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ABSTRACT. It has been observed that in many situations the network traffic is characterized
by self-similarity and long-range correlations on various time-scales. The memory parame-
ter of a related time series is thus a key quantity in order to predict and control the traffic
flow. In the present paper we analyze the performance of a memory parameter estimator,
@, defined by the log-regression on the so-called modified Allan variance. Under the as-
sumption that the signal process is a fractional Brownian motion, with Hurst parameter H,
we study the rate of convergence of the empirical modified Allan variance, and then prove
that the log-regression estimator & converges to the memory parameter o = 2H — 2 of the
process. In particular, we show that the deviation & — a, when suitably normalized, con-
verges in distribution to a normal random variable, and we compute explicitly its asymptotic
variance.

1. INTRODUCTION

There is ample evidence that Internet traffic exhibits self-similarity and long-range de-
pendence (LRD) on various time scales. By self-similarity we refer to the property that a
dilated portion of a realization has the same statistical characterization as the original re-
alization. This can be well represented by a self-similar random process with given scaling
exponent H (Hurst parameter). The long-range dependence of the Internet traffic em-
phasizes the long-range time-correlation between packet arrivals, and is thus commonly
equated to an asymptotic power-law decrease of the spectral density or, equivalently, of
the autocovariance function, of a given stationary random process. In this situation, the
memory parameter of the process is given by the exponent d characterizing the power-law
of the spectral density.

Though a self-similar process can not be stationary (and thus nor LRD), these two pro-
prieties are often related in the following sense. Under the hypothesis that a self-similar
process has stationary (or weakly stationary) increments, the scaling parameter H enters
in the description of the spectral density and covariance function of the increments, pro-
viding an asymptotic power-law with exponent d = 2H — 1. Under this assumption, we can
say that the self-similarity of the process reflects on the long-range dependence of its in-
crements. The most paradigmatic example of this connection is provided by the fractional
Brownian motion and by its increment process, the fractional Gaussian noise [11].

In this paper we will consider the problem of estimating the Hurst parameter H of a
self-similar process with weakly stationary increments. Among the different techniques
introduced in the literature to estimate this parameter, we will focus on a method based on
the log-regression of the so-called Modified Allan Variance (MAVAR). The MAVAR is a well
known time-domain quantity generalizing the classic Allan variance [3], [5]. It has been
proposed for the first time as traffic analysis tool in [8], and sequently, in a series of paper
[8, 7, 6], its performance has been evaluated by simulation and comparison with the real
IP traffic. These works have pointed out the high accuracy of the method in estimating the

Date: February 17, 2011.

2000 Mathematics Subject Classification. 62M10,62M15,62G05.

Key words and phrases. modified Allan variance, log-regression estimator, central limit theorem, fractional
Brownian motion, long-range dependence, self-similarity.



MAVAR LOG-REGRESSION ESTIMATOR 2

parameter H, and have shown that it achieves a highest confidence if compared with the
well-established wavelet log-diagram.

The aim of the present work is to substantiate these results from the theoretical point
of view, studying the rate of convergence of the estimator toward the memory parameter.
In particular, our goal is to provide the precise asymptotic normality of the MAVAR log-
regression estimator, that in turns is a first step toward the computation of the related
confidence intervals. This will be reached under the assumption that the signal process
is a fractional Brownian motion. Although this hypothesis may look restrictive, it is quite
common in the literature for its plausibility and due to the technical difficulties of going
beyond it.

This result can be view as a counterpart of the already established results concerning
the asymptotic normality of the wavelet log-regression estimator [13, 14, 15]. While the
classical Allan variance falls into the wavelet framework, as is shown in [3], the MAVAR
can not be trivially related to a wavelets family, and a different analysis is required.

The paper is organized as follows. In section 2 we recall the properties of self-similarity
and long-range dependence for stochastic processes, and the definition of the fractional
Brownian motion; in section 3 we introduce the MAVAR and its estimator, with their main
properties; in section 4 we state and prove the main results concerning the asymptotic
normality of the estimator; in the appendix we recall some results used along the proof.

2. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

We consider a real-valued stochastic process X = {X(¢), t € R}, that can be interpreted
as the cumulative traffic volume, e.g. measured in packets, during the time interval [0, ¢].
Sometimes it is also useful to consider the 7-increment of the process X, which is defined,
forevery r € Rt and t € R, as

X(t+71)—X(t
v, = X=X ©

In order to reproduce the behavior of the real network traffic, it is commonly assumed
that X satisfies one of the two following properties: (i) Self-similarity; (ii) Long range
dependence.

