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Abstract

Multidimensional persistence mostly studies topological features of shgpes b
analyzing the lower level sets of vector-valued functions, called filtetimgtfons.
As is well known, in the case of scalar-valued filtering functions, persgistemol-
ogy groups can be studied through their persistent Betti numbers, i.énteasions
of the images of the homomorphisms induced by the inclusions of lower level sets
into each other. Whenever such inclusions exist for lower level setsabrvalued
filtering functions, we can consider the multidimensional analogue of parsidti
numbers. Varying the lower level sets, we get that persistent Betti nsncherbe
seen as functions taking pairs of vectors to the set of non-negativeiatég this pa-
per we prove stability of multidimensional persistent Betti numbers. Moregaigc
we prove that small changes of the vector-valued filtering functions impgyysonall
changes of persistent Betti numbers functions. This result can be ethtayrassum-
ing the filtering functions to be just continuous. Multidimensional stability opeas th
way to a stable shape comparison methodology based on multidimensional persis
tence. In order to obtain our stability theorem, some other new results asexipfiay
continuous filtering functions. They concern the finiteness of persiBettit num-
bers for vector-valued filtering functions, and the representation viigpence di-
agrams of persistent Betti numbers, as well as their stability, in the casalaf-sc
valued filtering functions. Finally, from the stability of multidimensional persisten
Betti numbers we obtain a lower bound for the natural pseudo-distance.
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1 Introduction

The study of the topology of data is attracting more and mtenton from the mathe-
matical community. This challenging subject of researchagivated by the large amount
of scientific contexts where it is required to deal with gtaive geometric information.
Indeed, the topological approach allows us to greatly redbe complexity of the data
by focusing the analysis just on their relevant part. Théeagch area is widely discussed
in[1, 2].

Persistence

Persistent homology has turned out to be a key mathematietiad for studying the
topology of data, with applications in an increasing nundfdrelds, ranging from shape
description (e.g., [3, 4, 5, 6]) to data simplification [7]dainole detection in sensor net-
works [8]. Recent surveys on the topic include [9, 10, 11, P2&Jsistent homology de-
scribes topological events occurring through the filtmratdd a topological spac&’. Fil-
trations are usually expressed by real functipns X — R calledfiltering functions
The main idea underlying this approach is that the most itapopiece of information
enclosed in geometrical data is usually the one thapersistent with respect to the
defining parameters.

The analysis of persistent topological events in the loweell sets of the functions
(e.g., creation, merging, cancellation of connected carapts, tunnels, voids) is impor-
tant for capturing a global description of the data undedytirhese events can be en-
coded in the form of a parameterized version of the Betti numkeown in the literature
aspersistent Betti numbelg], a rank invariant[13], and, for theOth homology, asize
function[14, 15, 6].

Motivations

Until recently, research on persistence has mainly focosetthe use of scalar functions
for describing filtrations. The extent to which this theognde generalized to a situa-
tion in which two or more functions characterize the datauisently under investigation
[16, 17, 18, 13]. This generalization to vector-valued tiorts is usually known as the
Multidimensional Persistence Theoryhere the adjective multidimensional refers to the
fact that filtering functions are vector-valued, and hasammnections with the dimension-
ality of the space under study. The use of vector-valuedifigefunctions in this context,
introduced in [19] for persistence of homotopy groups, éemthe analysis of richer data
structures.

One of the most important open questions in current resedratt multidimensional
persistent homology concerns tiability problem In plain words, we need to determine
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how the computation of invariants in this theory is affechydthe unavoidable presence
of noise and approximation errors. Indeed, it is clear thgtdata acquisition is subject
to perturbations and, if persistent homology were not stablen distinct computational
investigations of the same object could produce compleatidigrent results. Obviously,
this would make it impossible to use such a mathematicaryhieaeal applications.

Prior works

The problem of stability in persistent homology has beedistiiby Cohen-Steiner, Edels-
brunner and Harer in [20] for scalar filtering functions. Byngsa descriptor called per-
sistence diagranthey prove that persistent Betti numbers are stable undarrpations
of filtering functions with respect to the max-norm, proddbat the considered filtering
functions ardame The same problem is studied in [21] for tame Lipschitz fiore. In
[22], Chazalet al. introduce the concept gfersistence moduland prove stability under
the assumption that it is finite-dimensional. The problenstability for scalar filtering
functions is also approached in [23], where it is solved Isuasng that the considered
filtering functions are no more than continuous, but onlytf& Oth homology.

Multidimensional persistence was firstly investigated 189][as regards homotopy
groups, and by Carlsson and Zomorodian in [24] as regards logmonodules. In this
context, the first stability result has been obtained foOthehomology in [16]: A distance
between the Oth persistent Betti numbers, also cadlieé functionshas been introduced
and proven to be stable under perturbations of continuoa®realued filtering func-
tions. Such a result has been partially extended in [17] Hdi@nology degrees, under
the restrictive assumption that the vector-valued filgrianctions aremax-tame This
condition is quite technical and, in general, it is unknowmew it is satisfied.

Contributions of the paper

In this paper we present new stability results, for bothascahd vector-valued continuous
filtering functions, that are not limited by the restrictsoof tameness and max-tameness
(see Theorem 3.13 and Theorem 4.4). More precisely, we phatehe persistent Betti
numbers of nearby scalar or vector-valued filtering fumtiare “close to each other” in
the sense expressed by a suitable matching distance. Alengdy, we also prove the
following new theorems.

The first relevant result is the proof of tRéniteness Theorem 2.3stating that, if the
space under study is triangulable and the vector-valueddifiy function is continuous,
then the associated persistent Betti numbers (hereafter PB8l$inite. The importance
of this result relies on the fact that the finiteness of PBNs@uired in a number of
intermediate steps eventually leading to the definitiop@fsistence diagram@efini-
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tion 3.5). The finiteness of PBNs has revealed to be fundarnelsia in other related
works [22, 20]. In these papers, it is gained as a direct apresgce of assuming that the
filtering functions (in [20]) or the persistence modules [@2]) aretame On the other
hand, the finiteness of PBNs for filtering functions that arg jgontinuous requires a
specific proof.

