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Abstract 

This paper analyses financial distress among Italian households using the longitudinal component of 

the Bank of Italy Survey on Household Income and Wealth (SHIW) for the period 1998-2006. It aims to 

test whether the probability of experiencing financial difficulties is persistent over time.  

First we review the methodologies for estimating dynamic nonlinear panel data models, drawing 

attention to the problems to be dealt with to obtain consistent estimators. Specific attention is given to 

the initial condition problem introduced by the presence of the lagged dependent variable in the set of 

explanatory variables.  

Second we provide an in-depth discussion of the alternative approaches proposed in the literature - 

subjective/qualitative versus quantitative indicators - to identify households in financial distress. We 

define a quantitative measure of financial distress based on the distribution of net wealth.  

Finally we apply dynamic probit models to test for true state dependence in financial distress. The 

estimation uses four different methods: the pooled probit; the random effects probit with exogenous 

initial conditions; the Heckman model; and the more recent Wooldridge model. The results of all the 

estimators confirm the null hypothesis of true state dependence and show that, in line with the 

literature, less sophisticated models, namely pooled and exogenous models, tend to over-estimate this 

persistence.  
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1 Introduction 

Many households are likely to experience periods of temporary financial stress over the 

years, and will overcome them with varying degrees of difficulty. Periods of financial stress 

become more relevant when the financial difficulties persist over time. This paper focuses on 

households in financial distress and estimates the relevance of persistence over time of 

these situations.  

In order to select households in financial distress, we need to define the character of their 

financial situations, and a threshold above which distress is considered to apply. There are 

two approaches in the literature. The first exploits subjective indicators of financial and 

economic stress derived from a number of household surveys. These indicators, where 

available, usually assess indebtedness problems and perceived financial hardship. The 

second approach exploits quantitative information, such as amounts of debt and wealth 

collected via survey questionnaires, to build measures of financial distress. Neither method is 

problem free: the former may be affected by low level of reliability in relation to responses, 

and corresponding misclassification problems; the latter is at odds with finding and treating 

quantitative measures to define an appropriate and reasonable criterion on which to split 

households into those with and those without financial difficulties. 

This paper is in line with the second approach and follows the suggestions of Brown and 

Taylor (2008), which define financial pressure as the difference between total assets – 

financial and real – and liabilities: households with negative net wealth holdings are classified 

as being in financial distress. However this setting is not entirely satisfactory because 

positive amounts of total net wealth may hide a risky situation in the sub-balance of financial 

assets and liabilities. Therefore in our framework and definition of households in distress we 

include households with positive (even if small) net wealth holdings.  

The methodology used in this paper is the estimation of dynamic nonlinear panel data 

models, where the coefficient of interest is the coefficient of the lagged dependent variable. 

Estimation of a dynamic model is aimed at distinguishing between true state dependence – 

the impact of the lagged dependent variable on the dependent variable, and spurious state 

dependence - caused by the presence of time-invariant unobserved heterogeneity. This 

requires resolution of the so-called initial conditions problem, which arises from the fact that 

the observed start of the stochastic process – period t0, the first available observation – does 

not coincide with the true start of the process. It follows that the dependent variable at period 

t0 cannot generally be considered to be an exogenous variable that gives rise to the process. 

We use the Heckman (1981b) as the standard parametric estimator for the probit model. We 

describe the econometric background to the estimation of panel data dynamic probit models, 
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focusing first on Heckman’s seminal work and then on developments proposed in the 

literature to remove, or make tractable, the computational difficulties of maximising the 

likelihood function implied by the Heckman method.  

The empirical application uses the longitudinal component of the Bank of Italy Survey of 

Household Income and Wealth (SHIW) for the period 1998-2006, and estimates a range of 

dynamic probit models to test for the presence of true state dependence in relation to 

experiencing financial distress.  

The remainder of the paper is organised as follows. Section 2 reviews the econometric 

approaches dealing with the estimation of dynamic, nonlinear, panel data models. It starts 

with the solution proposed in the seminal work by Heckman (1981a; 1981b) which solves the 

problem caused by the non-exogeneity of the initial conditions by maximising the likelihood 

function which allows for cross-correlation between the main and the initial period equations. 

Its computational cost has led researchers searching for simplified solutions to its 

implementation, among which Orme (2001) and Arulampalam and Stewart (2009). An 

alternative method is that proposed by Wooldridge (2005), who suggests an alternative 

conditional maximum likelihood estimator enabling the estimation of a random effects probit 

model that includes the explanatory variables as well as the lagged dependent variable, and 

the initial values and group means of the explanatory variables. The section also reviews the 

empirical literature, which covers a wide range of research areas, dominated by labour 

market studies; we focus on a representative selection that emphasises the most recent 

developments in the Heckman model estimation. 

Section 3 reviews the small number of studies dealing with the determinants of household 

financial distress, and discusses the choice of the dependent variable used and the choice of 

explanatory variables.  

Section 4 presents the criterion established in this paper for defining households in financial 

distress. This represents a contribution to the literature and is based on net wealth holdings. 

Households are considered to be under financial stress if they have negative net wealth 

holdings and if the combination of their real wealth and net financial balance (the difference 

between financial assets and liabilities) is below a certain threshold. This threshold is defined 

on the basis of net wealth distribution. This section presents the descriptive statistics for the 

dependent and exogenous variables commonly used in the literature on household wealth 

and debt.  

Section 5 presents the results of the Heckman model estimations of the longitudinal 

component of the SHIW over the period 1998-2006. By taking account of both true state 

dependence and unobserved heterogeneity, the estimation methodology in this paper 
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advances the existing empirical literature that uses Italian data to analyse the financial 

conditions of Italian households. The empirical analysis tests for true state dependence and 

identifies the factors that explain the probability of experiencing financial distress. Among 

these we include household-level variables, such as income, age, occupational status and 

other indicators of the “ability to pay”, and aggregate-level variables, such as the 

unemployment rate and house prices. This section also proposes some alternative 

estimation strategies: the pooled probit, the exogenous initial conditions random effects 

probit, and the Wooldridge models. Comparisons among these methodologies confirm the 

results of similar studies, with the exception of the coefficient of the lagged dependent 

variable obtained using the Wooldridge method, which shows a wider gap with the equivalent 

Heckman’s coefficient than is reported in the literature. Section 6 presents the conclusions. 

All methods accept the null hypothesis that the lagged dependent variable is significantly 

different from zero, meaning that amongst Italian households the probability of experiencing 

financial distress is persistent over time and that movement along the net wealth distribution 

is sluggish. In line with the results of other studies, the state dependence coefficient obtained 

by assuming exogenous initial conditions is higher than the corresponding coefficient 

obtained by assuming the existence of some kind correlation between the initial and other 

values of the dependent variable, such as in the Heckman and Wooldridge methods.  

2  The dynamic probit model and estimation methods 

To model financial distress we use dynamic panel probit specifications on both unbalanced 

and balanced samples which include previous states of financial distress. The inclusion of a 

lagged dependent variable among the covariates allows us to test for the presence of state 

dependence in the experience of financial distress. One of the main issues in estimating 

dynamic panel data models consists of solving the initial conditions problem, which arises 

because the start of the observation period does not coincide with the start of the stochastic 

process that generates the observations of households in financial distress. To proceed to 

the estimation we need also to take account of unobserved heterogeneity which causes 

spurious state dependence.  

Our dynamic probit model can be written as: 

]0'[ 1
* >++== − ititititit yxyy εγβ1  i = 1,..., N     t = 1,...,T   (1) 

where yit is the dichotomous dependent variable expressing distress/no distress, 1(.) is the 

indicator variable, *
ity  the latent variable, xit the explanatory variables, yit-1 the previous state 
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of the endogenous variable and itε  is the error term. The error term is decomposed as 

follows:  

itiit u+= αε   

where iα  is unobservable individual heterogeneity and )1,0(Nu it ≈  is the idiosyncratic term. 

As in any panel data model, assumptions are required about iα . In a fixed effects 

specification individual effects iα  are allowed to be correlated with the explanatory variables. 

