkerαv
k − rkkerαv,u

k + rkkerαu
k−1.
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Proof. By induction on k ≥ 0 (for k < 0 it is trivial).
Case k = 0: Let us consider diagram (2) with k = 0. Applying Lemma 3.5 to the second horizontal line with

N = Ȟ0(Xv), and to the third one with N = Ȟ0(Xv,Xu), we obtain, respectively, the following equalities:

rkȞ0(Xv) = rkȞ0(Av)⊕ Ȟ0(Bv)− rkȞ0(Av ∩Bv)+ rkkerαv
0 , (3)

rkȞ0(Xv,Xu) = rkȞ0(Av,Au)⊕ Ȟ0(Bv,Bu)− rkȞ0(Av ∩Bv,Au ∩Bu)+ rkkerαv,u
0 . (4)

Now, subtracting equality (4) from equality (3), we have

rkȞ0(Xv)− rkȞ0(Xv,Xu) = rkȞ0(Av)− rkȞ0(Av,Au)+ rkȞ0(Bv)− rkȞ0(Bv,Bu)

−rkȞ0((A∩B)v)+ rkȞ0((A∩B)v,(A∩B)u)+ rkkerαv
0 − rkkerαv,u

0 ,

which is equivalent to the claimed relation as can be seen by applying Lemma 3.6 with k = 0 four times with
Y = X , Y = A, Y = B, and Y = A∩B, respectively.

Inductive step: Let us assume that

rkȞu,v
k−1(X) = rkȞu,v

k−1(A)+ rkȞu,v
k−1(B)− rkȞu,v

k−1(A∩B)+ rkkerαv
k−1 − rkkerαv,u

k−1 + rkkerαu
k−2. (5)

Let us apply Lemma 3.5 to the first horizontal line of diagram (2) with N = Ȟk−1(Xu), to the second one with
N = Ȟk(Xv), and to the third one with N = Ȟk(Xv,Xu). We respectively obtain

rkȞk−1(Xu) = rkȞk−1(Au)⊕ Ȟk−1(Bu)− rkȞk−1(Au ∩Bu)+ rkkerαu
k−1 + rkkerαu

k−2. (6)

rkȞk(Xv) = rkȞk(Av)⊕ Ȟk(Bv)− rkȞk(Av ∩Bv)+ rkkerαv
k + rkkerαv

k−1, (7)

rkȞk(Xv,Xu) = rkȞk(Av,Au)⊕ Ȟk(Bv,Bu)− rkȞk(Av ∩Bv,Au ∩Bu)+ rkkerαv,u
k + rkkerαv,u

k−1, (8)

Now, let us use Lemma 3.6 with Y = X together with the equalities (6), (7), (8), and the inductive assumption (5).
We obtain

rkȞu,v
k (X) = rkȞk(Av)+ rkȞk(Bv)− rkȞk(Av ∩Bv)+ rkkerαv

k + rkkerαv
k−1

−(rkȞk(Av,Au)+ rkȞk(Bv,Bu)− rkȞk(Av ∩Bv,Au ∩Bu)+ rkkerαv,u
k + rkkerαv,u

k−1)

+rkȞk−1(Au)+ rkȞk−1(Bu)− rkȞk−1(Au ∩Bu)+ rkkerαu
k−1 + rkkerαu

k−2

−(rkȞu,v
k−1(A)+ rkȞu,v

k−1(B)− rkȞu,v
k−1(A∩B)+ rkkerαv

k−1 − rkkerαv,u
k−1 + rkkerαu

k−2)

= rkȞk(Av)− rkȞk(Av,Au)+ rkȞk−1(Au)− rkȞu,v
k−1(A)

+rkȞk(Bv)− rkȞk(Bv,Bu)+ rkȞk−1(Bu)− rkȞu,v
k−1(B)

−(rkȞk(Av ∩Bv)− Ȟk(Av ∩Bv,Au ∩Bu)+ rkȞk−1(Au ∩Bu)− rkȞu,v
k−1(A∩B))

+rkkerαv
k − rkkerαv,u

k + rkkerαu
k−1,

which is equivalent to the claim by Lemma 3.6 applied three times with Y =A, Y =B, Y =A∩B, respectively.

Corollary 3.8. For every k ∈ Z, and every proper point (u,v) ∈ ∆∗, it holds that

rkȞu,v
k (X) = rkȞu,v

k (A)+ rkȞu,v
k (B)− rkȞu,v

k (A∩B)

if and only if rkkerαv
k − rkkerαv,u

k + rkkerαu
k−1 = 0.

Proof. Immediate from Theorem 3.7.
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We now show that combining the assumption that all the maps α v
k , αv,u

k and αu
k−1 are injective with Proposition

3.4, there is a short exact sequence involving the kth persistent homology groups of X , A, B, and A∩B.

Proposition 3.9. For every k ∈ Z, and every proper point (u,v) ∈ ∆∗ such that the maps αv
k , αv,u

k and αu
k−1 are

injective, the short sequence

0 −→ Ȟu,v
k (A∩B) α

−→ Ȟu,v
k (A)⊕ Ȟu,v

k (B)
β

−→ Ȟu,v
k (X)−→ 0, (9)

where α = αv
k |im fk

and β = β v
k |imgk

, is exact.

Proof. By Proposition 3.4, imα ⊆ kerβ , so we only have to show that β is surjective, α is injective, and rk imα =
rkkerβ . We recall that, by Remark 3.3, Ȟu,v

k (A∩B) = im fk, Ȟu,v
k (A)⊕ Ȟu,v

k (B) = imgk, and Ȟu,v
k (X) = imhk,

where fk, gk, hk are as in diagram (2).
We begin by showing that β is surjective. Let c ∈ imhk. There exists d ∈ Ȟk(Xu) such that hk(d) = c. By

the exactness of the first horizontal line in diagram (2), the assumption rkkerα u
k−1 = 0 implies that rk imδ u

k−1 =

rkȞk(Xu)−rk imβ u
k = 0, i.e. that β u

k is surjective. Then there exists d ′ ∈ Ȟk(Au)⊕Ȟk(Bu) such that hk◦β u
k (d

′)= c.
By Lemma 3.2, β v

k ◦gk(d′) = c. Thus, taking c′ = gk(d′), we immediately have β (c′) = c.
As for the injectivity of α , the claim is immediate because kerα ⊆ kerα v

k and we are assuming αv
k injective.

Now we have to show that rk imα = rkkerβ . In order to do so, we observe that, if α u
k−1 is injective, and,

consequently, β is surjective, then

rkȞu,v
k (X) = rk imβ = rkHu,v

k (A)⊕ Ȟu,v
k (B)− rkkerβ

On the other hand, by Corollary 3.8, when rkkerα v
k − rkkerαv,u

k + rkkerαu
k−1 = 0 it holds that

rkȞu,v
k (X) = rkȞu,v

k (A)+ rkȞu,v
k (B)− rkȞu,v

k (A∩B).