Persistence diagrams are a key ingredient of the presest pagether with the use
of Cech homology over a field. Indeed, our second relevant rissthie Representation
Theorem 3.11 stating that, with the use @éech homology, the PBNs of a scalar-valued
filtering function can be completely described by a persistediagram.

As an immediate consequence of the Representation TheofeimiBfollows that
any distance between persistence diagrams induces aadigtaetween one-dimensional
PBNSs. This justifies the introduction of tineatching distancerecalled in Definition 3.12,
leading us to prove the third relevant result of this paperCne-Dimensional Stability
Theorem 3.13 Roughly speaking, this theorem states that small changé afonsid-
ered scalar-valued filtering functions, with respect to rttex-norm, induce only small
changes in the associated PBNs, with respect to the matclstamde.

The One-Dimensional Stability Theorem 3.13 is a necessapytswards the last and
main contribution of the paper, i.e. tiMultidimensional Stability Theorem 4.4. This
stability result for the multidimensional setting requines to use some ideas recently de-
veloped to investigat®lultidimensional Size Theof{6]. The proof of multidimensional
stability is obtained by reduction to the one-dimensioree; via an appropriate folia-
tion in half-planes of the domain of the PBNs associated witlector-valued filtering
function. Indeed, it is possible to prove that each restricbf a multidimensional PBNs
function to one of these half-planes turns out to be a onedgional PBNs function
of a suitable possibly nhon-tamecontinuous scalar-valued filtering function (see Theo-
rem 4.2). This approach implies that the comparison of twéidimensional PBNs can
be performed leaf by leaf by appropriately measuring théadte of one-dimensional
PBNs. Therefore, the stability of multidimensional peesigte is a consequence of the
one-dimensional persistence stability for continuougditiy functions, i.e. of the One-
Dimensional Stability Theorem 3.13.

As a corollary of the Multidimensional Stability Theorem 4we obtain a lower bound
for the natural pseudo-distanc& he natural-pseudo distance, introduced in [25] and fur-
ther studied in [26, 27], is a dissimilarity measure for tiggical spaces endowed with
vector-valued continuous functions that is intrinsicdigrd to compute, motivating the
interest in methods for its estimation.

Working assumptions

Following [20], we will work with triangulable topologicapaces.
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The considered filtering functions are assumed to begastinuous thus weaken-
ing the tameness and the max-tameness requirements off@(Q1 3], respectively. The
reasons of this choice are manifold. Firstly, our geneatilin from tame to continuous
functions is a positive answer to a question risen in [20¢dBely, the one-dimensional
reduction of multidimensional persistent homology is nasgible in the setting of tame
functions, as it was already observed in [17], but it lucldlyes in the wider setting of
continuous functions.

The choice of working witlCech homology is motivated by the fact that, having the
continuity axiom, it allows us to prove the Representatioedrem 3.11. Even assuming
tameness, this result would not hold for singular and sicmdltheories, which guarantee
a complete description of one-dimensional PBNs only outsisket of vanishing measure,
as explained in Section 2.2.1. In the framework of persts&eéech homology has al-
ready been considered by Robins in [28, 29]. Moreover(eh approach to homology
theory is currently being investigated for computationaigmses [30].

To conclude, we find it necessary to warn the reader of a teahdecision we have
taken. This paper arises from the observation that the prooflready adopted fdith
homology perfectly works also fdith homology once some basic properties are granted,
with suitable technical adaptations. In the following, vl state and prove completely
these necessary properties but we will only sketch whatevebe found in the original
papers for the sake of conciseness, fairness and reagdbdivever, in the present paper,
terminology will stick to that of Persistence Theory as mastpossible.

2 PBNs: Definitions and first properties

In this paper, the following relations and < are defined irfR™: for « = (uy,...,u,)
andv = (vq,...,v,), We sayd = v (resp.@ < 9) if and only if u; < v; (resp.u; <
v;) for every index: = 1,...,n. Moreover,R" is endowed with the usuahax-norm:
|(ug, u, ... un)|l, = maxi<i<y |wil.

We shall use the following notation&™ will be the open sef(u,v) € R* x R" :
u < vU}. For everyn-tupled = (uy,...,u,) € R™ and for every functioy : X — R",
we shall denote bX (7 < @) the set{z € X : p;(x) <wu;, i =1,...,n}.

The definition below extends the concept of the persistemidhagy group to a multi-
dimensional setting.

Definition 2.1 (Persistent homology grouplet &k € Z. Let X be a topological space,
and@ : X — R" a continuous function. Let\"” : [, (X(¢ < @) — Hu(X(F < 1))
be the homomorphism induced by the inclusion mé&p”) : X (7 < @) — X(G < 7)
with @ < 7, wheref,, denotes théth Cech homology group. i < 7, the image ofr\""
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—

is called themultidimensionakth persistent homology group 6K, ) at (@, ¢), and is
denoted byr1\"” (X, 3).

In other words, the grouﬁl,iﬁ’ﬁ) (X, $) contains all and only the homology classes of
cycles born before or at and still alive atv.

For details abou€ech homology, the reader can refer to [31, Ch. IX].

In what follows, we shall work with coefficients in a fiell, so that homology groups
are vector spaces. Therefore, they can be completely Besddy their dimension, leading
to the following definition (cf. [13, 7]).

Definition 2.2 (Persistent Betti Numbers Functiorhe functiong; : A*™ — N U {oo}
defined by

Bz(u, V) = dimim ﬂ,iu’v) = dim ﬁlgu’v) (X, P)
will be called thepersistent Betti numbers function , briefly PBNSs.

Obviously, for eactt € Z, we have different PBN§; of ¢ (which should be denoted
Bz, Say) but, for the sake of notational simplicity, we omit exdpany reference tb. This
will also apply to the notations used for other conceptsigplaper, such as multiplicities
and persistence diagrams.

We shall prove in Theorem 2.3 that X is triangulable 5z never attains the valus.

2.1 Properties of multidimensional PBNs

The next Theorem 2.3 ensures that, if the considered tomalogpaces are assumed
to be triangulable, multidimensional PBNs (Definition 2.2¢ &éinite even dropping the
tameness condition requested in [20]. We underline tha®Bdés finiteness is not obvious
from the assumption that the space is triangulable. Indbedower level sets with respect
to a continuous function are not necessarily triangulapéess.