This setting does not require specification of a functional distribution of iα , as they are 

treated as parameters to be estimated together with the vector θ . However, this approach 

suffers from the so-called “incidental parameter problem” which, with a fixed T, causes 

inconsistency in the estimators of θ  (Wooldridge, 2005). Honoré (1993) and Honoré and 

Kyriazidou (2000) suggest semi-parametric models that do not require specification of the 

distribution of individual effects. However, Wooldridge (2005) remarks that this requires 

strongly exogenous explanatory variables to resolve the identification problem.1 For this 

reason the literature generally assumes a random effects specification of the model. The 

standard random effects specification assumes ),0( 2
ασα iidNi ≈  and zero correlation 

between individual effects and the exogenous variables, that is, 0),( =iti xcorr α . Finally zero 

serial correlation is assumed in the idiosyncratic term uit and, according to the mainstream 

literature, we assume “equicorrelation” of the composite error term itε :  

 
22

2

),(
u

isitcorr
σσ

σεερ
α

α

+
==   t, s = 1,..., T; st ≠  

In a probit model the conditional distribution of yit is given by (Akay, 2009: 8):  

 { })'();,,|( 11 iitititiitititit yxDyxyf ασγβα α++Φ=Θ −−      (2) 

where Dit = (2yit - 1) and Φ  is the standard normal distribution function. The joint density of yit 

given (yi0 = y0, xi = x, αα =i ) is ∏
=

−

T

t
itttt yxyf

1
1 ),,,|( θα . In a random effects specification – 

where α  is uncorrelated with x – the individual effects iα  follow the probability distribution 

)( ig α . In this case, the contribution of each individual i to the likelihood is (Verbeek, 2000: 

341):  

                                                 
1 Moreover for neither of their estimators can average partial effects be computed, making it unfeasible to quantify 
the impact of a change in the explanatory variables on the dependent variable. 
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∫
+∞

∞−

ΘΘ=Θ iiiiiiiTiiTiiTiiTi dgxyfxxyyfxxyyf αααα )(),,|(),,,...,|,...,(),,...,|,...,( 0001100  

∫ ∏
+∞

∞− =

Θ







Θ= iiiii

T

t
iitiit dgxyfxyyf αααα )(),,|(),,,|( 000

1
0   (3) 

and the corresponding log-likelihood function is:  

 ∑ ∫ ∏
=

+∞

∞− = 










Θ








Θ=

N

i
iiiii

T

t
iitiit dgxyfxyyfL

1
000

1
0 )(),,|(),,,|(lnln αααα    (4) 

We are now at core of a dynamic, nonlinear, panel data model. Inclusion of the previous 

state to allow for state dependence requires some assumptions about the generation of the 

initial observations yi0. The estimators proposed in the literature for estimating the lagged-

variable coefficient γ  differ in terms of how the initial condition problem is dealt with.  

The simplest case treats the initial observations as exogenous, that is the distribution of yi0 

does not depend on iα . The likelihood function (4), therefore, can be conditioned only on the 

value yi0, ignoring the term ),|( 000 Θii xyf . The likelihood function thus consists of two 

independent terms, one relative to the initial period, the other to subsequent periods. It 

follows that the joint probability at t = 1,...,T is maximised independent of the probability at 

time t = 0. For more realistic cases of endogenous initial conditions, methods have been 

proposed to integrate out unobserved heterogeneity from the likelihood function.  

2.1  The Heckman model  

Heckman (1981b) was the first to take explicit account of the initial conditions problem, 

assuming endogenous variables with a probability distribution conditional on the exogenous 

variables and unobserved heterogeneity. Heckman’s is a simultaneous two stage approach. 

The first stage approximates the initial conditions by estimating a reduced form equation in 

which the explanatory variables are a set of instrumental variables.  

Recall eq. (1), our dynamic random effects probit specification (in Heckman’s terminology the 

“structural model”):  

]0'[ 1
* >++== − ititititit yxyy εγβ1   i = 1,..., N     t = 1,...,T  (5) 

Let the first period equation (the “reduced form equation”) be:  

 ]0''[ 00
*
00 >++=+== iiiiiii uzzyy ϑαπεπ1      (6) 
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where zi is a vector of the exogenous variables, such as xi0,and the additional variables can 

be regarded as instruments (Akay, 2009; Arulampalam and Stewart, 2009). 0iε  is correlated 

with iα , but uncorrelated with ui0. ui0 is independent of iα and the distributions are 

respectively N(0,1) and N(0, 2
ασ ). A test of 0=ϑ  provides a test for exogeneity of the initial 

condition.  

The conditional distribution of the structural model is the following: 

{ })();,,|( 11 iitititiitititit yxDxyyf ασγβα α++Φ=Θ −−       (7) 

with Dit = (2yi t-1) and ],,[ ασγβ=Θ .  

Similarly, the first period conditional distribution can be written as:  

 { })(),;,|( 00000 iiiiiii zDzyf αϑσπϑπα α+Φ=       (8) 

where Di0 = (2yi0-1).  

Simultaneous estimation of the parameters of the structural and reduced models (7) and (8) 

can be achieved by substituting them into the log-likelihood function (4) and without imposing 

any restrictions (Heckman, 1981b; Hsiao, 2003). In the equi-correlated probit specification, 

the likelihood function for the individual i is thus:  

 [ ] [ ]∫ ∏
+∞

∞− =
−









−++Φ−+Φ= ii

T

t
itiititiiii dgyyxyzL αααγβϑαπ )()12)('()12)('(

1
10  (9) 

where )(αg  is the probability density of unobserved heterogeneity and Φ  is the standard 

normal cumulative function.  

The main problem in the Heckman model is the computational burden of maximising the 

likelihood function, which requires simultaneous estimation of two composite functions.2 

Arulampalam and Stewart (2009) propose a shortcut implementation of Heckman’s estimator 

of the dynamic probit and other nonlinear panel data models using standard software. It 

involves the creation of a set of T+1 dummy variables, such that 1)( =τ
itd  if the observation 

belongs to the initial period ( τ=t ), 0)( =τ
itd  otherwise ( τ≠t ). Under the assumption of equi-

correlation, the conditional probability deriving from equations (5) and (6) is:  

                                                 
2  The integral in (8) can be computed by Gauss-Hermite quadrature (Butler and Moffit, 1982), based on 

approximation of the Gaussian integral ∑∫
=

+∞

∞−

− ≅
M

m
mm

v vhwdvvhe
1

)()(
2

, where v1, v2,..., vm are the roots of the 

Hermite polynomial H(v), M is the number of evaluation points in the approximation process and wm is the 
corresponding weight of vm. For more detail on the formulation of the likelihood function in the Heckman and 
Wooldridge probit models see the appendix in Akay (2009). An application of the probit model in Stata is 
developed in Stewart (2006; 2007).  



 9 

[ ] == − iiititit zxyy α,,,|1Pr 1  

])1('')1()1([ )0()0()0()0(
1

)0(
iititiititititit ddzdxdyd αϑπβγ +−++−+−Φ= −    (10) 

Equation (9) is equivalent to a standard random effects specification, where 

iitit dd αϑ )1( )0()0( +−  is unobserved heterogeneity with a heteroskedastic factor loading. The 

authors suggest estimating this model using the routine “gllamm” in Stata, that allows for this 

form of heteroskedasticity.3  

2.2 The Orme model  

Orme (2001) suggests a two-step procedure to address the initial condition problem that is 

locally valid when the correlation between yi0 and yit ( ρ ) tends to zero. Orme uses an 

approximation to substitute iα  with another unobservable component that is uncorrelated 

with the initial observation. By assuming bivariate normality of the composite error term 0iε  

and unobserved heterogeneity iα , that is ),,,0,0(),( 0 ρσσαε αεBVNii ≈ , individual effects can 

be defined as: 

 iii w)1( 2
0 ρσε

σ
σρα α

ε

α −+=  

with )1,0(Nw i ≈  and orthogonal to 0iε  by construction and distributed as N(0,1). The 

structural model thus becomes:  

 itiiiitit uwxyy +







−+++= − )1('* 2

01 ρσε
σ
σρβγ α

ε

α      (11) 

which encompasses two time-invariant components of unobserved heterogeneity, 0iε  and wi. 

Orme suggests estimating the first period equation (6) to compute its generalised residual:  

 ]/*')12[()/*'()12()|( 0000 εεε σπσπϕσε iiiiiii zyzyyEe −Φ−=≡    (12) 

and use it as an explanatory variable in (11), that is ii e≡0ε . Under the given distributional 

assumptions, Orme shows that this method approximates Heckman’s solution as ρ  

approximates zero and can perform well also when ρ  is not small.  

                                                 
3 The routine gllamm is usually applied to multilevel models, but can be applied to panel data models as well. 
Longitudinal data are two-dimensional, with a cross-section and a temporal dimension. In a random effects 
specification (Pudney, 2008: 23), a longitudinal dataset “is a special case of the multilevel structure, with time 
observations (level 1) clustered within individuals (level 2).”  
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2.3  The Wooldridge model  

Wooldridge (2005) proposes a conditional maximum likelihood estimator as an alternative to 

the Heckman model, suggesting that the distribution of unobserved heterogeneity should be 

modelled conditional on the initial value and any exogenous explanatory variables, in order to 

integrate out individual effects iα . Attention is directed away from joint density f(yi0,...,yiT | xi) 

in Heckman’s approach and towards conditional density f(yi1,...,yiT | yi0,xi). The contribution of 

each individual i to the likelihood is thus:  

∫
+∞

∞−

= ααα dyhxyyyfyyyf TT )|(),,|,...,()|,...,( 00101      (13) 

where )|( 0yh α  is the density of α  conditional on initial observation y0. While Heckman 

requires approximation of the joint density of y0 and α , Wooldridge requires only an 

approximation of conditional density )|( 0yh α . Moreover, as noted in Arulampalam and 

Stewart (2009: 666), while Wooldridge requires normality for the conditional distribution 

0| ii yα , Heckman requires bivariate normality for the joint distribution ),( 0 iiu α .  