(i) The self-similarity of a process X refers to the existence of a parameter H € (0,1),
called Hurst index or Hurst parameter of the process, such that, for all a > 0, it
holds

(X(t),teR} 2 {a ¥ X(at), t € R}. )
In this case we say that X is a H-self-similar process.
(i) We first recall that a stochastic process X is weakly stationary if it is square-
integrable and its autocovariance function, Cx (t, s) := Cov(X(t), X(s)), is trans-
lation invariant, namely if

Cx(t,s) =Cx(t+r,s+r) vVt s,r €R.

In this case we also set Rx(t) := Cx(t,0).

If X is a weakly stationary process, we say that it displays long-range dependence,
or long memory, if there exists d € (0,1) such that the spectral density of the
process, fx (), satisfies the condition

fx\) ~ e A7 as A — 0, 3)
for some finite constant c; # 0, where we write f(z) ~ g(z) as * — o, if
limg_, 4, % = 1. Due to the correspondence between the spectral density and

the autocovariance function, given by

Rx(t) = /R e fx () dA, 4
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the long-range condition (3) can be often stated in terms of the autocovariance of
the process as
Rx(t) ~cpt™® as|t| = +o0, (5)
for some finite constant cr # 0 and 8 = (1 — d) € (0,1).
Notice that if X is a self-similar process, then it can not be weakly stationary due to the

normalization factor /. On the other hand, assuming that X is a H-self-similar process
with weakly stationary increments, i.e. the quantity

E[(X(rs+s+1) — X(s+ ) (X (11 +5) — X(s))]

does not depend on s, it turns out that the autocovariance function is given by

2
Cx(s,t) = ‘%H (1127 — |t — 27 4 |s)?7) (6)
with 0% = E(X?(1)), which is clearly not translation invariant. Consequently, denoting by
Y. its 7-increment process (see (1)), the autocovariance function of Y; is such that

Ry (t) ~ ct* =2 as|t| — +oo, )

for some finite constant ¢ # 0 depending on H and 7 ([2]). In particular, if H € (%, 1), the
process Y, displays long-range dependence in the sense of (5) with 5 = 2—2H. Under this
assumption, we thus embrace the two main empirical properties of the traffic on internet.

A basic example of the connection between self-similarity and long-range dependence
is provided by the fractional Brownian motion By = {Bpy(t), t € R}. This is a centered
Gaussian process with autocovariance function given by (6), where

I'(2 — 2H) cos(mH)
mH(1 —2H)
It can be proved that By is a self-similar process with Hurst index H € (0,1), which

corresponds, for H = 1/2, to the standard Brownian motion. Moreover, its increment
process

€))

o} =

Bp(t — By (t
Grn(t) = 2T B,
called fractional Gaussian noise, turns out to be a weakly stationary Gaussian process
[11, 18].
In the next sections we will perform the analysis of the modified Allan variance and of
the related estimator of the memory parameter.

3. THE MODIFIED ALLAN VARIANCE

In this section we introduce and recall the main properties of the Modified Allan variance
(MAVAR), and of the log-regression estimator of the memory parameter based on it.

Let X = {X(t) : t € R} be a stochastic process with weakly stationary increments. Let
70 > 0 be the “sampling period” and define the sequence of times {¢;};>; taking t; € R
and setting t; — t;_1 = 79, i.e. t; = t1 + Tg(i — ].)

Definition 3.1. For any fixed p € N, the modified Allan variance (MAVAR) is defined as

2
1 1 &
2 2 o
Op =0 (7—07p) T 27_02p2E (p ;(Xti+2p - 2Xti+p + Xh))

©)

2
1 1<
=53k (p ;(Xtiwr —2X¢4r + Xm)) ;

where we set 7 := 1gp. For p = 1 we recover the well-known Allan variance.
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Let us assume that a finite sample X1, ..., X,, of the process X is given, and that the
observations are taken at times ¢, ..., t,. In other words we set X; = Xy, fori =1,...,n.
A standard estimator for the modified Allan variance (MAVAR estimator) is given by