Theorem 2.3(Finiteness) Let X be a triangulable space, and: X — R™ a continuous
function. Then, for ever{fii, v) € A™, it holds thatSz(u, v) < +oc.

Proof. SinceX is triangulable, we can assume that it is the support of algirmpcom-
plex K and that a distancéis defined onX, compatible with its topology.

Let us fix (Z,7) € AT, and choose a real number> 0 such that, setting’ =
(e,...,6) ER", U+ 2 < 7.

We now show that there exist a functiafn: X — R”, a subdivisionK” of K, and
a triangulationL” of /(X), such that(i) the triple (¢, K", L") is simplicial, and(i:)
ma||3(x) = (@) | <.

Indeed, by the uniform continuity of each compongnof , there exists a real num-
ber§ > 0 such that, fori = 1,...,n, |pi(z) — @;(z)| < e for everyz, 2’ € X with
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d(z,2’) < 6. We take a subdivisiod{’ of K such thatmesh(K’) < ¢, and define
U(z) = F(x) for every vertexz of K'. Next, we consider the linear extensionfto
the other simplices of. In this Way,zE is linear on each simplex df”.

Since is piecewise lineary(X) is the underlying space of a simplicial complex
L'. By taking suitable subdivision&” of K’ and L” of L/, J also maps simplices into
simplices and therefor(aZ, K" L") is simplicial (cf. [32, Thm. 2.14]). This proves).

To seq(it), let us consider a pointbelonging to a simplex i&”, of verticesvy, . . . , v,.
Sincex = >, A\ -v, with A, ..., > 0andd ;A\ =1, andt is linear on each
simplex, it follows that||3(z) — ¥(z)|| . = [|#(z) — S, A - v(w)||, = ||8x) -
Yo hi@i)]| = [ T A @) = 0 A i) ||, < 0 M| Bla) — @), <
E.

We now prove that, since), K”, L") is simplicial, it holds thatt, (X (¢ < @ + &))
is finitely generated. Indeed, since the intersection betwaesimplex and a half-space is
triangulable, there exists a subdivisibff of L” such that)(X) N {Z € R" : < @ + &}
is triangulated by a subcomplex 6f’. By [32, Lemma 2.16], there is a subdivisiéf”
of K" such that(y), K", L") is simplicial. It follows thatX (¢) < @ + &) is triangulable,
and henceT,, (X (¢ < @ + &)) is finitely generated.

Sinceu + 2¢° < ¥ and max HgB(x) — J(m)”w < &, we have the inclusionX (g =<

@) 5 X(J < @+ 5 X(F < @), inducing the homomorphism&, (X (3 < @)) %
Ho(X(J <@ +8) 35 HJ(X(F < ). By recalling thatfT, (X (4 < @ + £)) is finitely
generated, and sinekm im j; o i;, < dimim j, we obtain the claim. O

We point out that, in our setting, the finiteness of PBNs woulthe guaranteed if they
were defined also on the boundary/®f, i.e. for pairs(w, ) such that not all coordinates
differ. This motivates our choice of working only ax*.

The following Lemmas 2.4 and 2.5 generalize to the multicisienal setting analo-
gous results valid fon = 1. We omit the trivial proof of Lemma 2.4.

Lemma 2.4 (Monotonicity) Sz(u,v) is non-decreasing ini and non-increasing i
(with respect to the partial order relatior).

Lemma 2.5(Diagonal Jump)Let X, Y be two homeomorphic triangulable spaces, and
f: X — Y ahomeomorphism. Let: X — R", 1/7: Y — R” be continuous functions.
Then, for everyu, v) € A, and for everyh € R such thatma)?( Hgﬁ(x) —¢o f(x)H <

FAS o)

h, settingh = (h,...,h) € R", we haves(u — h,T+h) < By(d, v).

Proof. Sincemax Hgﬁ(m) — o f(x)|| < h, we have the following commutative dia-

zeX
gram
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H(X(F = @ — h)) — Ho(X (@

=
Hy(Y () < @) Hy(Y () <))
wherei, andj, are induced by inclusions, and the vertical homomorphismsraluced

by restrictions off and f~!, respectively. Thus the commutativity of the diagram iregli
thatdim im i, < dimim j, yielding the claim. O

Jk

2.2 Properties of one-dimensional PBNs

Now we confine ourselves to the case= 1. Therefore, for the sake of simplicity, the
symbolsg, i, v will be replaced byp, u, v, respectively. We remark that* reduces to
be the sef(u,v) € R? : v < v}. Moreover, we use the following notation&: = 9A™,
A* = AT U{(u,00) : u € R}, andA* = A* U A.

2.2.1 Right-continuity of one-dimensional PBNs

In what follows we shall prove that, usir@ech homology, the one-dimensional PBNs
function is right-continuous with respect to betlandv, i.e.lim,,_,+ £, (u, v) = B,(4,v)
andlim, 3+ B,(u,v) = B,(u,v). This property will be necessary to completely charac-
terize PBNs by a persistence diagram, a descriptor whosataefiwill be recalled later
in this section. In the absence of right-continuity, paesise diagrams describe PBNs
only almost everywhere, thus justifying the usedgfch homology in this context.

The next example shows that the right-continuity in thealale © does not always
hold when persistent homology groups are defined using &ialpbr singular homology,
even under the tameness assumption.

Example 2.6. Let X be a closed rectangle & containing a Warsaw circle (see Figure
1). Let alsop : X — R be the Euclidean distance from the Warsaw circle.

Figure 1: A lower level seX (¢ < u), for a sufficiently smalk: > 0, as considered in
Example 2.6, corresponds to a dilation (shaded) of our Wacszle.
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Itis easy to see thatis tame onX (with respect to both singular afech homology).
Moreover, the dimension of the singular persistent horr;ogrgupr“’”) (X, ) isequal
to 1 for v > u > 0 andv sufficiently small, whereas it is equal fovhenu = 0, showing
that singular persistent homology is not right-continumuthe variableu.

Analogously, it is possible to show that simplicial or sitajuhomologies do not en-

sure the right-continuity in the variable(see Appendix A).