Hence, if rkkerαu
k−1 = 0 and rkkerαv

k = rkkerαv,u
k , then rkkerβ = rkȞu,v

k (A∩B). Moreover, since rkȞu,v
k (A∩

B) = rkkerα + rk imα , when rkkerαu
k−1 = 0 and rkkerαv

k = rkkerαv,u
k we have rkkerβ = rkkerα + rk imα .

Therefore, when rkkerαv
k = rkkerαv,u

k = rkkerαu
k−1 = 0, α is injective if and only if rk imα = rkkerβ .

3.2 Examples
In this subsection, we give two examples illustrating the previous results for the case k = 0.

In both these examples, we consider a “bone” shaped object A, partially occluded by another object B, re-
sulting in different shapes X = A∪B ⊂ R

2. The ranks of Ȟu,v
0 (A), Ȟu,v

0 (B), Ȟu,v
0 (A∩B), Ȟu,v

0 (X) are computed
taking ϕ : X → R, ϕ(P) =−‖P−H‖, with H a fixed point in R

2.
In the first example, shown in Figure 3, the relation rkȞu,v

0 (X) = rkȞu,v
0 (A)+rkȞu,v

0 (B)−rkȞu,v
0 (A∩B), given

in Corollary 3.8, holds for every proper point (u,v) ∈ ∆∗.
In the second example, shown in Figure 4, the foreground object B occludes A in such a way that the relation

given in Corollary 3.8 results not valid everywhere in ∆∗, in accordance with Corollary 3.8. More precisely,
rkkerαv

0 = 0 for v < −g, while rkkerαv
0 = 1 for v ≥ −g. As for kerαv,u

0 , it has the same rank as kerαv
0 for

every u < v, except when −d ≤ u < −e and −e ≤ v < −g, because, in that case, rkkerα v,u
0 = 1, and, moreover,

when −e ≤ u and −g ≤ v, because, in that case, rkkerα v,u
0 = 0. To simplify the visualization of the points of ∆∗

at which the equality rkȞu,v
0 (X) = rkȞu,v

0 (A)+ rkȞu,v
0 (B)− rkȞu,v

0 (A∩B) does not hold, we refer the reader to
Figure 4(c), where regions that do not verify such a relation are underlined by coloring them.

4 The persistence diagram of the union of two spaces
As recalled in Section 2, in earlier papers [5, 12, 3], it was shown that persistent homology groups can be concisely
represented by collections of points with multiplicities, called persistence diagrams.
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Figure 3: In (a) a “bone” shaped object A is occluded by another object B. In (b), (c), (d) and (e) we show the points of D0(X ,ϕ),
D0(A,ϕ|A), D0(B,ϕ|B), and D0(A ∩ B,ϕ|A∩B), respectively, computed taking ϕ : X → R, ϕ(P) = −‖P − H‖, and the values of the 0th
persistent homology group rank in each region of ∆∗. In this example the relation rkȞu,v

0 (X) = rkȞu,v
0 (A)+ rkȞu,v

0 (B)− rkȞu,v
0 (A∩B) of

Corollary 3.8 holds everywhere in ∆∗.
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Figure 4: In (a) a “bone” shaped object A is occluded by another object B. In (b), (d), (e), (f) we display the points of D0(X ,ϕ), D0(A,ϕ|A),
D0(B,ϕ|B), and D0(A∩B,ϕ|A∩B), respectively, computed taking ϕ : X →R, ϕ(P) =−‖P−H‖, and the values of the 0th persistent homology
group rank in each region of ∆∗. In this case the relation rkȞu,v

0 (X) = rkȞu,v
0 (A)+ rkȞu,v

0 (B)− rkȞu,v
0 (A∩B) of Corollary 3.8 does not hold

everywhere in ∆∗. In (c) we underline the regions of ∆∗ where the equality is not valid by coloring them.
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This representation has the important property of being stable against continuous deformations of the space
(or, which is equivalent, perturbations of the filtering functions). For this reason, in dealing with the shape
comparison problem, via persistent homology groups, one actually compares persistence diagrams using either
the Hausdorff distance or the matching (or bottleneck) distance (see, e.g., [5, 7, 6, 18]). The Hausdorff distance
and the matching distance differ in that the former does not take into account multiplicities, while the latter does.

The aim of this section is to show the properties of the persistence diagram of the union of two spaces. Under
the usual assumption that X = A∪B, we prove that each point of the persistence diagram of X is a point of the
persistence diagram of A or B, provided that one condition holds (Corollary 4.2). Moreover, under a finiteness
condition, points of Dk(A) and Dk(B) either survive in Dk(X) or in Dk(A∩B) (Theorem 4.3). However, in the
particular case k = 0, it always holds that the coordinates of points of D0(X) are also coordinates of points of
D0(A) or D0(B) or D0(A∩B) (Theorems 4.4 and 4.5).

These facts suggest that in persistent homology the partial matching of an occluded shape with the original
shape can be translated into the partial matching of points of the corresponding persistence diagrams. This
intuition will be developed in the experimental Section 5 for the special case k = 0.

In the next proposition we obtain a relation involving the multiplicities of points of persistence diagrams
Dk(X), Dk(A) and Dk(B). The main tool is the Mayer-Vietoris formula given in Theorem 3.7.

Proposition 4.1. Let k ∈ Z. Then the following statements hold:

(i) for every proper point p = (u,v) ∈ ∆∗, it holds that

µX ,k(p)−µA,k(p)−µB,k(p)+µA∩B,k(p) = lim
ε→0+

(

rkkerαv−ε,u−ε
k − rkkerαv−ε,u+ε

k

+rkkerαv+ε,u+ε
k − rkkerαv+ε,u−ε

k

)

.

(ii) for every point at infinity r = (u,∞) ∈ ∆∗, it holds that

µX ,k(r)−µA,k(r)−µB,k(r)+µA∩B,k(r) = lim
ε→0+

(

rkkerα1/ε,u−ε
k − rkkerα1/ε,u+ε

k

+rkkerαu+ε
k−1 − rkkerαu−ε

k−1

)

.

Proof. Let us prove only statement (i), since (ii) can be analogously verified.
Applying Theorem 3.7 four times with (u,v) = (u+ ε ,v− ε), (u,v) = (u− ε,v− ε), (u,v) = (u+ ε,v+ ε),

(u,v) = (u− ε ,v+ ε), ε being a positive real number so small that u+ ε < v− ε , we get

rkȞu+ε,v−ε
k (X)− rkȞu−ε,v−ε

k (X)− rkȞu+ε,v+ε
k (X)+ rkȞu−ε,v+ε

k (X)

= rkȞu+ε,v−ε
k (A)+ rkȞu+ε,v−ε

k (B)− rkȞu+ε,v−ε
k (A∩B)+ rkkerαv−ε

k − rkkerαv−ε,u+ε
k + rkkerαu+ε

k−1

−
(

rkȞu−ε,v−ε
k (A)+ rkȞu−ε,v−ε

k (B)− rkȞu−ε,v−ε
k (A∩B)+ rkkerαv−ε

k − rkkerαv−ε,u−ε
k + rkkerαu−ε

k−1

)