1 np /p+h—1 2
Gp(n) = 5°(70,p,n) = Y > ( > (Xigap — 2Xi4p + Xi’))
”p—l P 2
(Xk+ +2p — 2Xppitp + Xipi)
forp=1,...,[n/3 andnp:n—3p+l.
For k € Z, let us set
1 P
dpr = d(10,p, k) := Xt —2Xpaiap + Xpay 1n
D,k ( 0,DP ) \/§T0p2 ;( k+i+2p k+i+p kﬂ)
so that we can write
o2 =E [d2] (12)
and
1 np—1
~2 2
= — ds . 13
) = 3 a3)
k=0

3.1. Some properties. Let us further assume that X is a H-self-similar process (see (2))
with X(0) = 0 and E(X(¢)) = 0 for all ¢. Under these assumptions on X, the process
{dp i } 1 turns out to be weakly stationary for each fixed p, with E[d,, ;] = 0. More precisely,
applying the covariance formula (6), it holds

oy =E[dy,] =E[d] = of 7172 K(H,p), (14)
where 0% = E[X(1)?] and
p—1

2 1
K(H,p):==>(1—-2%H-"2y 4 —_

ijzH OF (15)
h=

(=1 h=1
and where Psp is the polynomial of degree 2H given by

Porr(@) = [~62 4+ 4(1+ )™ 4401 -2 — 242" — 24 2)*]

Since we are interested in the limit for p — oo, we consider the approximation of the
two finite sums in (15) by the corresponding double integral, namely

p—1 ¢

QZZ 2H // Py (z)dzdy + O (p~ )

(=1 h=1
Computing the integral and inserting the result in (15), we get
K(H,p) = K(H) + Ou(p™") (16)

where
22H+4 4 22H+3 _ 32H+2 —4H — 15

2(2H + 1)(2H + 2)
From (14) and (16), and being H < 1, we get

|02 — o3 2 K(H)| < of 77205 (p7Y) = O (p~ B2 (18)

Under these hypothesis on X, one can also prove that the process {d), 1}, satisfies the
stationary condition

COV(dp’k, dp—u,k’) = COV(dpJg_k/, dp_ug) for0<u< p. (19)

K(H) := (17)
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To verify this condition, we write explicitly the covariance as

1 p p—u
Eldprdpup] = 55-—3 =) D B [(Xitjrop — Xtjp) Xt srsap-u) — Xosirt(p-u))]
j=1j/=1

— E [(Xktjt2p = Xitjp) (Xnr gt (o) — Xbrtst)]
— E [(Xntjtp — Xirj) Xt jrio—u) — Xt (p—u))]

+E [(Xptjrp — Xot) (Xnr g (o) — X)) -
(20)

Using the spectral representation of the correlation function for the increments of the pro-
cess X (see formula (2.2) in [12]), i.e.

R(t;m,m2) :=E [(X(Tg +s+t)— X(s +t)) (X(Tl +s) — X(s))]

) ) : 21
= [ e - e au, @y
we get
E[dp,kdp—%k’] = ﬁ ( _ u)g Z T(k - kl?j - j/,p,'LL)
p j=14'=1
1 p—uj—1
= 27_2( _u)g (p—u)?"(k‘—k‘,,o,p, U)—FQZZ?(]C—IC,,}L,]?,U) (22)
p j=2 h=1
p J—1
+ ) r(k— K, h,pu)| ,
Jj=p—u+1 h=j—(p—u)
where

(g, h,p,u) = R(10(q + h + u); 10(p — u), 7op) — R(10(q + h + p); 70(p — ), T0D)
— R(ro(q +h — (p—u));10(p — ), 7op) + R(10(q + h); 7o(p — u), Top)

(23)
) . . 2 . 2
_ /ez‘roh/\ezmq/\ <1 _ e—zm(p—u)/\) (1 _ ezTgpA) (14;72)\2)601!()\)

and
?(Q7 hapa U) = ’r(q, h7p7 U) + 7"((], _h7p7 U)

= /cos(7‘0h)\)eimqA (1 - e_iTO(p_“)A)2 (1 - zeiT(””’\)2 “%ﬁd,u()\). 24
This immediately provides the stationary condition (19).
Notice that the third term of (22) cancels for « = 0. Moreover, when v = 0 and k = &/,
Eq. (22) provides an alternative formula for the variance 012).
Under further hypothesis on the second order properties of X, one can get more precise
information about the covariance of the process d, ;. In the next sections, where we will
assume that the process X is a fractional Brownian motion, we will deduce some stronger

results (see Lemma 4.3) that will be used in order to carry out the analysis of the estimator.

