Design of X-Band MEMS Microstrip Shunt Switches

Jad B. Rizk, Student Member IEEE, Jeremy B. Muldavin, Student Member IEEE, Guan-Leng Tan, Student Member IEEE and Gabriel M. Rebeiz, Fellow IEEE

Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 48109-2122, USA.
jrizk@engin.umich.edu, muldavin@engin.umich.edu, gtan@engin.umich.edu, rebeiz@umich.edu.

Abstract — This paper presents the design and performance of X-band MEMS switches built in microstrip technology. The switches result in an insertion loss of less than 0.1 dB and a small isolation bandwidth, less than 10%, and are limited by the radial stubs bandwidths. The isolation value is also not dependent on the down-state capacitance of the switch. The isolation bandwidth (less than -20 dB isolation) is improved to 8-13 GHz with the use of a \(\pi\)-network and two MEMS switches. The up-state insertion loss of the \(\pi\) switch is less than 0.25 dB. The paper demonstrates that the performance of microstrip switch circuits without via-holes is dominated by the shorting (radial) stubs, and careful design must be done to result in an acceptable bandwidth of operation.

Keywords — MEMS, low-loss, micromachining, switches, microwave, millimeter-wave.

I. INTRODUCTION

Micro-Electro-Mechanical-Systems (MEMS) electrostatically actuated reflective switches for low-loss microwave and mm-wave applications have been recently demonstrated [1], [2], [3], [4]. MEMS switches are composed of a thin metal membrane (or beam) which can be electrostatically actuated to the RF line using a DC bias voltage. The MEMS switch has very little DC power consumption (1-3 nJ during the switching process), allows for large down-state to up-state capacitance ratios (\(C_d/C_u = 20-100\)), has very low intermodulation products, and can be fabricated on almost any substrate. Several disadvantages include slow switching speeds (2-10 \(\mu\)s) and high actuation voltages (15-80 V).

This paper focuses on the design and measurement of microstrip shunt capacitive switches. This is a departure from the current literature which is on coplanar-waveguide (cpw) switches. The microstrip designs offer easier biasing of the individual switches, especially if a large number is used. However, it requires via-hole technology for obtaining a wideband short circuit to ground. This paper demonstrates that a single MEMS microstrip switch has a very small isolation bandwidth. However, it is possible to obtain wideband performance using two microstrip switches connected in a \(\pi\) configuration.

II. SINGLE MEMS SHUNT SWITCHES: DESIGN AND MEASUREMENTS

Fig. 1 shows a microstrip shunt capacitive MEMS switch which is connected to a \(\lambda/4\) resonant stub. When the switch is in the up state position, the up-state capacitance is negligible (40-100 fF) and the switch has a very low insertion loss (less than 0.1 dB). When the switch is in the down-state position, the radial stub is connected to the microstrip line through the down-state capacitance (\(C_d = 2-5\) pF depending on the size of the switch) and the switch isolation is limited by the bandwidth of the radial stub.

The resonant frequency is dependent on the switch down-state capacitance and inductance values (Fig. 2). The response is very narrowband, and is given by the radial stub bandwidth. The switch inductance (10-20 pH) has a small effect since the stub inductance is around 400-500 pH. However, the switch down-state capacitance results in a considerable change in the resonant frequency for low capacitance values (1-3 pF) and in less change for high capacitance values (3-6 pF). This is expected due to the series combination between the down-state capacitance and the radial stub. Note that the isolation value is independent of the down-state capacitance and is limited to 35 dB by the series resistance of the
switch and the radial stub (around 0.35 Ω).

In this design, the stub is 1,950 µm long and is designed to resonate at 8.3 GHz, with an equivalent series LC circuit of L=430 pF and C=850 fF (obtained using Libra). When the switch is connected to the stub with an expected capacitance of \(C_d = 1.8 \) pF, the effective capacitance of the switch/stub combination decreases to 580 fF, resulting in a resonant frequency of 10 GHz.

The switches are fabricated on a 400 µm thick high-resistivity silicon wafer (2,000-3,000 Ω.cm). The microstrip lines are deposited using 2 µm thick gold and result in an attenuation of 0.5 dB/cm at 10 GHz. The MEMS bridge is fabricated using 1.5 µm sputtered gold layer and is suspended 1.5 µm above the microstrip line. The interlayer dielectric is 1500 Å of silicon nitride \((\epsilon_r = 7.6) \). The pull down voltage was more than 40 V since the MEMS bridges were slightly curved up.

Fig. 3 presents measurements done on a single microstrip switch in the up and down-state position. The reflection coefficient in the up-state is less than -25 dB from 8 to 12 GHz equivalent to an up-state capacitance of 40 fF. In fact, the switch is matched by the small sections of narrow microstrip line under the bridge which acts like an inductance. The down-state resonance occurs at 9.5 GHz for a stub length of 1,950 µm and a down-capacitance of 2.5 pF \((L = 10 \) pH), and results in a 10 % isolation bandwidth at -20 dB. The measured loss in the up-state position is less than 0.1 dB at 10 GHz. The reference planes are 250 µm away from the bridge. Also the isolation bandwidth can be increased by using two stubs connected to the two edges of the MEMS bridge. In this case the -20 dB isolation bandwidth is increased to 18 %. The penalty paid is an increase in the size of the switch on the Si/GaAs wafer.

III. π MEMS SHUNT SWITCHES: DESIGN AND MEASUREMENTS

The bandwidth of the MEMS microstrip switch can be significantly improved if a π-circuit is used (Fig. 4). The circuit consists of two MEMS switches connected by a short high-impedance transmission line. The π-circuit does two functions: First, it provides a good match in the up-state position \((S_{11} \leq -20 \) dB) over a wide bandwidth. Second, one can design the stub lengths so as to result in a wide isolation bandwidth. Fig. 5 shows the response of two π designs, with \(C_u = 40 \) fF, \(L = 10 \) pH, \(C_d = 1.8 \) pF, and with either equal stub lengths on both switches (1,950 µm) or with different stub lengths (1,800 µm and 2,300 µm). The mid-section impedance is 60 Ω with a length of 1,000 µm. The different stub lengths result in an “elliptic” low-pass filter response with a ripple of less than -30 dB over 8.5-11.3 GHz bandwidth.

Fig. 6 presents measurements for a π-circuit with stub lengths of 1,800 and 2,300 µm. The -20 dB isolation bandwidth is from 7.8 GHz to 13.1 GHz, and is much wider than the single stub measurements. The up-state reflection coefficient is around -20 dB over the entire frequency range 7-15 GHz. The measured loss is less than 0.25 dB. The reference planes are 250 µm away from the bridge. The measurements, while still excellent, do not agree with the model probably due to different down-state capacitance values.

REFERENCES

Fig. 2. Modeled microstrip shunt switch response: (a) effect of L (b) effect of C_d. S_{11} in the up-state position, S_{21} in the down-state position.

Fig. 3. Measured S-parameters of a single microstrip switch: (a) with one radial stub of 1,950 μm in up and down-state positions ($C_d=2.5$ pF) (b) two radial stubs of 2,400 μm in the down position ($C_d=1.4$ pF).

Fig. 4. π-circuit with microstrip shunt capacitive MEMS switches, and its equivalent circuit.

References:

Fig. 5. Modeled π-circuit shunt switches with (a) two stubs of 1,950 µm and, (b) one stub of 1,800 µm and one stub of 2,300 µm.

Fig. 6. Measured S-parameters π-circuit in up and down positions for stub lengths of 1,800 µm and 2,300 µm.