−
(

rkȞu+ε,v+ε
k (A)+ rkȞu+ε,v+ε

k (B)− rkȞu+ε,v+ε
k (A∩B)+ rkkerαv+ε

k − rkkerαv+ε,u+ε
k + rkkerαu+ε

k−1

)

+rkȞu−ε,v+ε
k (A)+ rkȞu−ε,v+ε

k (B)− rkȞu−ε,v+ε
k (A∩B)+ rkkerαv+ε

k − rkkerαv+ε,u−ε
k + rkkerαu−ε

k−1

= rkȞu+ε,v−ε
k (A)− rkȞu−ε,v−ε

k (A)− rkȞu+ε,v+ε
k (A)+ rkȞu−ε,v+ε

k (A)

+rkȞu+ε,v−ε
k (B)− rkȞu−ε,v−ε

k (B)− rkȞu+ε,v+ε
k (B)+ rkȞu−ε,v+ε

k (B)

−
(

rkȞu+ε,v−ε
k (A∩B)− rkȞu−ε,v−ε

k (A∩B)− rkȞu+ε,v+ε
k (A∩B)+ rkȞu−ε,v+ε

k (A∩B)
)

+rkkerαv−ε,u−ε
k − rkkerαv−ε,u+ε

k + rkkerαv+ε,u+ε
k − rkkerαv+ε,u−ε

k .
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Hence, by definition of multiplicity of a proper point of ∆∗ (Definition 2.2), we have

lim
ε→0+

(

rkkerαv−ε,u−ε
k − rkkerαv−ε,u+ε

k + rkkerαv+ε,u+ε
k − rkkerαv+ε,u−ε

k

)

= lim
ε→0+

(

rkȞu+ε,v−ε
k (X)− rkȞu−ε,v−ε

k (X)− rkȞu+ε,v+ε
k (X)+ rkȞu−ε,v+ε

k (X)
)

− lim
ε→0+

(

rkȞu+ε,v−ε
k (A)− rkȞu−ε,v−ε

k (A)− rkȞu+ε,v+ε
k (A)+ rkȞu−ε,v+ε

k (A)
)

− lim
ε→0+

(

rkȞu+ε,v−ε
k (B)− rkȞu−ε,v−ε

k (B)− rkȞu+ε,v+ε
k (B)+ rkȞu−ε,v+ε

k (B)
)

+ lim
ε→0+

(

rkȞu+ε,v−ε
k (A∩B)− rkȞu−ε,v−ε

k (A∩B)− rkȞu+ε,v+ε
k (A∩B)+ rkȞu−ε,v+ε

k (A∩B)
)

= µX ,k(p)−µA,k(p)−µB,k(p)+µA∩B,k(p).

Using the previous Proposition 4.1, and recalling that points of a persistence diagram are those with a positive
multiplicity, we find a condition ensuring that both points of Dk(X) and points of Dk(A∩B) are also points of
Dk(A) or Dk(B).

Corollary 4.2. For every k ∈ Z, the following statements hold:

• If the proper point p = (u,v) ∈ ∆∗ belongs to Dk(X)∪Dk(A∩B) and

lim
ε→0+

(

rkkerαv−ε,u−ε
k − rkkerαv−ε,u+ε

k + rkkerαv+ε,u+ε
k − rkkerαv+ε,u−ε

k

)

≤ 0,

then p belongs to Dk(A)∪Dk(B).

• If the point at infinity r = (u,∞) ∈ ∆∗ belongs to Dk(X)∪Dk(A∩B) and

lim
ε→0+

(

rkkerα1/ε,u−ε
k − rkkerα1/ε,u+ε

k + rkkerαu+ε
k−1 − rkkerαu−ε

k−1

)

≤ 0

then r belongs to Dk(A)∪Dk(B).

Proof. Let us prove only the first statement, since the second one can be seen similarly.
Let lim

ε→0+

(

rkkerαv−ε,u−ε
k − rkkerαv−ε,u+ε

k + rkkerαv+ε,u+ε
k − rkkerαv+ε,u−ε

k

)

≤ 0. From Proposition 4.1(i),

we deduce that µX ,k(p) + µA∩B,k(p) ≤ µA,k(p) + µB,k(p). Since p ∈ Dk(X) ∪ Dk(A ∩ B), that is µX ,k(p) +
µA∩B,k(p)> 0, this immediately implies that either µA,k(p)> 0 or µB,k(p)> 0, proving the statement.

The following Theorem 4.3 is a sort of converse of Corollary 4.2. Although it is valid under restrictive
conditions on the number of homological critical values of the filtering functions as a consequence of the results
of Appendix B, it suggests that shape features of A and B either survive as points of Dk(X) or can be found in
Dk(A∩B).

Theorem 4.3. Let k ∈ Z, and let us assume that both ϕ and ϕ|A∩B have at most a finite number of homological
k-critical values. The following statements hold:

• Let p = (u,v) ∈ ∆∗ be a proper point such that at least one of its coordinates is neither a homological
(k+ 1)-critical value of ϕ nor a homological (k− 1)-critical value of ϕ|A∩B. If p ∈ Dk(A)∪Dk(B), then
p ∈ Dk(X)∪Dk(A∩B).

• Let r = (u,∞) ∈ ∆∗ be a point at infinity such that u is neither a homological (k+1)-critical value of ϕ nor
a homological (k−1)-critical value of ϕ|A∩B. If r ∈ Dk(A)∪Dk(B), then r ∈ Dk(X)∪Dk(A∩B).
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Proof. Let us prove only the first statement since the proof of the second one is similar.
By contradiction, let us assume that p /∈ Dk(X)∪Dk(A∩B). Let us consider the case when its abscissa u is

neither a homological (k+1)-critical value of ϕ nor a homological (k−1)-critical value of ϕ|A∩B. The proof for v
is analogous. Since we are assuming that both ϕ and ϕ|A∩B have at most a finite number of homological k-critical
values, the assumption that p /∈ Dk(X)∪Dk(A∩B) implies, by Proposition B.4, that u is a homological k-critical
value for neither ϕ nor ϕ|A∩B. Let us consider now the following commutative diagram

Ȟk+1(Xv−ε ,Xu−ε)
δ v−ε,u−ε

k−−−−−→ Ȟk((A∩B)v−ε ,(A∩B)u−ε)





y
i1





y
i2

Ȟk+1(Xv−ε ,Xu+ε)
δ v−ε,u+ε

k−−−−−→ Ȟk((A∩B)v−ε ,(A∩B)u+ε)

(10)

for every sufficiently small ε > 0, such that u+ ε < v− ε , and let us show that, under our assumptions, the
vertical maps i1 and i2, induced by inclusions, are isomorphisms. To see that i1 is an isomorphism, it is sufficient
to consider the following commutative diagram

Ȟk+1(Xu−ε) → Ȟk+1(Xv−ε) → Ȟk+1(Xv−ε ,Xu−ε) → Ȟk(Xu−ε) → Ȟk(Xv−ε)





y





y





y
i1





y





y

Ȟk+1(Xu+ε) → Ȟk+1(Xv−ε) → Ȟk+1(Xv−ε ,Xu+ε) → Ȟk(Xu+ε) → Ȟk(Xv−ε)

and apply the Five Lemma, recalling that u is neither a homological (k+1)-critical nor a homological k-critical
value of ϕ .