3.2. The log-regression MAVAR estimator. Let n be the sample size, i.e. the number of
the observations.
Definition 3.2. Let p, ¢ € N such that 1 < p(1 + ¢) < ppax(n) = [ %], and w = (wo, . .., wy)
a vector of weights satisfying the conditions
2 2
ng:O and nglog(1+€):1. (25)
=0 =0
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The log-regression MAVAR estimator associated to the weights w is defined as

‘
an(ﬁv w) == &n(ﬁh@ w) = Z Wy log <3§(1+£) (n)) . (26)
=0
Roughly speaking, the idea behind this definition is to use the approximation
(8123(71), ... ,8}23(1+l7)(n)) = (ag(n), e U§(1+Z)(”))
in order to get, by (18) and (25),
2 2
an(pw) =Y wilog(oZy,p) =D we (alog(l +£) + alog(op) + log(o” K(H))) = a,
=0 =0

where « := 2H — 2. Thus, given the data X1, ..., X, the following procedure is used to

estimate o:

e compute the modified Allan variance by (13), for integer values 1 < p(1 + ¢), with
(14 £) < pmax(n) (for example, take p = 270 and ¢ = 27770 — 1);

e compute the weighted log-regression MAVAR estimator by (26) in order to get an
estimate of « (the simple least-square linear regression corresponds to a suitable
choice of the weights wy);

e estimate H by H = (a + 2)/2.

In the sequel we will give, under suitable assumptions, two convergence results in order
to justify these approximations and to get the rate of convergence of &, (p,w) toward
a = 2H — 2. Obviously, we need to take p = p(n) — +oo as n — +oco in order to
reach jointly the above two approximations.

4. THE ASYMPTOTIC NORMALITY OF THE ESTIMATOR

Since now on we will always assume that X is the fractional Brownian motion with
Hurst index H so that the process {d, x }, is also Gaussian. Under this assumption and
with the notation introduced before, we can state the following results.

Theorem 4.1. Let p = p(n) be a sequence such that p(n) — +oo and p(n)n~* — 0, and £ a

given E‘nteger. Let G (p, £) be the vector (G2(n),535(n), ... ’82(1%) (n)) and, analogously, set
a*(p,0) = (03,03, ..., o§(1+g)). Then, for all H € (0,1), it holds
Via(rop)* ! (856, 0) — (P 1) 5 N(O,W(H)), 27)

where the covariance matrix W (H) has finite entries given by

Wg“g(H) = 20’%{(1 + £)4H_4 77!%75 + Z G%’,f(q) 5 fOT all 0 S él S 4 S Z, (28)
q€Z,q#0
and the functions ng (H) and Gy ¢(H, q) are defined in Lemma 4.4 by (39) and (40).

From this Theorem, as an application of the /-method, we can state the following result.

Theorem 4.2. Let &, (p, w) be defined as in (26), for some finite integer ¢ and a weight-vector

w satisfying (25). If p = p(n) is a sequence such that p(n)n~" — 0 and p(n)?n=! — +oq,
then
Vi (@n (P, w) — a) %ON(O,MIV(H)M*) : (29)

where o = 2H — 2, the vector w, is such that [w,]; := we(1 + £)*>72H, and V(H) =
(02 K(H)) 2W (H), with 0%, and K (H) given respectively in (8) and(17).

Before starting the proof of the above theorems, we need the following results.
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Lemma 4.3. The process d,, . is stationary in k in the sense of (19). Moreover, for all p,u €
R*, 0 <u < p, and k, k' € Z, the covariance is given by

Covldy pdp—up) = o 2Gp(k — K, p,u), (30)

where T = yp,
Gala.p.0) = [ Lip.w)gu(a.p. ) v (3D
and L(p,u,v) and gg(q, p,u,v) are some explicitly defined functions such that Gg(q,p,0) =

GH(_(LP, 0) and
Gr(g,p,u) = O(lg*™*)  as|q| = +oo. (32)

Proof. As a special case of self-similar process with weakly stationary increments, the pro-
cess X satisfies the stationary condition (19) and (22). Moreover, recalling that the spec-
tral measure u of a fractional Brownian motion with Hurst index H takes the explicit form
du(X) = f(N)dA, with

sin(m + 1)

— TH _
f()‘) - ’)\|2H71(1 + )\2) and YH = o F(l + QH),

from Eq. (23), and after the change of variable v = p7p\ = 7\, we get

] ; —i(p—u)v 2 iv\2 1
T(q, h,p7u) _ ,YHT2H/eth/P€ZCIV/P (]_ —e (p—u) /p) (1 —e ) |V|27H+1dy

oyt / e /P g (g, p,u,v)dy,

where

‘ o 2 9 m
911(,p, 1, ) i= €7 (1= 7Y (1 i) pENELE

Analogously, from (24), we get

?(Q> hvpv u) = J%{TQH / COS(hV/p)gH(Q7p7 u, I/)dl/ :