Wooldridge specifies a correlated random effects model in line with the Mundlak-

Chamberlain approach (Mundlak, 1978; Chamberlain, 1984), which relaxes zero-correlation 

of the random effects model by assuming the following specification of unobserved individual 

effects:  

iii axa ++= ξα '0           (14) 

where ),0( 2
ai iidNa σ≈  and is independent of xit and uit for each i and t, and where ix  are the 

means over time (group-means) of the explanatory variables4. Wooldridge suggests a 

different specification for the individual effects iα , which includes the initial values of the 

endogenous variable yi0, in addition to the group means of the explanatory variables ix . 

Unobserved heterogeneity is thus modelled as:  

 iiii axy +++= ξξξα 010          (15) 

The dynamic correlated random effects probit model can be written as:  

 )0''( 0101 >++++++= − itiiiititit uaxyyxy ξξξγβ1     (16) 

                                                 
4 According to this formulation the random effects model can be renamed the “correlated random effects model”.  
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where ai is the “new” unobserved heterogeneity and uit is the idiosyncratic term. The model 

assumes the distribution of α  given yi0 and xi be ),(,| 2
0100 aiiiii xyNxy σξξξα ++≈  and the 

explanatory variables ),,,( 01 iiititit xyyxz −≡ .  

It follows that the likelihood function of individual i is specified as:  

 [ ]∫ ∏
+∞

∞− =
−









−++++Φ= ii

T

t
itiiiititi daagyaxyyxL )(*)12)('(

1
011 ξξγβ    (17) 

where g*(ai) is the normal density of the “new” unobserved heterogeneity ai in equation (15). 

The likelihood function (17) is equivalent to the likelihood function of a static random effects 

probit model where the explanatory variables are ),,,( 01 iiititit xyyxz −≡  and the maximum 

likelihood estimator can be obtained via standard random effects probit estimation.   

2.4  Related literature  

The application of the methodology proposed by Heckman (1981a; 1981b) is infrequent, due 

to its computational complexity. The empirical literature evolved towards computationally less 

demanding solutions, e.g. Orme (2001), or towards simulated ML methods such as Hyslop 

(1999). Orme (2001) suggests a first computational simplification of the Heckman estimator, 

defined as a “two-step pseudo-ML estimator”, which has been widely utilised in subsequent 

applications. Examples are the papers by Arulampalam et al. (2000) on unemployment 

dynamics, Henley (2004) on self-employment dynamics and Requena-Silvente (2005) on 

small and medium enterprises in the UK. Other examples in the area of welfare and social 

benefits are the papers by Chen and Enstrom-Host (2005) and Andrèn (2007) for Sweden, 

by Lee and Oguzoglu (2007) for Australia and by Cappellari and Jenkins (2009) for the UK. 

Propper (2000) analyses demand for private healthcare in the UK. May and Tudela (2005) 

estimate a dynamic probit model that accounts for the correlation between individual effects 

in the initial condition equation and in the structural equation, and for serial correlation in the 

error term (more details of this application are discussed in Section 3).  

Following the circulation of a working paper by Wooldridge (2002b) and its publication 

(Wooldridge, 2005), the implementation of dynamic nonlinear models has become widely 

applicable. The author proposes a conditional ML estimator, “finding the distribution 

conditional on the initial value and the observed history of strictly exogenous explanatory 

variables”, rather than attempting “to obtain the joint distribution of all outcomes of the 

endogenous variables” (Wooldridge, 2005: 39). The estimator is implementable using 

standard software for random effects probit models. Contoyannis et al. (2004) apply the 

Wooldridge method to a dynamic ordered probit on health status self-assessment and find 

strong, true state dependence. They estimate the model also on an unbalanced panel 
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dataset and, after accounting for attrition through the inverse probability weighted estimator 

(Wooldridge, 2002a), show that attrition does not cause bias in the estimates.  

Alessie et al. (2004) and Clark and Etilè (2006) move away from the univariate context to 

tackle bivariate models. The former, of specific interest in our research area, applies the 

Heckman model to the interaction between mutual funds and stocks. The main results are a 

positive correlation between ownership of one type of asset in one period, and ownership of 

the other in the subsequent period explained by correlated unobserved heterogeneity, and 

negative state dependence of lagged ownership of stocks on ownership of mutual funds. 

Clark and Etilé apply the Wooldridge method to examine interactions between spouses in 

terms of cigarette smoking (a univariate application relating to the smoking behaviour of 

single mothers can be found in Dorsett, 1999). Arulampalam and Bhalotra (2006) implement 

the Heckman methodology to test state dependence in infant mortality in India via a logit 

model. Benito and Young (2003) and more recently Loudermilk (2007), analyse firms’ 

dividends, the former via the Heckman model on a Tobit specification, the latter via 

Wooldridge’s model on a probit specification. At the macroeconomic level, Chauvin and 

Kraay (2007) apply the Wooldridge method to the probability that a low-income country will 

receive debt relief if it has been a recipient of it in the past.  

Stewart (2007) started a line of research on comparisons among methods. Much of the 

evidence in the literature indicates that the Heckman, Orme, and Wooldridge methods 

produce comparable results. Stewart (2007) tests for true state dependence in 

unemployment and the role played by spells of low-wage employment, by presenting and 

comparing the estimates from the Heckman and the Wooldridge methods to assess the 

robustness of results.5 Both methods produce similar results. Similarly, Sousounis (2008) 

finds equivalent results when applying the Heckman, Wooldridge and Orme methods to 

study state dependence in participation in work-related training programmes. In 2008, 

Arulampalam and Stewart circulated a working paper that was published in 2009, in which 

they provided a simplified implementation of the Heckman method, using established 

routines in statistical software such as Stata and Limdep.6 They study the unemployment 

dynamics of male workers in the UK and compare the results for a range of estimators: 

exogenous initial conditions, Heckman, Orme, and Wooldridge. Akay (2009) studies the 

dynamics of the female labour market in Sweden by implementing a probit model on the 

probability of participation and a Tobit model on the hours worked following the Heckman, 

Orme and Wooldridge methodologies. Arulampalam and Stewart (2009) and Akay (2009) 

                                                 
5 Stewart (2006) implements the Stata program “redprob” to estimate a dynamic probit model using the Heckman 
approach.     
6 E.g., using Stata the Heckman model can be estimated with the “gllamm” procedure (Rabe-Hesketh and 
Skrondal, 2005; Grilli and Rampichini, 2005), although its implementation is not straightforward.  
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conducted Monte Carlo experiments to asses the performance of the various methodologies 

on finite samples. The results of the simulations show that when one or both longitudinal 

dimensions (T and N) are relatively large, 6≥T  and 800≥N , the bias is relatively small for 

all three estimators, whereas for smaller sample sizes, the bias increases although none of 

the estimators dominates (Arulampalam and Stewart, 2009). According to Akay (2009), the 

Wooldridge method performs well for panels longer than five periods, and less well for 

shorter panels where the Heckman method is preferred. For lengths of 10-15 periods the 

three estimators produce equivalent results, with the bias diminishing with increasing lengths.  

The shortcut suggested by Arulampalam and Stewart (2009) is applied by Narazani (2009) to 

a bivariate probit model on the interrelationship between the employment and capital 

adjustment decisions of Italian firms, using the routine “gllamm” in Stata.  

An interesting alternative approach is that developed by Pudney (2008) to model the 

dynamics of individuals’ subjective assessments of their financial wellbeing, in a short panel. 

The originality of Pudney’s approach is in shifting the emphasis from the observed lagged 

dependent variable yit-1 to its latent counterpart y*it-1. He argues that state dependence 

models (SD) were developed primarily to explain labour market dynamics, where yit = 0 and 

yit = 1 indicate employment and unemployment at time t respectively. In this context the 

nature of the data is intrinsically discrete and the latent variable y*it represents an artificial 

construct; Pudney therefore sees no reason why the lagged latent variable y*it-1 should 

appear among the covariates of the model. He argues that the concepts of wellbeing and 

living conditions are not inherently discrete and that the “true” behaviour is represented by 

the latent variable y*it. Consequently, in these cases, y*it-1, rather than yit-1, should incorporate 

the feedback effect on the variable at time t. Pudney’s model can be defined therefore as 

latent autoregressive (LAR) and its estimation is carried out via simulated maximum 

likelihood maximisation in GAUSS. Compared to the SD models, the LAR model shows quite 

different dynamic properties which translate into higher state dependence.   