Analogously, by recalling that u is neither a homological k-critical nor a homological (k−1)-critical value of
ϕ|A∩B, and applying the Five Lemma to the following commutative diagram

Ȟk((A∩B)u−ε) → Ȟk((A∩B)v−ε) → Ȟk((A∩B)v−ε ,(A∩B)u−ε) → Ȟk−1((A∩B)u−ε) → Ȟk−1((A∩B)v−ε)





y





y





y
i2





y





y

Ȟk((A∩B)u+ε) → Ȟk((A∩B)v−ε) → Ȟk((A∩B)v−ε ,(A∩B)u+ε) → Ȟk−1((A∩B)u+ε) → Ȟk−1((A∩B)v−ε)

we can deduce that i2 is an isomorphism.
Therefore, from diagram (10), we get rk imδ v−ε,u−ε

k = rk imδ v−ε,u+ε
k for every sufficiently small ε > 0, or,

equivalently, by Lemma 3.2, rkkerαv−ε,u−ε
k = rkkerαv−ε,u+ε

k for every sufficiently small ε > 0. By replacing
v − ε with v + ε in the above diagram, it can also be proved that rkkerα v+ε,u−ε

k = rkkerαv+ε,u+ε
k for every

sufficiently small ε > 0. Hence, by Proposition 4.1, µX ,k(p)− µA,k(p)− µB,k(p)+ µA∩B,k(p) = 0. Since we are
assuming that µA∩B,k(p) = µX ,k(p) = 0, and µA,0(p)+µB,0(p)> 0, we obtain a contradiction.

4.1 Some results about points of the persistence diagram in the case k = 0
In the case k = 0 it is possible to prove further results linking the coordinates of the points of the persistence
diagrams of X , A, B, and A∩B. Precisely, the following two theorems state that the abscissas of points of D0(X)
are abscissas of points of D0(A)∪D0(B)∪D0(A∩B) (Theorem 4.4); the ordinates of the proper points of D0(X)
are, in general, homological 0-critical values of either ϕ|A or ϕ|B or ϕ|A∩B, and, under finiteness conditions,
abscissas or ordinates of points of D0(A)∪D0(B)∪D0(A∩B) (Theorem 4.5).
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These facts can easily be seen in the examples illustrated in Figures 3–4. In particular, in Figure 4, the
persistence diagram D0(X) presents the proper point (−d,−e), which is not a point of D0(A)∪D0(B)∪D0(A∩B).
Nevertheless, its abscissa −d is the abscissa of one of the points of D0(A), while its ordinate −e is the abscissa
of the sole point at infinity of both D0(B) and D0(A∩B).

We point out that analogous statements for k > 0 would be false.

Theorem 4.4. Let p = (u,v) ∈ ∆∗ be a proper point. If p ∈ D0(X), then there exists v > u such that (u,v) ∈
D0(A)∪D0(B)∪D0(A∩B). Moreover, let r = (u,∞) ∈ ∆∗ be a point at infinity. If r ∈ D0(X), then r ∈ D0(A)∪
D0(B).

Proof. As for the first assertion, we proceed by contradiction.
Let us recall that the rank of persistent homology groups is non-decreasing with respect to the first parameter

(Lemma B.2), so that rkȞu+ε,v±ε
0 (A∩B)≥ rkȞu−ε,v±ε

0 (A∩B), rkȞu+ε,v±ε
0 (A)≥ rkȞu−ε,v±ε

0 (A), rkȞu+ε,v±ε
0 (B)≥

rkȞu−ε,v±ε
0 (B).
Let us assume that for every v > u, µA,0(u,v) = 0, µB,0(u,v) = 0 and µA∩B,0(u,v) = 0. This implies that u is

not the abscissa of a point of either D0(A), D0(B), or D0(A∩B). Then, by Lemma B.3(a), for every sufficiently
small ε , the following equalities hold: rkȞu+ε,v±ε

0 (A∩B) = rkȞu−ε,v±ε
0 (A∩B), rkȞu+ε,v±ε

0 (A) = rkȞu−ε,v±ε
0 (A),

rkȞu+ε,v±ε
0 (B) = rkȞu−ε,v±ε

0 (B).
Now, from Lemma 3.6, rkȞu+ε,v−ε

0 (A∩B) = rkȞu−ε,v−ε
0 (A∩B) implies that rkȞ0((A∩B)v−ε ,(A∩B)u+ε) =

rkȞ0((A∩B)v−ε ,(A∩B)u−ε). Similarly, we get rkȞ0(Av−ε ,Au+ε) = rkȞ0(Av−ε ,Au−ε) and rkȞ0(Bv−ε ,Bu+ε) =
rkȞ0(Bv−ε ,Bu−ε).

Next, let us consider the following commutative diagram

Ȟ0((A∩B)v−ε ,(A∩B)u−ε)
αv−ε,u−ε

0−−−−−→ Ȟ0(Av−ε ,Au−ε)⊕ Ȟ0(Bv−ε ,Bu−ε)





y
j1





y
j2

Ȟ0((A∩B)v−ε ,(A∩B)u+ε)
αv−ε,u+ε

0−−−−−→ Ȟ0(Av−ε ,Au+ε)⊕ Ȟ0(Bv−ε ,Bu+ε)

(11)

for any sufficiently small ε > 0 such that u+ ε < v− ε , and let us show that the vertical maps j1 and j2, induced
by inclusions, are surjective. The surjectivity of j1 easily follows chasing the commutative diagram below, whose
horizontal lines are exact:

Ȟ0((A∩B)v−ε) → Ȟ0((A∩B)v−ε ,(A∩B)u−ε) → 0





y





y
j1

Ȟ0((A∩B)v−ε) → Ȟ0((A∩B)v−ε ,(A∩B)u+ε) → 0

The surjectivity of j2 can be seen analogously.
Since j1 and j2 are surjective and their respective domain and codomain have the same finite rank, we deduce

that they are isomorphisms. So, from diagram (11), we obtain kerα v−ε,u−ε
0 ' kerαv−ε,u+ε

0 for any sufficiently
small ε > 0.

Proceeding analogously, we can prove that kerα v+ε,u−ε
0 ' kerαv+ε,u+ε

0 for any sufficiently small ε > 0.
Therefore, applying Proposition 4.1, it follows that µX ,0(p)−µA,0(p)−µB,0(p)+µA∩B,0(p)= 0. In particular,

by the assumption that µA,0(p) = 0, µB,0(p) = 0 and µA∩B,0(p) = 0, it holds that µX ,0(p) = 0, a contradiction.
In the case of points at infinity, we observe that, if (u,∞) belongs to D0(X), then u = min

P∈C
ϕ(P) for at least

one connected component C of X ([12, Prop. 9]). Furthermore, since X = A∪B, it follows that u = min
P∈C∩A

ϕ|A(P)
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or u = min
P∈C∩B

ϕ|B(P), from which (by [12, Prop. 9]), (u,∞) is shown to be a point at infinity of either D0(A) or

D0(B).