With this notation, the covariance formula (22) provides the required Eq. (31) with

p—u—1 j u j+p—u—l

L(p,u,v) = ﬁ + ﬁ Z ZCOS (vh/p) + W Z; hz ¢vhip (33)
j=1  h=j

j=1 h=1

where the last term cancels for v = 0.
To handle the function L(p,u,v), that enters in the definition of the integral function
Gr(q,p,u), we can rewrite the last formula using the identities

othv/p _ Z(Zhy/p) m) and cos(hv/p) = Z (hv/p)*™ )! )
m=0 m=0

Rearranging the summations and using that, for each integer ¢ > 1,

¢ +1 4 )
Sohe = EEUT S e 1y 34)
j=1
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|
where ¢;(q) := % and the B;’s are the Bernoulli numbers, we get

L(p,u,v) = ﬁ - (ﬁ)Q % (cos (%) _ ZI: (;7173"” (V(p—pU+1))2m>
+ sy (;%)2 ks <€i<u+1>u/p 4 iouwp _ ez’(p+1>u/p>
v, v

(35)

It is easy to check that Gy (q,p,0) = Gu(—gq,p,0). In order to study the asymptotic
behavior of G (g, p, u) as |¢g| — +oo, we make the change of variable { = vq, and get

Grrla,p,u) = g™ / Lip,u, €/q)gs1 (g py 1w, €/q) de 36)

From the definition of L(p,u,v) and gy (q, p, u, v) it turns out, as can be easily verified, that
Gu(q,p,u) = O(|g|*~*) as |g| — +oo. O

Lemma 4.4. Let p = p(n) be a sequence such that p(n) — +oo and p(n)n=t — 0. For two
given integers (, V', with 0 < ¢/ < ¢, set py = p(n)({ + 1) and pyr = p(n)(¢' + 1). Then
)

(Top)4 4HCOV( pe(n),b'\gelO/L)) —> WZ/ ( s (37)
where Wy ,(H) is a finite quantity given by
Weo(H) =201+ O (o (H) + Y Gh(Hq) |, (38)
q€Z, q7#0
with
_Z'Lf/,/ 2 v\ 2 ~
meat)i= [ Loa) (1) (1= ) it v, (39)

2
e i 2
Got.a) = [ Loate/a) (1= FE) (1o eo)’ Sprac forgezio

(40)
and
Lyg(z) = lim L(pe,pe = pe, )
1
2 2m
__1+4¢ 14 \" 1 (1+£) (=™ ((1+¢)
- 2(11@) - (14—:5/) 22 <C05< 1+£I) - Z 2m] ( 1+£x> >
m=0

21 [ =t 140 4 (41)

+ ey (fiﬁ) ) <e H0Y e T+ — e”)

Note that Gy (H, q) = Gre(H, —q).
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Proof. Since n/p — +oo, without loss of generality we can assume that p(1 + £) < ppax(n)
for each n. Let us set ny = n,, and ny = n,,,. From the definition of the empirical variance
and applying the Wick’s rule for jointly Gaussian random variable (see the appendix), we
get

ng— 1nZ/ 1
~2
COV( (n)’gpz’ - N Z Z Cov(d pévk’ Dyt h)
k=0 h=0
ng—1 mny—1
;COV( e.ks dpe, k n Z Z COV De,y k? Dyt s h) (42)
e
=0 h=0, h#k
ng— 1n£/ 1
nmg/ Z Z COV fk’ Dyt h) ’
k=0 h=ny
We consider the three terms on the last line separately.
By Lemma 4.3 the first term, multiplied by n;(mp)* =4, is equal to

nfp(l +£)4H 4 4 G2 (0 pg,’u,g/g)
14

where we set uyy = py — pp . Taking the limit for n — oo, by the dominated convergence
theorem we get

. A_4f 2 _
hﬁn nﬁ(Top)4 4Hn—€C0V(dp£7k,dpl,7k)2 =205 (1 +0)*H 4775,7@,

with n, ¢ given in (39).
The second term, multiplied by n;(70p
defined in (40) as