Let us fix two real numberg < v and, foru < v’ < «” < v, consider the following
commutative diagram

¥
W(u/ml ﬂ<u”,v>i (2.1)
k k
¥

5 id

By recalling thatﬁ,ﬁ“’”) (X, ) =im w,i“’”), from the above diagram (2.1) it is easy to see
that eachr""*") induces an injective map(“ " : H""7 (X, o) — H" (X, ). The
following Lemma 2.7 states that, for eveyy > «' > «, with «” sufficiently close tau,

the maps """ are all isomorphisms.

Lemma 2.7. Let (z,0) € AT, and lete\"" . A“"(X, o) — H"" (X, p) be the
injective homomorphism of vector spaces induced by theﬂﬁéﬁ”). Then there exists
4, with @ < 4 < v, such that the maps,i“"“”) are isomorphisms for eveny, v” with

u<u <u <.

Proof. By the Finiteness Theorem 2.3 and the Monotonicity LemmatBete existsi,
with < @ < v, such thap,(v’, v) = dim H,i“"’_’)(X, ) is finite and equal t@, (v, v) =
(’U/,’U/l)

dim ﬁéu”,@)()(, ¢) wheneveru < v’ < «” < 4. Since the maps;, are injective
(indeed they are inclusions), this implies that they areni@phisms. O

Analogously, by considering the commutative diagram
Hi(X (ip < 1)) ——"—= Hy(X(p < @)
W(a,wl W(mv”)l
k (U/}v//> k
Hy(X{p <)) Hi(X{p < 0")),

we obtain surjective maps’ ") : H™")(X, o) — H™")(X, ), and prove that they
are isomorphisms whenever, v” are sufficiently close to, with v < o' < v”.

Lemma 2.8. Let (i, ) € AT, and let7\""*") : A" (X o) — H™")(X, ) be the
surjective homomorphism of vector spaces induced by them%iéﬁc’f). Then there exists
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0 > v such that the homomorphismgl’””) are isomorphisms for every, v” with v <
v <" < 9.
Proof. The proof is essentially the same as that of Lemma 2.7, afteeroing that the

mapsT,E”"””) are surjections between vector spaces of the same finitendiore n

Proposition 2.9(Right-Continuity) 3, (u, v) is right-continuous with respect to both the
variablesu andwv.

Proof. In order to prove thatim,_,;+ 5,(u,v) = B,(a,v), by the Monotonicity Lemma

2.4, it will suffice to show that?\“” (X, ¢) =~ H”(X, ), wherei is taken as in
Lemma 2.7. To this end, we consider the following sequenegomhorphisms

[:[]gu@)(X’ ) =im Wl(f’ﬂ) >~ im lim Wliu/’ﬁ)
—

(&)

=~ limim 7" = lim H""" (X, o) = H") (X, ¢).
— —

Let us now show how these equivalences can be obtained.

Let us consider the inverse system of vector spz<dé§(X (p < u’)),w,i“”“”) over
the directed sefu’ € R : u < v/ < u} decreasingly ordered, and the constant inverse
system(ﬁk(X@o < @)),wff’ﬁ)), recalling thatr\"" is the identity.

Clearly the set of homomorphisnis'""" : H,(X (¢ < /)) — Hy(X{p <))} isa
homomorphism of inverse systems because the diagram

Hu(X (i < /) — Hu(X (p < u"))
vﬂ—;ﬂu Yv)i ﬂ](f;,ﬁ) jrl(cu ﬂj)l
Hp(X (e < 1)) Hyp(X(p < 1))

is commutative.
By the continuity ofCech Theory (cf. [31, Thm. X, 3.1])im H,(X (¢ < o)) =
<
Hy(X (p < @)). Obviously,lim H,(X (¢ < ) = Hp(X (¢ < ). Hencer(" is the
<_
natural homomorphistim 7" between the inverse limits. So, "™ = im lim 7"
— —
Moreover, since the inverse limit of vector spaces is an telkatctor, it preserves
epimorphisms and hence images. Therefore, it holds thﬁtrim,i“/’@) > limim w,(c“"ﬁ) =
— “—
lim H,E“"T’) (X, ¢), where the last inverse limit is taken with respect to theise system
&
(ﬁ,&“/’f’)(X, gp),a,ﬁ“”“”) over the directed sefu’ € R : @ < u' < 4} decreasingly
ordered, andr,(j‘/’“") are the maps introduced in Lemma 2.7.
Finally, lim H"""(X, ) = H"”(X, ). Indeed,lim H" " (X, ¢) is the inverse
— —
limit of a system of isomorphic vector spaces by Lemma 2.7.
Analogously for the variable, applying Lemma 2.8. O]
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3 Stability of one-dimensional PBNs

In this section we prove the stability of PBNs for continuoaalar-valued filtering func-
tions (Theorem 3.13). This result generalizes the mainrdraadn [20], which requires
tame functions on triangulable spaces. Our proof reliesrmmaber of basic simple prop-
erties of PBNs that are completely analogous to those provig8i 33] and used to show
the PBNs stability in the case of the Oth homology. For thisoeawe shall omit the
proofs of our statements when they are quite analogousaadjrpublished ones. Some
of these properties, such as those needed to introducesteeise diagrams, require the
finiteness of PBNs proved in the previous section. Along the we shall also prove the
Representation Theorem 3.11. It guarantees that one-diomah$BNs are completely
determined by persistence diagrams, even in the case afgnshuous functions.

The following Lemmas 3.1 and 3.2 can be proved in the same walyeaanalogous
results holding when the homology degreis equal to O (see [23]).

Lemma 3.1. The following statements hold:
(¢) Foreveryu < min g, B,(u,v) = 0.

(¢7) For everyv > max, B,(u,v) is equal to the maximum number of linearly inde-
pendent classes if,(X) having at least one representativef{y < u).

We observe that Lemma 3(1;) implies that, for every > max ¢, (3, (u, v) is inde-
pendent ob.

Since, foru; < us < v1 < vy, the maximum number of linearly independent homol-
ogy classes born between andu, and still linearly independent at is certainly not
smaller than the maximum number of those still linearly peledent at,, we have the
next result.