Theorem 4.5. Let p = (u,v) ∈ ∆∗ be a proper point. If p ∈ D0(X), then v is a homological 0-critical value
of ϕ|A or ϕ|B or ϕ|A∩B. Furthermore, if ϕ|A, ϕ|B, and ϕ|A∩B have at most a finite number of homological 0-
critical values, then v is the abscissa of a point (proper or at infinity) or the ordinate of a proper point of
D0(A)∪D0(B)∪D0(A∩B).

Proof. Regarding the first assertion, we proceed by contradiction.
Let us assume that v is not a homological 0-critical value of ϕ|A, ϕ|B and ϕ|A∩B. Then, by Definition B.1, for

every ε > 0, there exists ε with 0 < ε < ε , such that the homomorphisms f and g induced by inclusions in the
following commutative diagram with exact horizontal lines

Ȟ0((A∩B)v−ε) → Ȟ0(Av−ε)⊕ Ȟ0(Bv−ε) → Ȟ0(Xv−ε) → 0





y
f





y
g





y
ιv−ε,v+ε
0





y
0

Ȟ0((A∩B)v+ε) → Ȟ0(Av+ε)⊕ Ȟ0(Bv+ε) → Ȟ0(Xv+ε) → 0

are isomorphisms. Therefore, extending the horizontal lines of the above diagram rightwards with two trivial
homomorphisms, we can apply the Five Lemma and deduce that ι v−ε,v+ε

0 is an isomorphism. This implies that v
is not a homological 0-critical value of ϕ . Consequently, applying Proposition B.4, it holds that, for every u < v,
µX ,0(u,v) = 0, giving a contradiction.

As for the second statement, it is immediate consequence of the second statement of Proposition B.4.

5 Shape recognition in the presence of occlusions
In this section we apply the results of the previous sections concerning the relationship among points of the
persistence diagrams of X = A∪B, A and B to a problem of partial matching. In particular we focus on shape
recognition under partial occlusions. We model the presence of occlusions in a shape as follows. The object of
interest A is occluded by a foreground object B, so that the visible object X is given by A∪B.

Psychophysical observations indicate that human and monkey perception of partially occluded shapes changes
according to whether, or not, the occluding pattern is visible to the observer, and whether the occluded shape is
a filled figure or an outline [17]. In particular, discrimination performance is higher for filled shapes than for
outlines, and in both cases it significantly improves when shapes are occluded by a visible rather than invisible
object.

In computer vision experiments, researcher usually work with invisible occluding patterns, both on outlines
(see, e.g., [4, 13, 19, 21, 22]) and on filled shapes (see, e.g., [15]).

To test persistence diagram performance under occlusions, we work with 70 filled images, each chosen from
a different class of the MPEG-7 dataset [20]. We carry out two experiments that differ in the visibility of the
occluding pattern. In the first experiment the occluding pattern is visible, and we aim at finding a fingerprint
of the original shape in the persistence diagram of the occluded shape. In the second experiment, where the
occluding pattern is invisible, we perform a direct comparison between the occluded shape and the original
shape. In both these experiments, the occluding pattern is a rectangular shape occluding from the top, or the left,
by an area we increasingly vary from 20% to 60% of the height or width of the bounding box of the original
shape. We compute persistence diagrams for both the original shapes and the occluded ones, choosing a family
of eight filtrating functions having only the set of black pixels as domain. They are defined as follows: four of
them as the distance from the line passing through the origin (top left point of the bounding box), rotated by an
angle of 0, π

4 , π
2 and 3π

4 radians, respectively, with respect to the horizontal position; the other four as minus the
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distance from the same lines, respectively. This family of filtrating functions is chosen only for demonstrative
purposes, since the associated persistence diagrams are simple in terms of the number of points, but, at the same
time, non-trivial in terms of shape information. For dimensional reasons, we can confine computations to 0th
degree persistent homology. We recall that the rank of 0th degree persistent homology groups was originally
introduced under the name of size functions [11].

The first experiment aims to show how a trace of the persistence diagram describing the shape of an object is
contained in the persistence diagram related to the occluded shape when the occluding pattern is visible (see first
column of Tables 2–4). With reference to the notation used in our theoretical setting, we are considering A as the
original shape, B as the black rectangle, and X as the occluded shape generated by their union.

In Table 1, for some different levels of occlusion, each 3D bar chart displays, along the z-axis, the percentage
of common points between the eight persistence diagrams associated with each of the 70 occluded shapes (x-
axis), and the eight persistence diagrams associated with each of the 70 original ones (y-axis). We see that, for
each occluded shape, the highest bar is always on the diagonal, that is, where the occluded object is compared
with the corresponding original one.

Table 1: 3D bar charts displaying the percentage of common points (z-axis) between the persistence diagrams of the 70 occluded shapes
(x-axis) and the persistence diagrams of the 70 original ones (y-axis) correspondingly ordered. First row: Shapes are occluded from the top
by 20% (column 1), by 40% (column 2), by 60% (column 3). Second row: Shapes are occluded from the left by 20% (column 1), by 40%
(column 2), by 60% (column 3).

Moreover, to display the robustness of points of a persistence diagram under occlusion, three particular in-
stances of our dataset images are shown in Tables 2–4 (first column) with their persistence diagrams with respect
to the second group of four filtrating functions (the next-to-last column). The chosen images are characterized
by different homological features, which will be changed in the presence of occlusion. For example, the “camel”
in Table 2 is a connected object without holes, but it may happen that the occlusion makes the first homological
group non-trivial (see second row, first column). On the other hand, Table 3 shows a “frog”, which is a connected
object with several holes. The different percentages of occluded area can create some new holes or destroy them
(see rows 3–4). Eventually, the “pocket watch”, represented in Table 4, is primarily characterized by several
connected components, whose number decreases as the occluding area increases. This results in a reduction of
the number of points at infinity in its persistence diagrams. In spite of these topological changes, it can easily
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Table 2: The first column: (row 1) original “camel” shape, (rows 2–4) occluded from the top by 20%, 30%, 40%, (row 5–7) occluded from
the left by 20%, 30%, 40%. From second column onwards: the points of persistence diagrams related to filtrating functions defined as minus
distances from four lines rotated by 0, π/4, π/2, 3π/4, with respect to the horizontal position.
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Table 3: The first column: (row 1) original “frog” shape, (rows 2–4) occluded from the top by 20%, 30%, 40%, (row 5–7) occluded from
the left by 20%, 30%, 40%. From second column onwards: the points of persistence diagrams related to filtrating functions defined as minus
distances from four lines rotated by 0, π/4, π/2, 3π/4, with respect to the horizontal position.
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Table 4: The first column: (row 1) original “pocket watch” shape, (rows 2–4) occluded from the top by 20%, 30%, 40%, (row 5–7) occluded
from the left by 20%, 30%, 40%. From second column onwards: the points of persistence diagrams related to filtrating functions defined as
minus distances from four lines rotated by 0, π/4, π/2, 3π/4, with respect to the horizontal position.
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be seen that, given a filtrating function, even if the persistence diagram related to a shape and the persistence
diagram related to the occluded shape are defined by different sets of points, because of occlusion, a common
subset of these is present, making possible a partial match between them.