. P 4—4H N 1 ne—1 k
2O'H <> r Z ZGZ’ H q)‘i‘Gg/ (H —q)

e Mg Mg

)4=4H | can be rewritten using the function Gy ,(H, q)

k=1 q=1
p\44H o ne—1 k
sy (L) 22T Gl pren) - G0
be ne k=1 q=1
= q_
7 4—4H N ng—1 k
sk (2) NS Gl upisen) — G (. 0.
k=1 q=1

By Cesaro’s lemma, the first term converges to 4oy, (1+0)*"=*%° _, G ,(H, q), which
is finite since G%/,Z(H ,q) = O(¢*"~8). The second term converges to zero applying once
more Cesaro’s lemma and noting that

|GH (. pesupe) — GFp(H, @)l < |Gr(q,pe,upe) — Goo(H, q)||Gr(q,pe, uee) + Geo (H, q)|
< (p)'O(¢""®).
(43)

Indeed, Gp(q,pe,upe) + Goo(H,q) = O(¢*~*), while the difference Gy(q,ps,upe) —
Gy (H,q) is equal to

/

. e € 2 i& 2
A [ (Lonuensfae - ose/n) (1- ) (1-60) G de @
H
where the difference L(py, upy, g/q)eiﬁ/l’é — Ly ¢(&/q) is equal to

(/70 = 1) L(pe, ueres€/0) + Lpes ues €a) = Loel€/a) = OE/p).  (49)
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The third term, multiplied by n;(rop)*~*#, converges to zero. This can be shown using

Lemma 4.3 to rewrite the covariance, and then rearranging the summations as follows:

ng—1lmn,—1 Sugrgmg—1
2 2 /
D Gu(—(h=k)prue) = Z G (—=(K + 1), pe, uere)
h=n; k=0 h=1k'=
ne— 1k+3ueré npg—1 k/+3uz'e ne—1 k'
2 2 2
Z Z G r7p57uf%) - Z Z GH(_T7p£7uf’f Z ZG r7p€7uf’5)
=0 r=k'+1 k=0 r=1 =0 r=1
nelfl k; 3?1,@/[ 1 ];; ng—1 k'
2 2
= > Gh(=rpe,upm) Z ZGH —7, Des upre) Z > Gir(=r,pe, wenr)
k=0 m=1 =0 r=1

(46)

The first and the third term of this equation, divided respectively by n, and n,, converge
to the same limit 37, G? ,(H,q) and thus cancel. The contribution from the second term
is also zero in the limit. Indeed, from the Cesaro’s lemma, we get

Bupy—1 &

_\ 4—4H
. (P npuey 1 2
2lim [ — —_ G (=7, pe,upp) =0,
n (pe) neng gy Z Z LIS )

k=0 =1

since lim,, % = (0 while the remaining part converges to a finite quantity. This concludes

the proof of the lemma. O

Proof of Theorem 4.1. As before, without loss of generality, we can assume that p(1 + /) <
Pmax(n) for each n. Moreover, set again n, = n,, and ny = n,,,. For a given a real vector

vl = (vo, . ..,vp), let us consider the random variable T,, = T'(p(n), £, v) defined as a linear
combination of the empirical variances 53(n), . .. ,8]23(1 \py(n) as follows

ng—1

2
ZWU 110)( ;Zi 2_: B(14+0).k - (47)

In order to prove the convergence stated in Theorem (4.1), we have to show that the ran-
. 2 2H Z 2 . . .
dom variable | /n; (1op) (Tn > o UeO 5 +€)) converges to the normal distribution

with zero mean and variance v* W (H )v. To this purpose, we note that

14
\/TT;E (7'017)2_21{ T, — Z UEU]%(H_Z) = Vr?AnVn - E[VnTAnVn] (48)
(=0

where V, is the random vector with entries dj;4¢) 4, 0 < £ < 0,0<k<ny—1,and A4, is
the diagonal matrix with entries

(T p)2 2H
[An](ﬁ(1+e),k),(ﬁ(1+z),k) - OW o = O((rop) > 2H =172y,
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Therefore, condition (1) of Lemma A.1 is satisfied since, by Lemma 4.4,

V)
Var[V;l A, Vo] = n (rop)* 4 > ZWW'COV( o2010(n),0p1 1 (n) =
=0 o=
L £ ¢
np (10p)* ™M [ D 0fCov (G314 (n), G ( ZZ vevp Cov (G 1.0y (1), Togr oy (1))
=0 =1 =0

2 £ ¢
2 _ T
YHHO; IWee(H) +2) Y weop W (H) = " W (H)w.