Lemma 3.2(Jump Monotonicity) Letu, us, v1, vy be real numbers such that < u, <
v; < vs. It holds that

By (ua,v1) — Bo(ur, v1) > By(ug, va) — By(ur, v2).

Lemma 3.2 justifies the following definitions of multipligitSince we are working
with continuous instead of tame functions, we adopt the digirs introduced in [33]
rather than those of [20]. Although based on the same ideaditference relies on the
computation of multiplicity on a varying grid, instead of add one. So we can work with
an infinite number of (possibly accumulating) points withasifive multiplicity. Due to
the lack of a well-established terminology for points witha@sitive multiplicity, we call
themcornerpoints as in previous papers.
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Definition 3.3 (Proper cornerpoint)For every pointp = (u,v) € A", we define the
numbery(p) as the minimum over all the positive real numbersiith u + ¢ < v — ¢, of

Bolu+e,v—c)=Polu—ec,v—e)=By(ute,vt+e)+ fs(u—ev+e).

The numberu(p) will be called themultiplicity of p for 5,. Moreover, we shall call a
proper cornerpoint for, any pointp € A* such that the numbes(p) is strictly positive.

Definition 3.4 (Cornerpoint at infinity) For every vertical line-, with equationu = u,
u € R, let us identifyr with (u, c0) € A*, and define the numbes(r) as the minimum
over all the positive real numbetrswith @ + ¢ < 1/¢, of

By (u—ksé) — By (u—sé).

The numbern:(r) will be called themultiplicity of  for 5,. When this finite number is
strictly positive, we call- acornerpoint at infinity forg,,.

The concept of cornerpoint allows us to introduce a repitasien of the PBNs, based
on the following definition [20].

Definition 3.5 (Persistence diagram)he persistence diagranb,, is the multiset of all
cornerpoints (both proper and at infinity) fég, counted with their multiplicity, union the
points of A, counted with infinite multiplicity.

In order to show that persistence diagrams completely desBBNs, we give some
technical results concerning cornerpoints.

The Monotonicity Lemma 2.4, the Right-Continuity Propositia.9 and the Jump
Monotonicity Lemma 3.2 imply the following result, by thensa arguments as in [33].

Proposition 3.6 (Propagation of Discontinuities)f p = (u, v) is a proper cornerpoint
for 3,, then the following statements hold:

(i) If u <wu < v, thenw is a discontinuity point fof, (v, -);

(i7) If u < v < v, thena is a discontinuity point fof,,(-, v).
If 7 = (u, 00) is a cornerpoint at infinity for3,,, then it holds that
(i17) If u < v, thenu is a discontinuity point fop,.(-, v).

We observe that any open arcwise connected neighborhodd iof a discontinuity
point for 3, contains at least one discontinuity point in the variabtg v. Moreover, as a
consequence of the Jump Monotonicity Lemma 3.2, discoityipoints in the variable:
propagate downwards, while discontinuity points in thealale v propagate rightwards.
So, by applying the Finiteness Theorem 2.3, we obtain thpgsition below (cf. [33,
Prop. 6]).
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Proposition 3.7. For every pointp = (u,v) € A*, areal numbee > 0 exists such that
the open set

W.(p) = {(u,v) €R*: lu— 1| < ¢e,|v—19| <e,uit,v+#0v}
is contained inA*, and does not contain any discontinuity point fr.

As a simple consequence of Lemma 3.1 and Definition 3.3, we ks following
proposition.

Proposition 3.8(Localization of Cornerpoints)if 5 = (u, v) is a proper cornerpoint for
By, thenp € {(u,v) € AT :miny <u < v < max p}.

By applying Propositions 3.6, 3.7, and 3.8 it is easy to prbegfollowing result.

Proposition 3.9(Local Finiteness of Cornerpointdjor each strictly positive real number
e, B, has, at most, a finite number of cornerpointg{m, v) € R? : u + ¢ < v}.

We observe that it is easy to provide examples of persistéiaggams containing an
infinite number of proper cornerpoints, accumulating ohediagonalA.

Remark 3.10. The number of cornerpoints at infinity fér, counted with their multiplic-
ities is equal talim H,(X), and hence it is finite and independent.of

The following Theorem 3.11 shows that persistence diagraritgiely determine one-
dimensional PBNs (the inverse also holds by definition ofipasce diagram). We re-
mark that a similar result was given in [20], under the namé-tfangle LemmaOur
Representation Theorem differs from thdriangle Lemma in two respects. Firstly, our
assumptions on the function are weaker. Secondly, thetriangle Lemma focuses not
on all the setA*, but only on the points with coordinates that are not homickdgritical
values.

Theorem 3.11(Representation Theoremfjor every(u, v) € A, we have

@p(av@): Z [L((U,’U)).

(u,v)EA*
u<a, v>0

Proof. The claim is a consequence of the definitions of multiplidiBefinitions 3.3
and 3.4), together with the previous results about cornetpoand the Right-Continuity
Proposition 2.9, in the same way as done in [33]. O

As a consequence of the Representation Theorem 3.11, aayacksbetween per-
sistence diagrams induces a distance between one-dimah8BNs. This justifies the
following definition [23].
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Definition 3.12(Matching distance)Let X, Y be triangulable spaces endowed with con-
tinuous functionsy : X — R, ¥ : Y — R. The (extendediatching distance,, ...
betweens,, and g, is defined by

dmatch (ﬁcpa ﬁw) = 13f sup ||p - /y(p)HEé) (31)

pED,

wherey ranges over all multi-bijections betweén, andD,,, and, for every = (u,v),q =
(u,v") in A*,

I allc = i {ma =] o = o e {22,

with the convention about points at infinity thad — y = y — co = oo wheny # oo,

00 — 00 =0, $ = 00, [oo| = 0o, min{c, 0o} = c andmax{c, oo} = oo.

In plain words,||-|| - measures the pseudo-distance between two ppiatslg as the
minimum between the cost of moving one point onto the othértae cost of moving
both points onto the diagonal, with respect to the max-nomnch ander the assumption
that any two points of the diagonal have vanishing pseudtaxdce.

The termextendedneans thatl,,,.;.;, can take the value-oo. It will follow from our
One-Dimensional Stability Theorem 3.13 tla@f,;., is finite whenX =Y.