The second experiment is a recognition test for occluded shapes by comparison of points of the associated
persistence diagrams. In this case the rectangular-shaped occlusion is not visible (see Table 5). When the original
shape is disconnected by the occlusion, we retain only the connected component of greatest area. With reference
to the notation used in our theoretical setting, here we are considering X as the original shape, A as the the
occluded shape, and B as the invisible part of X .

Table 5: The first row: some instances from the MPEG-7 dataset; the second and third rows: by 20% occluded from the top and from the
left, respectively.

Table 6: The leftmost (rightmost, respectively) graph describes the recognition trend when the occluded area from the top (left, respectively)
increases.

By varying the amount of occluded area, we compare each occluded shape with each of the 70 original shapes.
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Comparison is performed by calculating the sum of the eight Hausdorff distances between the sets of points of
the persistence diagrams associated with the corresponding eight filtrating functions. Then each occluded shape
is assigned to the class of its nearest neighbor among the original shapes.

In Table 6, two graphs describe the rate of correct recognition in the presence of an increasing percentage of
occlusion. The leftmost graph is related to the occlusion from the top, while the rightmost one is related to the
same occlusion from the left.

6 Discussion
The main contribution of this paper is the development of a Mayer-Vietoris formula for persistent homology. In
plain words, according to this formula, persistent homology groups of a space X are determined by the persistent
homology groups of two subspaces A and B such that A∪B = X , the persistent homology groups of their inter-
section, and the kernels of certain homomorphisms. A research area that could stem from this result, as suggested
by one of the referees, concerns the development of a divide-and-conquer algorithm for persistent homology
computation. However a difficulty in this direction is that the kernels involved in our formula seem to be not
algorithmically computable.

A further result of this paper is that the Mayer-Vietoris formula for persistent homology groups of X , A, and
B is inherited by the multiplicities of points of the associated persistence diagrams. Therefore, using persistence
diagrams, recognition of a shape from partial information becomes an easy task. Indeed, recognition is achieved
simply by matching those persistence diagrams with the largest common subset of points (as in the experiment in
Table 1).

In practice, however, shapes may undergo other deformations due to perspective, articulations, or noise, for
instance. As a consequence of these alterations, points of persistence diagrams may move. Anyway, small
continuous changes in shape induce small displacements in persistence diagrams [5, 6, 7].

It has to be expected that, when a shape is not only occluded but also deformed, it will not be possible to find
a common subset between the persistence diagram of the original shape and that of the occluded one, since the
deformation has slightly changed the points position. At the same time, however, the Hausdorff distance between
the persistence diagram of the original shape and the persistence diagram of the occluded shape will not need to
be small, because it takes into account the total number of points, including, for example, those inherited from
the occluding pattern (as in the experiment in Table 6).

The present work is a necessary step, in view of the more general goal of recognizing shapes in the presence
of both partial information and deformations. The development of a method to measure the partial matching of
persistence diagrams that do not exactly overlap but are slightly shifted would be desirable.
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A Appendix: Čech homology and Mayer-Vietoris sequence
The Čech approach is based on a way to generate simplicial complexes from finite covering of a space, by taking
the nerve of the covering. Since the nerve of a covering is a simplicial complex, we can compute its homology
groups by the usual techniques. Refining the covering one obtains an inverse system of finite triangulations that
approximate a space. A Čech homology group is the inverse limit of such a system. Detailed descriptions of
Čech homology theory can be found in [10]. Here we briefly survey the subject, focusing on the Mayer-Vietoris
sequence of Čech homology.

Given a compact Hausdorff space X , let Σ(X) denote the family of all finite coverings of X by open sets. The
coverings in Σ(X) will be denoted by script letters U , V , . . . and the open sets in a covering by italic capitals
U , V , . . . An element U of Σ(X) may be considered as a simplicial complex if we define vertex to mean open
set U in U and agree that a subcollection U0, . . . ,Uk of such vertices constitutes a k-simplex if and only if the

intersection
k
∩

i=0
Ui is not empty. The resulting complex is known as the nerve of the covering U .

Given a covering U in Σ(X), we may define the chain groups Ck(U ,G), the cycle groups Zk(U ,G), the
boundary groups Bk(U ,G), and the homology groups Hk(U ,G).

The collection Σ(X) of finite open coverings of a space X may be partially ordered by refinement. A covering
V refines the covering U , and we write U < V , if every element of V is contained in some element of U . It
turns out that Σ(X) is a direct set under refinement.

If U < V in Σ(X), then there is a simplicial mapping πU V of V into U called a projection. This is defined
by taking πU V (V ), V ∈ V , to be any (fixed) element U of U such that V is contained in U . There may be
many projections of V into U . Each projection πU V induces a chain mapping of Ck(V ,G) into Ck(U ,G), still
denoted by πU V , and this in turn induces homomorphisms ∗πU V of Hk(V ,G) into Hk(U ,G). If U < V in
Σ(X), then it can be proved that any two projections of V into U induce the same homomorphism of Hk(V ,G)
into Hk(U ,G).

Taking the limit of the inverse system (Hk(V ,G),∗ πU V ) one obtains the kth Čech homology group.
In general, Čech homology theory has all the axioms of homology theories except the exactness axiom.

However, if some assumptions are made on the considered spaces and coefficients, this axiom also holds. Indeed,
in [10, Chap. IX, Thm. 7.6] (see also [16]), we read the following result concerning the sequence of a pair (X ,A)

· · · −→ Ȟk+1(X ,A)
∂k−→ Ȟk(A)

ik−→ Ȟk(X)
jk−→ Ȟk(X ,A)

∂k−1
−→ ·· · −→ Ȟ0(X ,A) −→ 0

which, in general, is only of order 2 (this means that the composition of any two successive homomorphisms of
the sequence is zero, i.e. im ⊆ ker).

Theorem A.1. [10, Chap. IX, Thm. 7.6] If (X ,A) is compact and G is a vector space over a field, then the
homology sequence of the pair (X ,A) is exact.

It follows that, if (X ,A) is compact and G is a vector space over a field, Čech homology satisfies all the axioms
of homology theories, and therefore all the general theorems in [10, Chap. I] also hold for Čech homology.

It is important to observe that Čech homology is characterized by a further axiom besides the ordinary ones,
that is the continuity axiom. This axiom states that Čech homology commutes with inverse limits [10]. This
makes Čech homology different from singular homology since, for example, the first sees the Warsaw circle as a
non-trivial space, while the latter does not.

As a consequence of the continuity property, Čech homology satisfies a stronger form of the excision axiom.
This, in particular, implies that, in Čech theory, every compact triad is a proper triad [10, Chap. IX].