3 Empirical literature on households’ financial con ditions  

The strand of the literature focusing on the analysis of subjective measures of financial 

distress relates mainly to questions about debt burdens, and exploits information contained 

in the British Household Panel Survey (BHPS). In what is perhaps the first work on 

households’ financial difficulties, Boheim and Taylor (2000) assess the incidence of housing 

finance problems by building a dichotomic variable that takes the value 1 if the interviewee 

answers “yes” to at least one of the following questions: “Did you have problems paying for 

your housing over the last 12 months?”, “Over the last 12 months were you ever 2 months or 
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more behind with your rent/mortgage payments?”, and “Did you have to borrow to pay the 

rent/mortgage?”. The variable is zero otherwise. Boheim and Taylor estimate a dynamic 

probit model on an unbalanced panel dataset assuming exogeneity of initial conditions. The 

explanatory variables relate to the socio-economic characteristics of households and 

household-heads (income, equity value, mortgage value), and the aggregate variables 

(regional unemployment rate and interest rates). They include a variable for “financial 

surprise” following a suggestion made by Boheim and Ermish (2001) in a different context.  

May and Tudela (2005), based on a different time span, exploit the answers to the first of the 

questions reported above to estimate a dynamic probit model, following the Orme (2001) 

methodology. Among the explanatory variables, in addition to the past value of the 

dependent variable, they include three dummies for the loan-to-value ratio, two dummies for 

the cost of servicing mortgage debt and its relative incidence on income, dummies for 

whether the household has any savings, whether the household head has moved into 

unemployment or has any health-related problems, and a set of regional dummies. Due to 

the nature of the dependent variable (housing-related payment problems over the previous 

12 months) they lag all variables by one period to identify individual characteristics before the 

household experienced difficulties. Macroeconomic conditions are accounted for by 

introducing house prices growth rates at the regional level, the regional unemployment rate 

and effective mortgage interest rates, only this last is statistically significant. Amongst the 

instruments of the initial conditions equation, the authors include a dummy for house 

purchase before 1989, dummies for negative equity value and socio-economic 

characteristics such as sex, job qualification, ethnicity, number of dependents (according to 

May and Tudela (2005: 26) “these variables were at some stage included in the main 

regression but were dropped because they were not significant”). After controlling for 

unobserved heterogeneity and autocorrelated errors,7 there is evidence of persistence in 

mortgage payment problems: 34 per cent of total variance is explained by unobserved 

heterogeneity compared to Boheim and Taylor’s (2000) finding of 19 percent. A general 

result of these models is that, amongst British households, the probability of experiencing 

financial problems is persistent over time.  

With a static ordered probit model based on the 1995 and 2000 waves of the BHPS, del Rio 

and Young (2008) estimate that the determinants of unsecured debt (consisting of overdrafts, 

credit card debt and personal loans) are the unsecured debt-income ratio, the mortgage 

income gearing, financial wealth, health, ethnicity and marital status. The probability of 

reporting a high debt burden increases for high debt-income households who have also 

experienced an adverse financial surprise.  
                                                 
7 However, a likelihood ratio test indicated that autocorrelation is not statistically significant.  
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Pudney (2008) introduces a dynamic autoregressive latent model to estimate an ordered 

probit where the dependent variable is based on the responses to the question: “How well 

would you say you are managing financially these days?” Of interest is the higher 

persistence found using the latent model compared to the state dependence model, implying 

a longer duration of the adjustment process.  

For Italy, only Boeri and Brandolini (2005) have tackled the issue of perceived financial 

distress and discontent. They research the factors underlying dissatisfaction in Italian 

households, by looking at the “horizontal distribution” of income among socio-demographic 

groups. Following an indication obtained from the European Community Household Panel 

(ECHP), according to which the perceived ability of Italian households to make ends meet 

deteriorated between 1996 and 2001, they exploit information from the European 

Commission Business and Consumer (BSC) survey, Eurobarometer and the SHIW to study 

trends in income growth and poverty measures in Italy. Eurobarometer and the BSC provide 

similar indications to the ECHP, with households reporting a more acute deterioration in their 

financial situation between 2000 and 2002. The question is whether this evidence is a result 

of worse overall economic conditions, and especially less equal income distribution; 

however, it is not possible to verify this because there is counterintuitive evidence of 

decreasing inequality from 1993 to 2002. The authors note that this approach focuses on the 

“vertical” distribution between rich and poor, in which inequality indices discriminate among 

households only in terms of income levels. They therefore analyse the “horizontal” allocation 

of income across socio-demographic groups. This reveals important changes in the income 

distribution among groups defined by occupational status of the household head. These 

changes also have an impact on group-specific poverty ratios and Gini indices.  

Work on financial hardship using quantitative indicators is very limited, and is mostly 

descriptive rather than econometric analysis. Cox et al. (2002) and May et al. (2004) suggest 

a series of indicators to identify households suffering financial distress, which include flow 

and stock variables. They propose monthly income, savings (income minus expenditure) and 

the income gearing ratio as flow variables, and unsecured debt and mortgage commitment to 

income ratios as stock variables. The ratio between total assets (real and financial) and 

liabilities are other useful indicators. Barwell et al. (2006) address the issue more explicitly by 

suggesting analysis of the net worth distribution, emphasizing that to examine households’ 

financial conditions in more depth requires more than analysis of liabilities and also requires 

account to be taken of the levels and composition of assets.  

To our knowledge the only econometric analysis using quantitative indicators to identify 

households in financial distress is by Brown and Taylor (2008) and uses a single cross 

section probit model for three countries, Great Britain (GB), Germany, and the United States 
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(US). It defines households in distress as those with negative wealth holdings. The model 

uses the standard microeconomic variables (age, education, income, households 

characteristics, etc.). The probability of negative net worth decreases monotonically with age 

for all three countries, more so in GB and the US than Germany, and decreases with income 

in all countries. Only in GB does the probability of negative wealth decrease with education. 

Following the suggestions in Cox et al. (2002) to look at some additional quantitative 

indicators of financial pressure, Brown and Taylor estimate a series of ordinary least squares 

(OLS) regressions in which the dependent variable in turn is the debt/income ratio, the 

savings/income ratio, and the cost of servicing debt to income. In GB and the US, unlike 

Germany, the unsecured debt to income ratio is higher for the younger age classes than for 

the older ones. In the two former countries the difference between the effects of being in the 

bottom income quartile and being in the top income quartile is not statistically significant. In 

the opinion of the authors, these two results are of concern as younger families might be 

unable to respond to adverse economic shocks.  

This review of the literature seems from a methodological point of view to indicate that: (a) 

the recent innovations by Orme, Wooldridge and Arulampalam and Stewart have made the 

estimation of nonlinear dynamic panel data models more feasible; (b) the various estimation 

methods produce similar results when tested with Monte Carlo simulations and applied to 

real data, with values of the state dependence coefficient lower than the exogenous case. In 

terms of the definition of the dependent variable measuring financial distress, most of the 

literature is based on qualitative indicators related to perceived difficulties, one exception 

being the study by Brown and Taylor (2008).  

4 The data and variables  

To test for true state dependence of financial distress in Italian households, we use the Bank 

of Italy SHIW for the period 1998-2006, a total of six waves.  

The survey collects detailed data on demographics, household consumption, income and 

balance sheet items. The first survey was in the mid-1960s and over time sample size and 

design, sampling methodology and questionnaire structure have evolved: consistent 

information over time is available from 1989. The survey is biannual, with the exception of a 

three-year gap between 1995 and 1998, and the number of households interviewed in each 

wave is around 8,000, providing a representative sample of the Italian resident population. 

Sampling is in two stages: municipalities in the first stage and households in the second 

stage. Municipalities are divided into 15 strata defined by 17 regions and 3 classes of 

population (more than 40,000, 20,000 to 40,000, and less than 20,000 inhabitants). 

Households are randomly selected from registry office archives. The net response rate in 
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1998 was 43.9 percent (56.9 percent in 1995) and in 2006 was 42.0 percent, considerably 

lower than in 1995, but at least an increase on the 2004 low of 36.4 percent.8  

The survey also has a panel component, which we exploit in our empirical application.9 We 

built two different longitudinal sub-samples. Sample (A) is an unbalanced panel with common 

entrance in 1998, and exits after at least three consecutive periods, with length 3≥T  and a 

total number of observations of 8,619, of which 1,911 are observations relative to 637 

households remaining in the sample for at least 3 waves, 1,328 observations of 332 

households remaining in the sample for at least 4 periods, and 5,380 observations of 1,076 

households in the sample for 5 periods. Sample (B) is a balanced panel, whose length is 

T = 5, with entries in 1998 and exits in 2006, covering 5,380 observations and 1,076 

households.  