When the number of cornerpoints is finite, the matching ofipeysce diagrams is
related to the bottleneck transportation problem, and th&hing distance reduces to
the bottleneck distance [20]. In our case, however, the murobcornerpoints may be
countably infinite, because of our loose assumption on ttezifig function, that is only
required to be continuous.

We observe that, although the number of cornerpoints mayohatably infinite, in
(3.1) we can writemax instead okup andmin instead ofinf, as can be formally proven
using the same arguments as in [23, Thm. 28]. In other wordgjl-bijection~ exists
for whichdqcn (8, By) = max,ep,, ||p — 7(p)||5- Every such matching will henceforth
be calledoptimal

We are now ready to give the one-dimensional stability teeofor PBNs with con-
tinuous filtering functions. The proof relies on a cone cartion. The rationale behind
this construction is to directly apply the arguments usg@3j, eliminating cornerpoints
at infinity, whose presence would require us to modify allpheofs.

This stability theorem is a different result from the oneegivn [20], weakening the
tameness requirement to continuity, and actually solvimg af the open problems posed
in that work by the authors.

Theorem 3.13(One-Dimensional Stability Theorem).et X be a triangulable space,
andy, ¥ : X — R two continuous functions. The,.,(8,, By) < max lo(z) — ¥(x)].
EAS
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Proof. In what follows we can assume th&tis connected. Indeed, X hasr connected
components’, . .., C,, then the claim can be proved by induction after observirg th

D, =U,, D@\ci'
For theOth homology, the claim has been proved in [23, Thm. 25].
Let us now consider théth homology withk > 0. We build the cone ok, X =

(X x I)/(X x {1}) (see Figure 2).
r .

Figure 2: The cone construction used in the proof of Theordr®.3 he cycles in the cone
are null-homologous.

t =

SinceX is triangulable, so is. We also consider the continuous functipn X — R
taking the class ofz,t) in X to the valuep(z) - (1 —t) + M - t, whereM = 3 -
(max |p| + max |¢|) + 1. This choice ofM, besides guaranteeing that, M) € A*
whenu < max |p|, max ||, will be useful later.

By construction, it holds that

. .
Bp(u,v) = { g’@(u’v)’ :f Z ; ]\]é

Indeed, it is well known thakX is contractible (see [34, Lemma 21.13]), explaining why
Ba(u,v) = 0 whenv > M. The other case < M follows from the observation that, for
everyv < M, identifying X (p < v) x {0} with X (p < v), the lower level seX (p < v)

is a strong deformation retract 6f (¢ < v). To see this, it is sufficient to consider the
obvious retraction : (z,t) — x and the deformation retractidhl : X (¢ < v) x I —
X{(¢ <), H((z,t),s) = (z,t- (1 —s)). This yields the following commutative diagram

/

(X (¢ < u)) —> Hy(X {p < u))

7~1_I(Cu,v)l ﬂ_](cu,v)l
vz

Hy(X(p < ) — Hy(X (p < 0)),
where the horizontal maps are isomorphisms induced, laynd the vertical ones are the
homomorphisms introduced in Definition 2.1 for the respecspaces. Sd7\"" (X, 3) =
H™(X, o) whenv < M.
Clearly, a point ofA* is a proper cornerpoint fog, if and only if it is a proper
cornerpoint forg;, with the ordinate strictly less thai/. Moreover, a poin{u, co) of
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A* is a cornerpoint at infinity fog,, if and only if the point(u, M) € AT is a proper
cornerpoint for3;. We remark that there are no cornerpointsv) for 5 whenmax |¢| <
v < M.

Analogously, we can construgt: X — R out of ) with the same properties.

Itis possible to prove the inequality,.icn(Bs, 8;) < max; .z [P(T) — @Z(i*)‘. Since
the proof of this claim is completely analogous to that of,[ZBm. 25], we omit the
technical details remarking that it is precisely here trenima 2.5, and Propositions 3.6,
3.7, 3.8 and 3.9 are needed. Hence, sinee;  ; ‘@(i) - &(i)‘ = max lo(x) — (x)],
it is sufficient to show thad,,,u¢cn (B, By) < dmaten(Bs, ﬁg,)-

To this end, we can consider an optimal matchingetweenD; and D ;, for which
Amaten(Bg, B) = maxzep,, |p — 7(D)| 5. Sincey is optimal, takes each pointu, v) €
Dg, with v = M, to a point(v/,v') € Dj, with " = M. Indeed, if it were not true,
ie. ¥((u, M)) = (u',v") with " < M, thenv" < max|i|, since there are no cor-
nerpoints(u’,v') for g; with max|[y)| < »* < M. By the choice ofM, we would
have||(u, M) —5((u, M)l > max lp(z) — ¥(z)|. This contradict®larcn (8, B;) <
max lo(z) —4(x)|. The same argument holds for!, and this proves that maps cor-
nerpoints whose ordinate is smaller thennto cornerpoints whose ordinate is still below
M.

We now show that there exists a multi-bijectionbetweenD,, and D,,, such that
maxyep, [P~ 1(p)lls = maxsep, [|Ip — 7(5) |, thus proving thatl,ue (8. fs) <
Amaten (B3, B)- Indeed, we can defing : D, — Dy by settingy((u,v)) = J((u,v))
if v < oo, andy((u,v)) = (v,v), wherev’ is the abscissa of the poif{(u, M)), if
v = oo. This concludes the proof. O

Let us conclude this section by showing the following proypef d,,,.:.., that will be
useful later.

Proposition 3.14.Let A € R, with A > 0. Letalsoy : X — R, ¥ : Y — R be two
continuous filtering functions for the triangulable spacéandY’, respectively. Then, it
holds that

dmatch (5)\‘507 B)Vw) =\ dmatch (69&7 Bw) .

Proof. First of all, let us observe that, {fu,v) € A%, then(Au, \v) € AT for A > 0.
Moreover, forA > 0, it holds that5,(u,v) = By.,(Au, Av), sinceX (p < u) = X(X-
¢ < Au) for everyu € R. Then, by Definitions 3.3 and 3.4, for evefy, v) € A*, the
multiplicity of (u,v) for 5, is equal to the multiplicity of Au, Av) for ...