{=1¢'=0

Moreover, condition (2) of Lemma A.1 is verified. Indeed, if C,, is the covariance matrix of
the random vector V,, and p[C,,] denotes its spectral radius, then, by Lemma A.2, we have

SZE: p(1+10))],

=0

where C, (p(1 + ¢)) is the covariance matrix of the subvector [ds11¢)0, - - - > dp140)n,—1)" -
By Lemma 4.3 and (57), we then have

p[Cu(p(1+0))] < oy[ro(L + Op* 2 | G (0, (1 + £),0) +2 Z Gr(q, p(1 +f),0)]
L q=1
I ng—1
ofrlro(L+0Op*" 2 | Gr(0,p(146),0)+2 Y Gr(H,q)
q=1
ne—1
+20F[r0(1+ Op*" 2 " (Grlg, p(1+€),0) — Gee(H, q))
q=1

= O((rop)*" %),

where in the last step we used the convergence of the sequence G (0,p(1 + ¢),0) and of
the series ;:Og Gy (H,q), together with the inequality

Gr(q,p(1+£),0) = Gee(H, q)| < (p)O(¢* ™).
U

Proof of Theorem 4.2. By the assumptions on the sequence p = p(n) and inequality (18), it
holds

V()2 |02 — o lrop (L + O 2K (H)| < oh (140212 0 (1/5) —» 0.
Thus, from Theorem 4.1 we get

Vs [(10p) 2152 (5, 1) — 0] 5 N(0,W(H)), 49)

n—o0

where o2 is the vector with elements
(0% := 0% (1 4+ 0)*2K(H) for0</(</.
Now we observe that if f(z) := 25:0 wy log(zy), then, by (26) and (25), we have
an(p,w) = f(@ (P, 1) = f((roD)* 3" (p, 0)).
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Moreover, a = f(o?) and V f(0?) = (¢4 K(H)) *w*. Therefore, by the application of the
0-method, the convergence (49) entails the convergence

Vg (@B, w) = @) =5 N (0,VF(e2)W(H)Vf(o?) ,
where
VH@HW(H)V f(o3) = wV(H)w,
and thus concludes the proof. O

5. SOME COMMENTS

5.1. The modified Allan variance and the wavelet estimators. Let X = {X(¢), t € R}
be a self-similar process with weakly stationary increments and consider the generalized
process Y = {Y'(¢), t € R} defined through the set of identities

to
Y(t)dt = X(tg) — X(tl) , th,tg eR.
t1

In short, we write Y = X. From this definition and with the notation introduced in Sec. 3,

we can rewrite the MAVAR as
titop Litp 2
/ Y (t)dt — Y (t)dt (50)

1 1<
2
o“(10,p) = —5—=E — E
( ) 27’3172 (P (tiﬂ t;

i=1
and its related estimator as
Np p t. t 2
. 1 1 i+h-+2p i+h+p
62(10,psm) = e Z - Z / Y (t)dt — / Y (t)dt . (51)
27'0]? Ny h=1 p i=1 tithtp titn
Now we claim that, for p fixed, the quantity

1 P titht2p Lith4p
d(ro,p, h) = NG > / Y(t)dt—/ Y (t)dt

i=1 \7tith+p tith

can be set in correspondence with a family of discrete wavelet transforms of the process
Y, indexed by 7 and h. To see that, let us fix j € Nand h € Z, and set 7o = 27 and t; = 2/,
so that t;,5, = 27(i + h), for all i € N. With this choice on the sequence of times, it is not
difficult to construct a wavelet ¢ (s) such that

dpj = d(10,p,h) = (Vi)  with oy (s) = 279(279s — h). (52)

An easy check shows that the function

— ; ; 1
YP(s) = ;@ﬁ (s), P'(s) == N Litpit2p () = L (9)]

is a proper wavelet satisfying Eq. (52). Notice also that the components ¥, i = 0,...p— 1,
of the mother wavelet, are suitably translated and re-normalized Haar functions.

In the case p = 1, corresponding to the classical Allan variance, the mother wavelet is
exactly given by the Haar function, as was already pointed out in [3].