4.1 Choice of the dependent variable  

The model to be estimated assumes a relationship between the probability of a household 

experiencing financial distress and a set of variables for economic, demographic, social and 

macroeconomic factors. The model postulates the inclusion of time-invariant individual 

effects and past values of the dependent variable. The main issue is the choice or 

construction of the variable to define a household in financial difficulty and definition of the 

set of variables that may affect or determine the state of distress. We chose a quantitative 

indicator. We have highlighted that much of the literature deals with models where the 

variable of interest is qualitative and, in most cases, is derived from responses to questions 

about perceived hardship (debt burden, ability to make ends meet, etc.). In terms of the 

Italian SHIW dataset, only since 2002 to the time of writing this draft paper in winter 2009-

2010, does the questionnaire ask about self-reported financial hardship, and only in three 

waves (2002, 2004 and 2006). This information is based on the question: “Does your 

household income allow your family to make ends meet?” (variable CONDGEN10). The use 

of this variable allows us to extend the estimation of the analogous models employed in other 

countries to the Italian case. However, the panel length is very short (only three periods) 

which makes estimation of a dynamic model unrealistic. For purely investigatory purposes, a 

dynamic random effects probit model was estimated on the balanced panel with T = 3 and 
                                                 
8 See Brandolini and Cannari (1994) and Faiella (2008) for a detailed description of sampling method, attrition and 
other measurement issues.  
9 The SHIW longitudinal component required two data corrections in order to achieve information that is 
consistent over time. The first relates to years of birth, and sex within households, where there was some 
incoherence due to changes in household composition (e.g. the household split. or the head of household left). 
Variations of this kind apply to 5 percent of households in the entire sample: we decided to split these households 
according to change in head of household. The second relates to discontinuity in presence within the sample. 
This was very rare: 0.06 percent, but, we decided, anyway to drop them from the sample.  
10 Responses are: 1. finding it very difficult, 2. finding it difficult, 3. finding it quite difficult, 4. fairly easily, 5. easily, 
6. very easily.  
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the answers recoded as y = 1 when CONDGEN equals 1, 2 or 3, and y = 0 when CONDGEN 

equals 4, 5 or 6. The explanatory variables are used for the estimation of the dynamic model 

in Section 5 (lagged dependent variable, age dummies, income quartiles, education levels, 

household composition, ownership of risky portfolio, homeownership, being indebted, 

regional house prices and unemployment rate). The likelihood ratio test confirms the null 

hypothesis of the absence of unobserved individual effects, indicating equivalence between 

the random effects and the pooled model, possibly to the low dimension of T, which reduces 

from 3 to 2 periods for the presence of the lagged dependent variable. The limited availability 

of an appropriate qualitative dependent variable is one of the reasons why this choice 

suggests the need for a quantitative indicator.  

Another reason is related to some remarks in the household debt-related literature about 

whether outstanding debt, particularly in countries such as the US and the UK, is considered 

excessive, where “excessive” means carrying the risk of default or financial hardship in the 

event that the household is exposed to unexpected adverse shocks. The literature highlights 

that the riskiness associated to debt holdings increases with the income gearing ratio, but is 

softened by the coexistence of relatively liquid real or financial assets in the household 

portfolio. It follows that quantitative indicators of financial distress derive from a combination 

of both factors, assets and liabilities. It should be stressed that, in terms of the income 

gearing ratio, unlike in the case of surveys of other countries such as the UK, the SHIW does 

not provide very reliable information because of the very high number of missing values. In 

terms of the coexistence of debt and real and financial assets, household net worth can be 

defined as the difference between assets and liabilities. If a household taking out a loan has 

some financial assets which are either of no or lower value in absolute terms than the 

outstanding debt, then their net financial balance will be negative; if the real wealth value is 

smaller (in absolute terms) than the negative net financial balance, then the household owns 

“negative net worth”; “null net worth” corresponds to a situation where real assets values 

equal the negative net financial balance, in absolute terms. Null net worth can be determined 

by any value of debt and real assets, since it simply requires two factors to be cancelled out. 

Fig. 1 depicts the possible combinations of real wealth holdings (positive x-axis) and financial 

balance (y-axis). The negative y-axis describes a situation of negative net balance and null 

real wealth; the 45° line splitting the lower-right  quadrant describes a situation on null wealth 

(W = 0); the area below the W=0 line encompasses all cases of negative net worth.  

Two issues arise when we try to define households in “financial distress”. The first is whether 

holding negative net wealth is a sufficient condition to identify a situation of financial stress. 

The second is whether positive or null net wealth values can be associated with financial 

vulnerability. In terms of Fig. 1 we can identify financially vulnerable households by:  
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(a) a positive answer to the first question, thus including all individuals on the negative y-axis 

and in the area underneath the 45° line;  

(b) a positive answer to the second question. This implies also including individuals with a 

“small” amount of positive net worth, given by the algebraic sum of positive net worth and 

negative financial balance, or by the sum of small values of real wealth and small values 

of positive financial balance.  

For option (a), it is clear that negative net wealth 

holdings define a situation of financial fragility. 

However, it requires some thought about 

whether a “small” entity of negative worth can 

determine a critical situation, without examining 

the associated real wealth value. It could be 

assumed that small amounts of negative worth 

are not critical if associated with high values of 

real wealth. Equally, individuals with moderate 

amounts of real wealth, but above the absolute 

value of the net financial balance and therefore 

with positive net worth, could be assumed to be 

in economic distress. These observations suggest a choice amongst a range of solutions. 

Here we consider two. The first one, defined as option (a1), identifies financial distress with 

the area below a parallel line to W = 0 and shifted upwards by a certain amount, so that it 

intersects the positive y-axis at the level WA as depicted in Fig. 1 (line W = WA). The second, 

defined as option (a2), is similar to the first option, but with an increase, in absolute terms, of 

the slope of the new line in the second quadrant in order to reduce the risk of including 

among those in difficulty, households with very high real net wealth holdings.  

For option (b), individuals in financial distress are 

those with combinations of real wealth and net 

financial balance lying in the triangle defined by 

the line W = WA and the x and y axes (dotted 

area in Fig. 1).  

We choose to follow the criteria defined by 

options (a1) and (b) to define households in 

financial distress. The choice to include 

households with positive net wealth can also be 

justified by the fact that, according to the 2006 

Fig. 1  Households in financial distress  
(area below the line W = WA) 
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Fig. 2  Net wealth distribution  
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SHIW data, only 3 percent of Italian households have negative net wealth, a largely lower 

percentage than is observed in countries such as the US, the UK and France (Sierminska et 

al., 2008).  

The choice of the threshold WA was made with reference to the net wealth distribution from 

pooling the five waves of the SHIW. The distribution is depicted in Fig. 2: it is highly 

concentrated, with the majority of households owning low or null wealth. After careful 

consideration we decided to define the threshold as the level of wealth corresponding to the 

second decile of the distribution: this value is 13,000 euro (at 2006 prices). Households in 

financial distress, therefore, are defined as those whose net worth is equal to or below 

13,000 euro. Fig. 3 is a scatter plot of real wealth and net financial balance using the SHIW 

data, corresponding to the real-data representation in Fig. 1. The distribution of net wealth of 

financially vulnerable households is depicted in Fig. 4.  

Fig. 3  Households in financial 
distress 

Fig. 4  Net wealth distribution for 
values below threshold WA 
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Tab. 1 reports the percentages for observations in financial distress, in relation to two 

possible panel data structures of the data. Both cases show very similar percentages of 

observations with net worth lower than the threshold, 15.3 percent in the unbalanced case 

and 14.9 percent in the balanced one.  

Tab. 1 Distribution of the response variable    
(percentages) 

(A) Panel T>=3 (1998) (B) Balanced panel T=5

0 1 Tot. 0 1 Tot.

1998 82.8 17.2 100 83.6 16.4 100
2000 84.0 16.0 100 84.0 16.0 100
2002 84.9 15.1 100 84.7 15.3 100
2004 86.9 13.1 100 86.7 13.3 100
2006 86.7 13.3 100 86.7 13.3 100

Tot. 84.7 15.3 100 85.1 14.9 100  
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4.2 Choice of explanatory variables  

The choice of the model covariates is based on the reduced form models for the 

determinants of household debt and financial assets (see, amongst others, Duca and 

Rosenthal,1993; Cox and Jappelli, 1993; Crook, 2001; Magri, 2007; Crook and Hochguertel, 

2007) and the literature reviewed in Section 3 on household financial distress (e.g. May and 

Tudela, 2005; Brown and Taylor, 2008; del Rio and Young, 2008). The set of explanatory 

variables includes past values of the dependent variable, age, income, education levels, 

gender, household composition, ownership of risky assets, homeownership and 

indebtedness. Aggregate trends for the economy are captured by macro-area unemployment 

rates and the regional house price index. In what follows we justify our variables selection 

and provide descriptive statistics for them, and describe how they relate to the endogenous 

variable.11  

In the literature, one of the most relevant factors is the so-called “ability to pay”, indicated 

mainly by income: the probability of experiencing financial fragility will be an inverse function 

of the income level. A low income level, if persistent over time, generates null or limited 

savings, and likely induces indebtedness to sustain household consumption. Low levels of 

savings are nearly always a sufficient condition for low wealth levels. It is reasonable to 

associate low income with small, null or negative net worth and, therefore, with a high 

probability of financial distress. Tab. 2 reports average values in terms of real income, debt, 

and real and net wealth, for each wave of the sample, for households experiencing financial 

fragility. We observe wide discrepancies in the behaviour of these variables. For instance, 

the income differential between the two groups of households (in distress/not in distress) is 1 

to 2, whilst liabilities on average are in the ratio 1 to 3, real assets 1 to 130 and net wealth 1 

to 100. Also, for households in distress, that is, with low levels of net worth, real wealth on 

average is equivalent to outstanding debt and, therefore, the positive value of net wealth is 

determined by small amounts of financial assets. For the other group of households, positive 

values of net worth are determined mainly by high and increasing over time property values. 