Following the definition of the operatd|| s in Definition 3.12, for everyu, v),(v', v")
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in A*, we have

1A, Av) — (A, M) =

= min{max {AMu—u'], Al—0'[} ’max{)‘v;u’ A7 ;u }}

= All(u, v) = (v, v) |-

Thus the claim follows from the definition @f,,.;.,, (Definition 3.12), and by observing
that the correspondence taking each pain) € A* to the pair(\u, A\v) € A*is actually
a bijection. n

4  Stability of multidimensional PBNs

We now provide the proof of the stability of multidimensiofBNs. It will be deduced
following the same arguments given in [16] to prove the $itgbof multidimensional
PBNs for the case of the Oth homology.

The key idea is that a foliation in half-planes Af" can be given, such that the re-
striction of the multidimensional PBNs function to thesefipdénes turns out to be a
one-dimensional PBNs function in two scalar variables. Hpproach implies that the
comparison of two multidimensional PBNs functions can bdquared leaf by leaf by
measuring the distance of appropriate one-dimensional HBiNgions. Therefore, the
stability of multidimensional persistence is a conseqeasfdthe one-dimensional persis-
tence stability.

We start by recalling that the following parameterized figraf half-planes inR™ x R”
is a foliation of A™ (cf. [16, Prop. 1]).

Definition 4.1 (Admissible pairs) For every vectot = (ly,...,1,) of R” such that; > 0
fori =1,...,n,and3." {2 = 1, and for every vectob = (b, ...,b,) of R" such that
S b; = 0, we shall say that the pa(rﬁ 5) is admissible We shall denote the set of
all admissible pairs iR x R™ by Adm,,. Given an admissible pa(rf, 5), we define the

half-planew(zg) of R™ x R™ by the following parametric equations:

fors,t € R, with s < ¢.

Since these half-planezif,g) constitute a foliation oA, for each(u, ) € A™ there
exists one and only on@, 5) € Adm,, such thatu, v) € m(i5): Observe thatandb only
depend on{u, v).
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A first property of this foliation is that the restriction Gf; to each leaf can be seen as
a particular one-dimensional PBNs function. Intuitivelg, each half plane(;’g) one can
find the PBNs corresponding to the filtration.dfobtained by sweeping the line through
« andv parameterized by(m;) : R — R, with V(Eh) (1) =7l +b.

A second property is that this filtration corresponds to the given by the lower level
sets of a certain scalar-valued continuous function. Batkdlproperties are stated in the
next theorem, analogous to [17, Thm. 2], and are intuitigglgwn in Figure 3.

Theorem 4.2(Reduction Theorem)For every(i, v) € A™, let (f, 5) be the only admis-
sible pair such thati, 7) = (sl + b, tl + b) € m(i5)- Let moreover ;5 : X — R be the
continuous filtering function defined by setting

wi(r) — b,
l; '

P(a,7) («T) = min/; - max
ThenX(J < @) = X ((min; ;) 'p@s < s). Therefore

/BL,B(/Z’_I:J U) = B(mml li)71W(i,5) <S7 t) *

Proof. For everyid = (uq,...,u,) € R", withu; = sl; + b;,i = 1,...,n,s € R, the
following equalities hold:

The last claim follows from the definition of PBNSs. O

Definition 4.1 and Theorem 4.2 might appear unnecessanhpensome. A naive idea
for proving stability via the one-dimensional reductiorgimi be to directly apply the one-
dimensional theory to the line throughand . This does not work without introducing
the functionsp s and without a one-dimensional stability result for contins filtering
functions such as our Theorem 3.13. Indeed, an analogaulsf@tame functions would
not be applicable in our case since, as remarked in [17],dhefdame functions is not
closed under the maximum operator.

Finally, the most important property of our foliation is thiaallows us to obtain an
analogue of the distanek, ;. for the multidimensional case, denoted By, ., having
a particularly simple form, yet yielding the desired stiypitesult.

Our definition of D,,.;.;, IS the natural one in order to compare multidimensional
PBNs. Indeed, it boils down to matching cornerpointsgothat arise from the one-
dimensional filtration obtained sweeping the line througgind v’ with those ofJ along
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P2

Figure 3: One-dimensional reduction of two-dimensional BBRNeft: a one-dimensional
filtration is constructed sweeping the line througlandv. A unit vector/ and a point
are used to parameterize this lin 55) (1) = 7l + b. Right: the persistence diagram of

this filtration can be found on the Iea[lj,;) of the foliation.

the same line. In our treatment this is accomplished usirayticplar parameterization of
this line. However this parameterization is not mandat@tyter parameterizations of the
same line would yield the same distance, as it has been pim\&8]. In other words,
D, aten 1S In SOMe way intrinsically defined.

Dnaten, Was introduced in [17] (see also [16]), although in the naemosetting of
max-tame filtering functions, and can be rewritten as follows.

Definition 4.3 (Multidimensional matching distance)et X, Y be triangulable spaces
endowed with continuous functiogs: X — R, ¢ : Y — R™. The (extendedultidi-
mensional matching distande,, ..., betweensz and@; is defined as
Diaten <Baﬁ7 6@[;) = Ssup dmatch (/B@(ﬁ’g)?/gdf(ﬁﬂj)) . (41)
(@,0)en+t
The following theorem shows not only that,,.;., is a distance wheX = Y, but,
more importantly, the stability of multidimensional PBNghvrespect to this distance.