Hence, using [10, Chap. I, Thm. 15.3], we deduce the following result:

Theorem A.2. Let (X ,A,B) be a compact triad and G be a vector space over a field. The Mayer-Vietoris sequence
of (X ,A,B) with X = A∪B

· · · −→ Ȟk+1(X)
δk−→ Ȟk(A∩B)

αk−→ Ȟk(A)⊕ Ȟk(B)
βk−→ Ȟk(X)

δk−1
−→ ·· · −→ Ȟ0(X) −→ 0
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is exact.

Concerning homomorphisms between Mayer-Vietoris sequences, from [10, Chap. I, Thm. 15.4], the follow-
ing result holds.

Theorem A.3. If (X ,A,B) and (Y,C,D) are compact triads, X = A∪B, Y =C∪D, and f : (X ,A,B)→ (Y,C,D)
is a map of one compact triad into another, then f induces a homomorphism of the Mayer-Vietoris sequence of
(X ,A,B) into that of (Y,C,D) such that commutativity holds in the diagram

· · · −→ Ȟk+1(X) −→ Ȟk(A∩B) −→ Ȟk(A)⊕ Ȟk(B) −→ Ȟk(X) −→ ·· ·





y





y





y





y

· · · −→ Ȟk+1(Y ) −→ Ȟk(C∩D) −→ Ȟk(C)⊕ Ȟk(D) −→ Ȟk(Y ) −→ ·· ·

A relative form of the Mayer-Vietoris sequence, different from the one proposed in [10], is useful in the
present paper. In order to obtain this sequence, we can adapt the construction explained in [14] to Čech homology
and obtain the following result.

Theorem A.4. If (X ,A,B) and (Y,C,D) are compact triads with X = A∪B, Y = C∪D, Y ⊆ X, C ⊆ A, D ⊆ B,
then there is a relative Mayer-Vietoris sequence of homology groups with coefficients in a vector space G over a
field

· · · −→ Ȟk+1(X ,Y ) −→ Ȟk(A∩B,C∩D) −→ Ȟk(A,C)⊕ Ȟk(B,D) −→ Ȟk(X ,Y ) −→ ·· ·

that is exact.

Proof. Given a covering U of Σ(X), we may consider the relative simplicial homology groups Hk(U ,UY ),
Hk(UA,UC), Hk(UB,UD), Hk(UA∩B,UC∩D), for every k ∈ Z. For these groups the relative Mayer-Vietoris se-
quence

· · · −→ Hk+1(U ,UY ) −→ Hk(UA∩B,UC∩D) −→ Hk(UA,UC)⊕Hk(UB,UD) −→ Hk(U ,UY ) −→ ·· ·

is exact (cf. [14, page 152]).
We now recall that the kth Čech homology group of a pair of spaces (X ,Y ) over G is the inverse limit of the

system of groups {Hk(U ,UY ,G),∗ πU V } defined on the direct set of all open coverings of the pair (X ,Y ) (cf.
[10, Chap. IX, Thm. 3.2 and Def. 3.3]). The claim is proved recalling that, given an inverse system of exact
lower sequences, where all the terms of the sequence belong to the category of vector spaces over a field, the limit
sequence is also exact (cf. [10, Chap. VIII, Thm. 5.7] and [16]).

The following result, concerning homomorphisms of relative Mayer-Vietoris exact sequences, holds. We omit
the proof, which can be obtained in a standard way.

Theorem A.5. If (X ,A,B), (Y,C,D), (X ′,A′,B′), (Y ′,C′,D′) are compact triads with X = A∪B, Y = C ∪D,
Y ⊆ X, C ⊆ A, D ⊆ B, and X ′ = A′ ∪B′, Y ′ = C′ ∪D′, Y ′ ⊆ X ′, C′ ⊆ A′, D′ ⊆ B′, and f : X → X ′ is a map such
that f (Y ) ⊆ Y ′, f (A) ⊆ A′, f (B) ⊆ B′, f (C) ⊆ C′, f (D) ⊆ D′, then f induces a homomorphism of the relative
Mayer-Vietoris sequences such that commutativity holds in the diagram

· · · −→ Ȟk+1(X ,Y ) −→ Ȟk(A∩B,C∩D) −→ Ȟk(A,C)⊕ Ȟk(B,D) −→ Ȟk(X ,Y ) −→ ·· ·





y





y





y





y

· · · −→ Ȟk+1(X ′,Y ′) −→ Ȟk(A′∩B′,C′∩D′) −→ Ȟk(A′,C′)⊕ Ȟk(B′,D′) −→ Ȟk(X ′,Y ′) −→ ·· ·
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B Appendix: Relating homological critical values and points of persis-
tence diagrams

In this section we show the link between homological critical values and points of persistence diagrams. To
the best of our knowledge, this connection, which is rather intuitive, has not been proved elsewhere. Moreover,
although in the case of tame functions (i.e., functions with at most a finite number of homological critical values,
and whose lower level sets have finitely generated homology groups) it may be trivial, it is unfortunately not so
in the case considered here.

Homological critical values have been introduced in [5], and intuitively correspond to values where the lower
level sets of the function undergo a topological change. We prove that the coordinates of points of persistence
diagrams are always homological critical values, while the converse is true only assuming that the number of
homological critical values is finite (Proposition B.4). Indeed, in general, there may exist homological critical
values not generating points with a positive multiplicity (Remark B.5).

Definition B.1. Let ϕ : X → R be a continuous function. A homological k-critical value of ϕ is a real number w
such that, for every sufficiently small ε > 0, the map ιw−ε,w+ε

k : Ȟk(Xw−ε)→ Ȟk(Xw+ε) induced by inclusion is
not an isomorphism.

Lemma B.2. [3, Lemma 2.2] The rank of persistent homology groups rkȞu,v
k (X ,ϕ) as an integer-valued function

of the proper points (u,v) ∈ ∆∗ is non-decreasing in the variable u and non-increasing in the variable v.

Lemma B.3. The following statements hold:

(a) u ∈ R is the abscissa of a point (either proper or at infinity) of Dk(X ,ϕ) if and only if there exists v > u
such that rkȞu−ε,v

k (X ,ϕ)< rkȞu+ε,v
k (X ,ϕ) for every ε > 0 sufficiently small;

(b) v∈R is the ordinate of a proper point of Dk(X ,ϕ) if and only if there exists u< v such that rkȞu,v−ε
k (X ,ϕ)>

rkȞu,v+ε
k (X ,ϕ) for every ε > 0 sufficiently small.

Proof. Let us prove the direct statement of (a) (the proof of the direct statement of (b) is analogous). Let p =

(u,v) be a proper point, with µ(X ,ϕ),k(p)> 0. Definition 2.2 implies that rkȞu+ε,v−ε
k (X ,ϕ)− rkȞu−ε,v−ε

k (X ,ϕ)>
rkȞu+ε,v+ε

k (X ,ϕ)−rkȞu−ε,v+ε
k (X ,ϕ) for every ε > 0 sufficiently small. Since by Lemma B.2, rkȞu+ε,v+ε

k (X ,ϕ)−
rkȞu−ε,v+ε

k (X ,ϕ)≥ 0 for every ε > 0 sufficiently small, the claim immediately follows. If u is the abscissa of a
point at infinity of Dk(X ,ϕ), the same reasoning can be applied, but this time using Definition 2.3.