Finally, we observe large differentials in the dynamics of the variables. Whilst average 

income growth rates are similar for both groups of households, stock variables behave 

differently: liabilities, real assets and net worth are essentially stable over time for 

households in distress, whilst they grow considerably - and at a higher pace than income - 

for households not experiencing financial difficulties. Net wealth growth is driven by growth in 

real wealth, which is financed only partially by loans.  

                                                 
11 For illustrative purposes descriptive statistics on the links between the dependent and the exogenous variables 
refer only to the unbalanced panel dataset.  
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Tab. 2 Dependent variable, income, liabilities, assets and  wealth  
(euro 2006) 

Income Liabilities Real assets Net wealth

No distress 1998 33045 4789 205661 237023
2000 34504 4800 224829 256797
2002 35290 4807 246959 277696
2004 35879 6191 292278 321527
2006 36594 6481 309711 344979

Distress 1998 16477 1683 1994 3288
2000 17376 1471 2121 3341
2002 17035 2462 2784 3194
2004 18795 2263 2286 3176
2006 18301 1812 2397 3045  

 

Tab. 3 Dependent variable and dummies  
(percentages) 

Risky portfolio Homeowner Indebted

No Yes Tot. No Yes Tot. No Yes Tot.

No distress 82.3 17.7 100.0 12.6 87.4 100.0 78.5 21.5 100.0
Distress 93.8 6.2 100.0 97.6 2.4 100.0 82.4 17.6 100.0

Tot. 84.0 16.0 100.0 25.5 74.5 100.0 79.1 20.9 100.0  

In addition to income as an indicator of the household’s “ability to pay”, we introduce three 

dummies, risky portfolio ownership, homeownership, and being indebted. These variables 

integrate the descriptive power of income in selecting households, which, for their general 

economic conditions and their portfolio composition, are less likely to incur financial distress. 

Tab. 3 relates these variables to the dependent variable. For the first two variables, we 

expect a negative value: the more diversified the portfolio the lower will be the probability of 

incurring financial distress in the event of an adverse shock; this is also true if the household 

head is the homeowner. Being indebted, on the other hand, contributes to increasing 

exposure to potential financial fragility, despite the average low levels of indebtedness in 

Italian households and the fact that amounts of debt are very similar for both sub-groups of 

households. However, the data show that the percentage of indebted households is higher 

amongst those without financial problems than amongst the other group. Therefore, it is 

difficult to formulate an ex-ante hypothesis on the sign of the dummy for “being indebted”.  

Households owning risky portfolios, homeowners and the indebted on average have higher 

incomes than the others (Tab. 4).  
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Tab. 4 Average income and household characteristics   
(euro 2006) 

1998 2000 2002 2004 2006

No risky portfolio 26858 28476 30117 31034 31706
Risky portfolio 39119 38505 41470 44006 47174

Non-homeowner 20786 22285 24438 22395 22854
Homeowner 31507 32523 34763 37383 37253

Non-indebted 26438 27854 30441 30963 31749
Indebted 34801 38520 38654 43930 43205  

In the household debt literature, age plays an important role in explaining the extent of debt 

and the probability of being indebted. It enters usually in a nonlinear fashion, in accordance 

with life cycle and consumption smoothing theories, which predict a concave age-debt 

profile, peaking around middle age. Descriptive statistics for the relationship between age 

and financial distress reveal a relatively higher percentages of younger (household head 

aged under 40) and older (household heads over 60) than middle aged households in 

distress.  

The literature also suggests the inclusion of aggregate variables such as national or regional 

unemployment rates, house prices, interest rates and the income gearing ratio.12 The 

rationale for including aggregate explanatory variables is that, being annual, they can capture 

time effects, and being disaggregated at the territorial level, they capture regional or wider 

area effects. Following May and Tudela (2005) we include the unemployment rate by 

geographical area, and regional house prices.13 For the former it is possible to have an ex-

ante opinion on its sign, with lower probabilities of financial distress for households living in 

areas of lower unemployment. The latter variable, real estate value, constitutes the net worth 

component, which, more than any other component, explains the differentials amongst 

individuals. As well as increasing over time, property values have been the driver of net 

wealth growth. Expectations about its sign diverge: on the one hand, an increase in house 

prices can have a dampening effect on non-homeowners and make it more difficult to access 

the property market, on the other hand, it will positively affect house owners. Overall its sign 

is not predetermined ex-ante.  

                                                 
12 In the literature (see e.g. May and Tudela, 2005), two additional variables are considered, the income gearing 
ratio and the loan to value ratio. However their use in our context is problematic for two main reasons. May and 
Tudela focus on indebted households and therefore both variables, if not missing in the survey, are available for 
each observation. Our study sample instead covers the whole survey sample and includes households without 
debt and/or without real wealth: this implies a large number of missing values. In addition, there are many missing 
values even in the case of debt holdings and home ownership. For both these reasons we excluded these 
variables from the analysis.    
13 Source for house prices: Muzzicato et al. (2008).  
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Explanatory variables of the initial conditions equation. The initial conditions equation in the 

Heckman model is estimated with the explanatory variables set including the initial values xi0 

of the structural equation and three additional dummy instrumental variables for if the 

household lives in the South of Italy, if the head of household is self-employed, and if the 

household resides in a municipality with less than 20000 inhabitants. Percentage 

distributions of these variables are depicted in Tab. 5.  

5 Model estimates  

Model estimates were run on both longitudinal samples described at the beginning of 

Section 4, the unbalanced panel (A) with 3≥T and the balanced panel (B) with T = 5.  

Tab. 6 reports the estimates of the initial conditions equation and the structural equation for 

the Heckman model,14 where the main parameter of interest is the coefficient of the lagged 

dependent variable, γ . After controlling for unobserved heterogeneity, we find evidence of 

true state dependence, that is, the probability of experiencing financial distress at time (t) 

positively depends upon the probability of having experienced financial fragility at time (t-1). 

The previous state parameter is equal to 0.563 and is statistically significant at the 95 

percent level.15  

The results confirm the presence of unobserved individual effects, with a value of the LR test 

on ρ  of 29.39 (p-value=0.000). According to Arulampalam (1999), the fraction of total 

explained variance due to unobserved individual characteristics can be derived from ρ  as 

follows:  

)1(2 ρρσ α −=  

In our case about 32 percent of the total variance is explained by unobserved household-

level characteristics. Boheim and Taylor (2000) and May and Tudela (2005) find evidence of 

                                                 
14 The model is estimated in Stata using two routines: “redprob” (Stewart, 2006, 2007) and “gllamm”. I want to 
thank Prof. Wiji Arulampalam for useful suggestions on the use of “gllamm”.  
15 Estimates run with gllamm and redprob produce equivalent results. For instance, the previous state coefficients 
coincide at the second decimal point, differing by only 0.001. The joint significance of the initial values is not 
rejected, with a Chi-sqared of 34.5 and p-value of 0.011.  

Tab. 5 Initial value variables (1998)  
(percentages) 

Living in the South Self-employed Municipality<20000 inhab.

No Sì Tot. No Sì Tot. No Sì Tot.

No distress 68.0 32.0 100.0 85.7 14.3 100.0 69.8 30.2 100.0
Distress 50.6 49.4 100.0 95.2 4.8 100.0 72.7 27.3 100.0

Tot. 65.0 35.0 100.0 87.3 12.7 100.0 70.3 29.7 100.0
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unobserved heterogeneity, with values of respectively 34 and 19 percent. The size of this 

parameter shows the importance of individual components in the analysis of household 

financial problems, and the adequateness of the panel data.  