Though the wavelet representation could be convenient in many respects, the Haar
mother wavelet does not satisfy one of the conditions which are usually required in order to
study the convergence of the estimator (see, e.g., [16]). Moreover, there is a fundamental
difference between the two methods: in the wavelet setting the log-regression is done
over the scale parameter 7y for p fixed, while the MAVAR log-regression given in (26) is
performed over p and for 7y fixed.
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5.2. The modified Hadamard variance. Further generalizing the notion of the MAVAR,
one can define the modified Hadamard variance (MHVAR): For fixed p,Q € Nand 1y € R,

set
2

Q
1 1
02 (7-07 p, Q) = —=—5E ;) Z Z C(Q7 q)Xti+qp ) (53)

12,12
Qlrgp i=1 q=0

!

where ¢(Q,q) = (—1)¢ m. Notice that for ) = 2 we recover the modified Allan
variance. The MHVAR is again a time-domain quantity which has been introduced in [6]
for the analysis of the network traffic. A standard estimator for this variance, is given by

2
1 nQ,p [pth-1 Q

Z Z ZC(Q7Q)Xi’+qp

~2
o (7 =
n( 0,D; Q) Q!Tgp4nQ,p — ==

) (54)
1 nQp—1 p Q
=— (@, @) Xvi+
nQp kzo NG, Top2 ; % ”
forp=1,...,[n/(Q+1)]and ng, =n—(Q+1)p+ 1.
Similarly to the analysis performed for the MAVAR, let us set
dpie = d(70.p, Q. ) = —rs Z Z (Q,4) Xkritap (55)
i=1 ¢q=0
so that we can write
nQ,p—
o*(10,p,Q) =E[dg] and  5i(r0,p,Q Z 2.
Q,p k=0

This suggests that the convergence results, similar to Theorems 4.1 and 4.2, can be achieved
also for the MHVAR and its related log-regression estimator.

5.3. The case of stationary processes. In applications, MAVAR and MHVAR are used in
order to estimate the memory parameter of long-range dependent processes. This general
case is not included in our analysis and it requires a more involved investigation. To our
knowledge, there are no theoretical results along this direction.

APPENDIX A.

In this appendix we recall the Wick’s rule for jointly Gaussian random variables and
some facts used in the above proofs.

Wick’s rule. Let us consider a family {Z;} of jointly Gaussian random variables with
zero-mean. The Wick’s rule is a formula that provides an easy way to compute the quantity
E(Zy) :=E (HZQA ;), for any index-set A (see, e.g. [10]).

Since the Z;’s are zero-mean random variables, if A has odd cardinality we trivially
get E(Zy) = 0. We then assume that |A| = 2k, for some k£ < 1. To recall the Wick’s
rule, it is convenient to introduce the following graph representation. To the given index-
set A we associated a vertex-set V' indexed by the distinct elements of A, and to every
vertex j € V we attached as many half-edges as many times the index j appears in A.
In particular there is a bi-univocal correspondence between the set of half-edges and A,
while |V| < |A|. Gluing together two half-edges attached to vertices i and j, we obtain
the edge (i,7). Performing this operation recursively over all remaining half-edges, we
end-up with a graph G, with vertex set V(G) and edge-set E(G). Let G denote the set
of graphs (possibly not distinguishable) obtained by performing this “gluing procedure” in
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all possible ways. Notice that the set G, is in bi-univocal correspondence with the set of
pairings with ordered pairs of the elements of A.

With this notation, and for all index-sets A with even cardinality, the Wick’s rule for a
family {Z;} of jointly centered Gaussian random variables, provides the identity

— Z H E(Z:Z;). (56)

GG (i,§)EE(G)

Now we recall some facts used in the proof of Theorem 4.1.
Denote by p[A] the spectral radius of a matrix A = {a; j }1<i j<n, then

p[A] < max Z |lai ;|- (57)

1<j<n
Moreover the following lemmas hold.

Lemma A.1. ([15])
Let (V,,) be a sequence of centered Gaussian random vectors and denote by C,, its covariance
matrix. Let (A,) be a sequence of deterministic symmetric matrices such that

(1) limy, 400 Var[V,I' A, V] = A2 € [0, +00)
(2) limy— 400 p[An]p[Cn] = 0.
Then VI A, V,, — E[V,.I A, V,,] converges in distribution to the normal law N'(0, \?).

Lemma A.2. ([13])

Let m > 2 be an integer and C' be a m x m covariance matrix. Let r be an integer such that
1 < r < m — 1. Denote by C the top left submatrix with size r x r and by Cy the bottom
right submatrix with size (m —r) x (m —r), i.e.

C1 = [Cijh<ij<r  and  Cy = [Cijlri1<i,j<m

Then p[C] < p[C1] + p[Ca].
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