The converse statement of (a) ((b), respectively) can be proved by extending [12, Lemma 3 (i)] ([12, Lemma
3 (ii)], respectively) to all homology degrees.

Proposition B.4. The coordinates of points of Dk(X ,ϕ) are homological k-critical values of ϕ . Moreover, if ϕ
admits at most a finite number of homological k-critical values, then the converse statement holds, too.

Proof. Let us prove that abscissas of points of Dk(X ,ϕ) are homological k-critical values of ϕ .
If u ∈ R is the abscissa of a point (either proper or at infinity) of Dk(X ,ϕ), then, by the previous Lemma

B.3(a), there exists v > u such that rk imιu+ε,v
k = rkȞu+ε,v

k (X ,ϕ)> rkȞu−ε,v
k (X ,ϕ) = rk imιu−ε,v

k for every suffi-
ciently small ε > 0. Observing that ιu−ε,v

k = ιu+ε,v
k ◦ ιu−ε,u+ε

k , we deduce that ιu−ε,u+ε
k is not an isomorphism for

any ε > 0 sufficiently small.
The proof that ordinates of points of Dk(X ,ϕ) are homological k-critical values of ϕ can be seen similarly,

by using Lemma B.3(b).
To prove the second assertion, let w be a homological k-critical value of ϕ . Then, by Definition B.1, for every

ε > 0 sufficiently small, ιw−ε,w+ε
k is not an isomorphism. Let us show that the following statements hold:

(i) If ιw−ε,w+ε
k is not surjective for any sufficiently small ε > 0, then w is the abscissa of a point p (either

proper or at infinity), with µ(X ,ϕ),k(p)> 0;
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(ii) If ιw−ε,w+ε
k is surjective for every sufficiently small ε > 0, then w is the ordinate of a proper point p, with

µ(X ,ϕ),k(p)> 0.

Let us prove (i). Since we are assuming the presence of at most a finite number of homological k-critical val-
ues of ϕ , there surely exists v >w such that, for every sufficiently small ε > 0, v >w+ε and ι w+ε,v

k : Ȟk(Xw+ε)→

Ȟk(Xv) is an isomorphism. Hence, we deduce that rk imιw−ε,v
k = rk im

(

ιw+ε,v
k ◦ ιw−ε,w+ε

k

)

= rk imιw−ε,w+ε
k <

rkȞk(Xw+ε) = rk imιw+ε,v
k , where the second equality holds because ιw+ε,v

k is an isomorphism, the inequality
holds because rk imιw−ε,w+ε

k < +∞ and we are assuming ιw−ε,w+ε
k not surjective, and the last equality holds

again because ιw+ε,v
k is an isomorphism. Thus, rkȞw−ε,v

k (X) < rkȞw+ε,v
k (X) for every ε > 0 sufficiently small,

and, by Lemma B.3(a), the claim follows.
As for (ii), the assumption that ϕ has at most a finite number of homological k-critical values implies the

existence of u < w such that, for every sufficiently small ε > 0, u < w− ε and ι u,w−ε
k : Ȟk(Xu) → Ȟk(Xw−ε)

is an isomorphism. Moreover, since ιw−ε,w+ε
k is surjective, and w is a homological k-critical value, it neces-

sarily follows that ιw−ε,w+ε
k is not injective. Therefore, we have that rk imιu,w+ε

k = rk im
(

ιw−ε,w+ε
k ◦ ιu,w−ε

k

)

=

rk imιw−ε,w+ε
k < rkȞk(Xw−ε) = rk imιu,w−ε

k , where the second equality holds because ιu,w−ε
k is an isomorphism,

the inequality holds because rk imιw−ε,w+ε
k <+∞ and we are assuming ιw−ε,w+ε

k not injective, and the last equal-
ity holds again because ιu,w−ε

k is an isomorphism. Thus, it follows that rkȞu,w−ε
k (X) > rkȞu,w+ε

k (X) for every
ε > 0 sufficiently small, implying the claim by Lemma B.3(b).

Dropping the assumption that the number of homological k-critical values of ϕ is finite, the converse of the
first statement of Proposition B.4 is false, as the following remark states.

Remark B.5. From the condition that w is a homological k-critical value of a continuous function ϕ : X → R, it
does not follow that w is a coordinate of one of the points belonging to Dk(X ,ϕ).
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Figure 5: Two examples showing the existence of a real number w that is a homological 0-critical value of ϕ : X →R but not the coordinate
of any point of D0(X ,ϕ).

Two different examples, shown in Figure 5, support our claim.
Let us describe the first example (see Figure 5(a)). Let X be the topological space obtained by adding an

infinite number of branches to a vertical segment, each one sprouting at the height where the previous expires.
These heights are chosen according to the sequence (1+ 1

2n )n∈N, converging to 1. The filtering function ϕ is
the height function. The persistence diagram D0(X ,ϕ) is displayed on the right side of X . In this case, w = 1
is a homological 0-critical value. Indeed, for w = 1, it holds that rkȞ0(Xw−ε) = 1 while rkȞ0(Xw+ε) = 2 for
every sufficiently small ε > 0. On the other hand, let us show that w is not one of the coordinates of any point
in D0(X ,ϕ). For every v > w, and for every small enough ε > 0, it holds that rkȞw+ε,v

0 (X) = rkȞw−ε,v
0 (X) = 1.
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Therefore, by Lemma B.3(a), it follows that w is not the abscissa of any point belonging to D0(X ,ϕ). Moreover,
that w is not the ordinate of any proper point of D0(X ,ϕ) is a trivial consequence of Lemma B.3(b) since, for
every u < w, and every small enough ε > 0, it holds that rkȞu,w−ε

0 (X) = rkȞu,w+ε
0 (X) = 0 or rkȞu,w−ε

0 (X) =

rkȞu,w+ε
0 (X) = 1.
The second example, shown in Figure 5(b), is built in a similar way. The space X is again obtained by adding

an infinite number of branches to a vertical segment, but this time, the sequence of heights of their endpoints
is (2− 1

2n )n∈N, converging to 2, and ϕ is again the height function. In this case, w = 2 is a homological 0-
critical value of ϕ . Indeed, for every sufficiently small ε > 0, rkȞ0(Xw−ε) = 2 while rkȞ0(Xw+ε) = 1. On
the other hand, for every u < w and every small enough ε > 0, it holds that rkȞu,w+ε

0 (X) = rkȞu,w−ε
0 (X) = 1

or rkȞu,w+ε
0 (X) = rkȞu,w−ε

0 (X) = 0. Therefore, in both cases, rkȞu,w−ε
0 (X) = rkȞu,w+ε

0 (X) for every u < w
and every small enough ε > 0, implying that w is not the ordinate of any proper point of D0(X ,ϕ) because
of Lemma B.3(b). Moreover, we can immediately verify that, for every v > w and every small enough ε > 0,
rkȞw+ε,v

0 (X) = rkȞw−ε,v
0 (X) = 1, i. e., by Lemma B.3(a), that w is not the abscissa of a point of D0(X ,ϕ).
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