Tab. 6 Dynamic models estimation with the Heckman method  

(Panel A: T>=3 and common entry in 1998) 

Coef. t-stat Coef. t-stat

constant 2.943 5.42 -0.917 -2.29

distress (t-1) 0.563 5.42

young 0.426 2.43 0.092 0.72
old -0.011 -0.06 0.107 0.96
1st income quartile 0.375 2.38 0.453 4.52
3rd income quartile -0.466 -2.44 -0.322 -2.77
4th income quartile -0.756 -3.19 -0.588 -4.20
education: primary 0.695 3.45 0.623 4.72
education: lower secondary 0.132 0.78 0.380 3.30
eduation: university -0.787 -2.19 -0.447 -2.06
female 0.243 1.58 0.104 1.03
no. components -0.002 -0.04 0.019 0.47
risky portfolio -0.295 -1.31 -0.438 -3.30
homeowner -3.377 -10.05 -3.258 -14.80
indebted 0.621 3.63 0.303 2.90

unemployment 0.110 1.47 0.03 3.440
house prices -4.240 -1.32 0.12 0.390

south-isles -0.719 -0.81
self-employed -1.085 -4.57
small area 0.217 1.49

rho 0.244 3.30
theta 1.233 2.62

Log-likelihood -1279.3

LR test: rho=0 chi2(1) = 29.39
p-value = 0.000

No. of observations 8619

Socio-economic explanatory variables

Aggregate explanatory variables

Other instruments for initial conditions

Initial condition equation Structural equation

Lagged response variable

 

The age structure is not very strong: for the younger age group (household heads under 40) 

and the older age group (household heads over 60) the dummies are not significant.16 

However their coefficients are positive, which may suggest greater distress than in the 

intermediate age group 40-60 years old.  

                                                 
16 In an alternative specification (not shown) which excludes education level, the oldest age group dummy is 
significant.  
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A crucial variable in our model is income, the main indicator of the ability of the household to 

pay. It enters the equation in the form of income quartiles, with the second one as the 

reference category; the results are as expected. Lower income households display a higher 

probability of financial distress, whilst higher income households display lower probability to 

get into difficulties (the first quartile coefficient is positive, while the third and fourth quartile 

coefficients are negative and increasing in absolute terms). In other of the models proposed 

in the literature financial fragility is associated with the income gearing ratio and, therefore, 

implicitly expresses an inverse relationship with income (May and Tudela, 2005). Our result 

is coherent with Boheim and Taylor’s (2000) model where income has a negative sign. In line 

with these results, the probability of financial distress displays a negative relationship with 

education levels.  

The dummy for risky portfolio is significant with a negative coefficient. As risky portfolios are 

owned by higher income households, this variable can reinforce the role of income in 

defining the “ability” of the household to pay, and indicates lower exposure to financial 

fragility. The female dummy and the dummy for household composition show a positive but 

not significant coefficient. The dummies for homeownership and being indebted have the 

expected signs: respectively negative and positive.  

Turning to the aggregate variables, unemployment rate by geographical location is 

statistically significant and positive, denoting a higher probability of financial distress among 

households in areas of high unemployment. The regional house price index is not significant. 

Both results are in line with May and Tudela (2005).  

Finally, the t-test on coefficient ϑ  (the parameter that defines the presence of individual 

effects iη  correlated with iα  in the initial conditions equation and defined as 0iii εαϑη += ) 

rejects the null of non-exogeneity of initial conditions, with a Chi-squared of 109.9.  

5.1 Comparisons with alternative estimation methods 

In order to compare estimation methods we focus on the lagged dependent variable, the 

main variable of interest in dynamic models. We compare the Heckman model with the 

pooled, exogenous random effects and Wooldridge models. The results are reported in 

Tab. 7.  

The coefficient of the previous state γ  is larger in the case of the random effects model with 

exogenous initial conditions than in the Heckman model: 0.790 compared to 0.563. This 

result is in line with the literature review in Section 2.4 and shows that the hypothesis of 

exogenous initial conditions tends to overestimate state persistence. The coefficients of the 

other variables are of the same magnitude, sign and significance as in the Heckman model.  
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Tab. 7 Dynamic models estimation with other methods  

(Panel A: T>=3 and common entry in 1998) 

Coef. t-stat Coef. t-stat Coef. t-stat

constant -0.905 -2.55 -0.912 -2.40 -2.16 -2.000

distress (t-1) 0.881 12.67 0.790 8.77 0.325 2.59

young 0.073 0.70 0.094 0.81 0.906 3.05
old 0.116 1.25 0.116 1.13 0.241 0.92
1st income quartile 0.383 4.54 0.426 4.5 0.232 1.69
3rd income quartile -0.258 -2.58 -0.284 -2.59 -0.219 -1.40
4th income quartile -0.475 -4.06 -0.533 -4.04 -0.474 -2.32
education: primary 0.480 4.76 0.544 4.54 -1.192 -1.76
education: lower secondary 0.289 3.23 0.328 3.15 -0.413 -1.06
eduation: university -0.374 -2.11 -0.399 -2 -0.082 -0.12
female 0.057 0.72 0.070 0.77 0.064 0.56
no. components 0.016 0.48 0.021 0.57 -0.100 -0.90
risky portfolio -0.353 -3.15 -0.406 -3.23 -0.502 -2.88
homeowner -2.681 -26.02 -2.940 -15.61 -3.560 -13.34
indebted 0.269 2.96 0.285 2.88 0.222 1.65

unemployment 0.023 3.35 0.024 3.16 0.041 0.95
house prices 0.076 0.28 0.081 0.28 0.028 0.06

distress (t=0) 0.781 5.55

young -0.992 -2.91
old -0.110 -0.36
1° income quart. 0.456 1.97
3° income quart. -0.131 -0.48
4° income quart. -0.181 -0.60
education: primary 1.791 2.56
education: lower secondary 0.852 2.07
eduation: university -0.218 -0.30
no. components 0.146 1.18
risky portfolio 0.146 0.50
homeowner 0.360 1.57
indebted 0.236 0.96
unemployment -0.019 -0.44
house prices 0.876 0.81

sigma_alpha 0.388 3.20 0.683 6.07
rho 0.131 1.84 0.318 4.45

Log-likelihood -907.1 -905.3 -869.2

LR test: rho=0 chi2(1) = 3.63 chi2(1) = 19.65
p-value = 0.028 p-value = 0.000

No. of observations: 8619

Initial value

Group-means

Wooldridge modelPooled model Exogenous RE model

Lagged response variable

Socio-economic explanatory variables

Aggregate explanatory variables

 

The results of the estimations of the Wooldridge model are more problematic.17 In contrast to 

the applied literature on comparative evaluations of the Heckman and Wooldridge methods 

(e.g. Stewart, 2007; Sousounis, 2008; Arulampalam and Stewart, 2009; Akay, 2009), there is 

                                                 
17 In the Wooldridge model neither year dummies nor time-invariant variables (such as sex) can be included in the 
set of explanatory variables. As the model includes group means, the time-invariant variables are equivalent to 
their group means, which introduces collinearity problems. In our model, we include the variable sex in the control 
variable, but not in the group means.  
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a remarkable difference in the value of the state coefficient. The coefficient γ  in the 

Wooldridge model is equal to 0.325 (Tab. 7) compared to 0.563 for the Heckman model. 

Although we estimated a range of specifications using both methods, differences persisted. 

This area is worthy of further examination, particularly the characteristics of the exogenous 

variables. It might be that, over time, some of the control variables present low variation and, 

therefore, a degree of correlation with the group means. The individual group means show 

low statistical significance, despite being jointly significant (Chi-squared=23.37). When we 

test for joint significance in the group means and initial values we are testing the validity of 

the structure of the unobserved heterogeneity, in line with Wooldridge: the Chi-squared 

rejects the null of non-significance with a statistics value of 49.25. Finally, the fraction of 

variance explained by individual effects is 46.6 percent, higher than the 32.2 percent 

obtained with the Heckman model.  

The final comparison is with the pooled model. However, the pooled and the random effects 

models involve different normalisations of the error term. Normalisation for error variance in 

the pooled model is 12 =εσ , and in the random effects model it is 12 =uσ . To allow 

comparison of the coefficients, those in the random effects model need be multiplied by 

ρσσ ε −= 1u , where )1( 22 += αα σσρ  is the constant cross-period error correlation 

(Arulampalam, 1999). Scaled coefficients of lagged financial distress are 0.736 in the 

exogenous random effects model, 0.490 in the Heckman model and 0.268 in the Wooldridge 

model. The pooled model produces a coefficient of 0.881.  

5.2 Robustness analysis 

As a robustness check, we also estimated the model on the balanced panel data structure 

with T = 5, and a total number of observations of 5,380, for a total of 1,076 households.18 

Again we estimate four models (Tab. 8): the pooled, exogenous initial conditions, Heckman 

and Wooldridge models.  