Theorem 4.4(Multidimensional Stability Theorem)if X is a triangulable space, then
Dinaten, is a distance on the sgfiz | 7 : X — R” continuoug. Moreover,

Donaien (3, 85) < max [[#(2) = 9(a)|

reX ']

Proof. Let us begin by observing that
Amateh (ﬁp(a,w@(ﬁ,g)) < max o (1) — Y ()|
wi(r) — bi Yi(x) — b
[

max ———— — Imax
1 l’L (] i

< min/; - max
i rzeX

mag ) — ],

)

< min/; -
K3
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where the first inequality follows applying the One-Dimemsil Stability Theorem 3.13,
since a1, Y, are scalar-valued continuous filtering functions, while gecond in-
equality descends from the definition of; ) and; (cf. Theorem 4.2). Therefore,
Diaten (5@ 3 w) is bounded bynax Haﬁ(x) — (@) HOO

Let us now prove thab,,.., is a distance o{fz|¢g : X — R" continuous.
Since D,,..;.;, iS bounded, it takes values in the set of non-negative r&&dseover, as
a consequence of the Reduction Theorem 4.2, the ideffity= By holds if and only
it Bonini 1) 1pws = Blmingt) 1wy [OF EVETY (u,v) € A*. Recalling thatd,, ., is
positive-definite, for everyi, v) € A™, Buin 1) 1oy = Blmin; )1y 1f @N only

if daten (B(mini li)flcp(m,ﬁ(mini ,i)flw(m> = 0. In virtue of Proposition 3.14, we have

dmatch <B(m1nl li)71W(,g’g>7/B(miHi li)flw(@'yg)> = 0 If and only If dmatch (/BQO(ﬁyg)?/Bt/)(ﬁ’g)) = 01
for every(u, ) € A*. This proves thaD,,....;, is actually positive-definite. The symmet-
ric property is obvious while the triangular inequalityltai/s in a standard way. ]

Roughly speaking, we have thus proved that small changesantarwalued filtering
function induce small changes in the associated multidgiomal PBNs, with respect to
the distance),,,qch.-

Our definition ofD,,,.;.;, enables us to computationally compare topological datagusi
multidimensional PBNs in the same way as in [16] and, abovéaatibtain a lower bound
for the natural pseudo-distance as shown in the followirngce.

5 The connection between the multidimensional match-
ing distance and the natural pseudo-distance

Another relevant reason to study the multidimensional matedistanceD,,, ., is the
possibility of obtaining lower bounds for the natural pseutistance.

We recall that, for any two topological spac&sY endowed with two continuous
functionsg : X — R”, VY — R”, we can give the following definition.

Definition 5.1 (Natural pseudo-distance) henatural pseudo-distandaetween the pairs
(X, ) and(Y; 1), denoted by ((X, ), (¥,4)). is

(i) the numbetnf, max,cy ||@(z) — ¥(h(z))|| Whereh varies in the seH/ (X, Y) of
all the homeomorphisms betweé&handY’, if X andY are homeomorphic;

(i) —+oo, if X andY are not homeomorphic.

We point out that the natural pseudo-distance is not a dist@ecause it can vanish
on two distinct pairs. However, it is symmetric, satisfies thangular inequality, and
vanishes on two equal pairs.
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The natural pseudo-distance has been studied in [25, 26n2RAE case of scalar-
valued filtering functions on manifolds, and in [19] in theseaof vector-valued filtering
functions on manifolds.

As a simple but relevant consequence of the MultidimensiStebility Theorem 4.4
we obtain the following Theorem 5.2, stating that the mirtiensional matching distance
furnishes a lower bound for the natural pseudo-distance.

Theorem 5.2. Let X, Y be two triangulable spaces endowed with two continuous func-
tions@: X — R", ¢ : Y — R". Then

Dinaten(B5 85) < 6 (X,9), (v, 9)) .

Proof. We follow the same proof line used in [16] foth homology. IfH (X, Y) is empty
our statement is trivially true. Let us assuié.X, Y') # () and take any homeomorphism
h € H(X,Y). We observe that; = S ,. Moreover, for each homeomorphisim by
applying the Multidimensional Stability Theorem 4.4, wevda

—

Dmatch(ﬁcﬁa 61[;) - Dmatch(6g57 61/70}1) S gle%?{ ”‘5(1;) - ¢<h<x>)”00

Since this is true for any homeomorphisnbetweenX andY’, it immediately follows
that Dynaren (5. B) < 3 (X, 9), (V.) ). =

We point out that, taking the maximum over all homology degr& heorem 5.2 yields
a lower bound that improves the one given in [16].

We recall that the natural pseudo-distance, involving@digible homeomorphisms be-
tween two triangulable spaces, is quite difficult to comptiteeorem 5.2 could represent
a useful and simple tool to estimate this metric.
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A Appendix

The next example shows that the PBNs function is not rightinaous in the variable when singular
or simplicial homologies are considered insteadCetth homology. We recall that a case concerning the
right-continuity in the variable: has been described in Example 2.6.

Example A.1. Let S C R? be a sphere parameterized by polar coordinétes), -5 <6< Fand
¢ € [0, 27). For everyp € [0, 2), consider orf the pathsyj : (—5,0) — Sandy} : (0,5) — S defined
by setting, fori = 1,2, v4(0) = (¢', ¢’) with §' = 0 and¢’ = (¢ + cot §) mod 27. We observe that each
point of the setS* = {(6,¢) € S : 6 # 0A|0| # 5} belongs to the image of one and only one pagh
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D(S,0),0 UA A%

...................... ‘_2__;
------- S(P) = o(Q)
(b)

Figure 4:(a) Two of the paths covering the northern hemisphere congidarExample A.1(b) The Oth
PBNs of the functionp. On the discontinuity points highlighted in bold red, the 8BNs computed using
singular homology takes a value equal to 2, while usdegh homology, the value is equal to 1, showing
the right-continuity in the variable.

Such curves approach more and more a pole of the sphere oideransl the equator, winding an infinite
number of times, on the other side (see, for instance, inr€igya), the pathsﬂg and~2, lying in the
2

northern hemisphere).
Then define the>> function o* : S* — R that takes each poinP? = 73(6) € 5* to the value

exp <92(ﬂ1_|9)2> sin(¢). Now extendy* to aC* functiony : S — R in the only way possible. In

plain words, this function draws a ridge forc (0, 7), and a valley forp € (m,27). Moreover, observe

that the points® = (% 37”) andQ = -4 37”) of the sphere are the unigue local minimum pointgof

Let us now consider théth PBNs ofip. Its graph is depicted in Figure(d). The pointsP and@ belong
to the same arcwise connected component of the lower levél(se< ¢) for everye > 0, whereas they
do not fore = 0, since the paths% (¢ = 1, 2) are an “obstruction” to constructing a continuous patimfro

P to Q. Hence, the singular PBN$, for 0th homology is not right-continuous in the second variabble a
v = 0, for anyu with min ¢ < u < 0.
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