The previous results also hold with this alternative data structure, although the coefficients of 

the lagged dependent variable are slightly larger in all the models: 0.970, 0.852, 0.402 and 

0.636 in the pooled, with exogenous initial conditions, Wooldridge and Heckman models 

respectively. It should be noted, however, that there is a slight reduction in the gap between 

the previous state variables in the Heckman and Wooldridge models, although they are still 

relevant. In the Wooldridge model the variance explained by individual effects is 0.439, and 

in the Heckman model it is 0.326. In the random effects models the null 0=ρ  is rejected at 

                                                 
18 We are aware of two problems: the first is attrition (Wooldridge, 2002a), the second the bias induced by 
extracting a balanced panel dataset from an unbalanced one (Verbeek, 2000: 343). Neither of these issues is 
dealt with here; they are left for future developments.  
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the standard significance levels. Finally the null of joint non-significance of the instruments in 

the Heckman model is also rejected (Chi-squared=56.28).  

Tab. 4.8 Dynamic models estimation on the balanced panel  

(Panel B: T=5)  

Pooled model Exogenous RE model Wooldridge model Heckm an model

Coef. z Coef. z Coef. z Coef. z

constant -1.14 -2.66 -1.154 -2.49 -2.095 -1.15 -1.185 -2.42

distress (t-1) 0.970 11.02 0.852 6.87 0.402 2.65 0.636 4.70

young 0.251 1.86 0.314 1.97 1.137 3.04 0.337 1.97
old 0.119 1.03 0.110 0.84 0.212 0.69 0.117 0.83
1st income quartile 0.317 3.04 0.364 3.08 0.255 1.58 0.362 2.92
3rd income quartile -0.187 -1.48 -0.207 -1.49 -0.011 -0.06 -0.239 -1.64
4th income quartile -0.407 -2.76 -0.451 -2.74 -0.118 -0.48 -0.497 -2.87
education: primary 0.450 3.58 0.511 3.38 -1.760 -2.10 0.587 3.54
education: lower secondary 0.233 2.07 0.260 1.97 -0.772 -1.70 0.309 2.13
eduation: university -0.299 -1.43 -0.327 -1.36 1.259 0.99 -0.369 -1.41
female 0.082 0.81 0.103 0.87 0.133 0.91 0.146 1.11
no. components 0.014 0.34 0.018 0.37 -0.245 -1.81 0.018 0.34
risky portfolio -0.441 -3.10 -0.498 -3.10 -0.483 -2.31 -0.533 -3.19
homeowner -2.589 -20.69 -2.873 -11.74 -3.354 -10.51 -3.167 -11.65
indebted 0.300 2.71 0.312 2.59 0.285 1.80 0.341 2.69

unemployment 0.033 3.64 0.036 3.40 0.054 1.13 0.042 3.63
house prices 0.178 0.57 0.198 0.59 0.089 0.16 0.232 0.67

difficoltà (t=0) 0.807 4.64

chi2( 14) 25.71
Prob > chi2 0.028

chi2( 18) 56.28
Prob > chi2 0.000

sigma_alpha 0.407 2.59 0.662 4.91 0.571
rho 0.142 1.51 0.305 3.53 0.246 2.64
theta 1.312 2.01

Log-likelihood -585.0 -573.7 -544.1 -757.7

LR test: rho=0 chi2(1) = 2.45 chi2(1) = 12.4 chi2(1) = 19.1
p-value = 0.059 p-value = 0.000 p-value = 0.000

No. of obs.: 5380

Joint significance of group-means

Joint significance of initial conditions

Lagged response variable

Socio-economic explanatory variables

Aggregate explanatory variables

Initial value

 

As a final robustness check we ran the estimates on an unbalanced panel, with households 

present in the sample for at least three consecutive years, but relaxing the constraint of 

common entrance in 1998, for a total of 13,209 observations.19 Estimated coefficients of the 

lagged dependent variable are in line with previous results: 0.868 for the exogenous 

conditions model, 0.664 for the Heckman and 0.372 for the Wooldridge model.  

                                                 
19 The Heckman model is estimated using the gllamm procedure, which is more flexible than redprob for dealing 
with a longitudinal dataset with different entry times.  
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6 Conclusions and further developments  

Many households are likely to experience periods of temporary financial distress over the 

years, and will overcome them with varying degrees of difficulty. Periods of financial stress 

become more relevant when the financial difficulties persist over time. This paper focused on 

households in financial distress and estimated the relevance of persistence over time of 

these situations.  

We built a quantitative measure of financial distress based on combinations of assets and 

liabilities. It is the sign and dimension of net wealth rather than just debt levels that identify 

households experiencing financial fragility (as suggested in Barwell et al., 2006; Brown and 

Taylor, 2008). We built on the literature on households considered to be under financial 

stress to show that this occurs when they have negative net wealth holdings and the 

combination of real wealth and net financial balance (the difference between financial assets 

and liabilities) is below a certain threshold. This threshold is defined on the basis of net 

wealth distribution and we defined the threshold as the level of wealth corresponding to the 

second decile of the distribution. Households in financial distress, therefore, are defined as 

those whose net worth is equal to or below 13,000 euro. In the setting proposed by Brown 

and Taylor (2008), financial pressure is defined by the difference between total assets and 

liabilities: households with negative net wealth holdings are classified as being in financial 

distress. This definition clearly excludes households with small amounts of net wealth. In our 

framework we include all households with positive (even if small) net wealth holdings. This 

decision is motivated by the fact that the Italian dataset is characterised by very few 

observations with negative net wealth and that households with limited wealth holdings can 

experience financial difficulties.  

The methodology used in this paper is estimation of dynamic nonlinear panel data models, 

where the coefficient of interest is the coefficient of the lagged dependent variable. 

Estimating a dynamic model is aimed at distinguishing between true state dependence – the 

impact of the lagged dependent variable on the dependent variable, and spurious state 

dependence - caused by the presence of time-invariant unobserved heterogeneity. This 

requires resolution of the so-called initial conditions problem, which arises from the fact that 

the observed start and the true start of the stochastic process do not coincide. We use the 

Heckman (1981b) as the standard parametric estimator for the probit model. We describe the 

econometric background to the estimation of panel data dynamic probit models, focusing first 

on Heckman’s seminal work and then on developments proposed in the literature to 

overcome, or make tractable, the computational difficulties of maximising the likelihood 

function implied by the Heckman method (Orme, 2001; Wooldridge, 2005).  
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The empirical application uses the longitudinal component of the Bank of Italy SHIW for the 

period 1998-2006, and estimates a range of dynamic probit models (e.g. Stewart, 2007; 

Sousounis, 2008; Akay, 2009; Arulampalam and Stewart, 2009) to test for the presence of 

true state dependence in relation to experiencing financial distress: (1) the Heckman model; 

(2) the Wooldridge model; (3) a random effects probit model that assumes exogeneity of 

initial conditions; (4) a pooled model on repeated cross-sections that includes the lagged 

dependent variable, but ignores the presence of unobserved heterogeneity and assumes 

exogeneity of initial conditions.  

From the Heckman model estimation we obtain a statistically significant coefficient of the 

lagged dependent variable of 0.563, implying the existence of true state dependence: the 

probability that households experiencing financial distress at time t is positively related to the 

probability of having experienced distress at time t-1. We do not reject the null of non-

significance of unobserved heterogeneity, with the fraction of variance explained by 

individual unobserved effects of value 32.2 percent. This is in line with May and Tudela’s 

(2005) result of 34 percent. We also reject the hypotheses of non-exogeneity of initial 

conditions and joint non-significance of the initial values. We can say, therefore, that there is 

true state dependence in experiencing financial fragility among Italian households. This result 

also identifies low levels of mobility along the net wealth distribution, particularly when we 

remember that the data are biannual. Hence, if a household’s net wealth is below the 

threshold in 2004, it is probable that the same household will be below the threshold in 2006.  

In terms of the other explanatory variables, “ability to pay” confirms our expectations: higher 

income, higher education and owning a risky portfolio, lower the probability of experiencing 

financial distress. Age is not very relevant, with most dummies not significant. There is 

evidence also that households with a female head have a higher probability of incurring 

financial fragility. For aggregate variables, higher unemployment positively affects the 

probability of distress, whereas house prices are not significant.  

When we compare methods, the results of the pooled and random effects probit models are 

in line with the findings in the literature, with coefficients of the previous state showing higher 

values than the Heckman model, indicating that taking no account of unobserved 

heterogeneity or of exogenous initial conditions leads to overestimation of the coefficient of 

interest. However, we observe an unexplained difference between the Wooldridge and 

Heckman model estimates, which deserves further investigation as it is undocumented in the 

literature.  

Robustness checks, consisting of estimation of the same set of models on two different panel 

data structures, confirm our results, and especially the relative positions of the four 
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methodologies, with the less sophisticated methods providing over-estimations of state 

dependence.  

In addition to examining the differences between the coefficients of the lagged dependent 

variable in the Wooldridge and Heckman models, two other aspects are worthy of further 

study. First, we should look at computations of the average partial effects (Wooldridge, 2005) 

in order to quantify state dependence. Second, we should estimate the Orme model and 

compare estimates with the results of other methods.  
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