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Abstract

The ability to perform shape retrieval based not only on fullsimilarity, but
also partial similarity is a key property for any content-based search engine. We
prove that persistence diagrams can reveal a partial similarity between two shapes
by showing a common subset of points. This can be explained using the Mayer-
Vietoris formulas that we develop for ordinary, relative and extended persistent
homology. An experiment outlines the potential of persistence diagrams as shape
descriptors in retrieval tasks based on both full and partial similarity.
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1. Introduction

Distinguishing and recognizing deformable shapes is an important problem,
encountered in numerous pattern recognition, computer vision and computer graph-
ics applications. A major problem in the analysis of non-rigid shapes is finding
similarity of deformable shapes which have only partial similarity, i.e., have sim-
ilar as well as dissimilar parts.

Persistent homology is an algebraic tool for measuring topological features of
spaces and functions. It allows for a multi-scale analysis of topological data. The
scale at which a feature is significant is measured by its persistence. Motivated
by the problem of describing and recognizing deformable shapes, persistence of
0-homology, also known as a size function, has been studied for years first in com-
puter vision (Frosini, 1992; Verri et al., 1993) and later incomputer graphics (Bi-
asotti et al., 2006). Persistence of higher homology was originally introduced to
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study alpha-shapes and later applied to pattern recognition (Carlsson et al., 2005).
Using persistent homology, we obtain a shape descriptor in terms of a multiset of
points of the plane, called a persistence diagram (or a barcode). Comparison of
persistence diagrams by a distance such as the Hausdorff distance gives a stable
methodology to assess shape similarity (Cohen-Steiner et al., 2007).

In this paper we study how the problem of assessing partial similarity can be
dealt with using persistent homology.

To this end, we begin looking for Mayer-Vietoris formulas for persistence. A
Mayer-Vietoris formula is a formula relating the ranks of the homology groups
of spacesX,A,B,C whenX = A∪B andC = A∩B. A Mayer -Vietoris formula
for ordinary persistence has been obtained in (Di Fabio and Landi, 2010). Similar
formulas also for relative and extended persistence are a novel contribution of this
paper.

In ordinary persistence, the Mayer-Vietoris formula yields relationships among
the persistence diagrams ofX,A,B,C. These relationships indicate that the pres-
ence ofA in X can be revealed by the presence of a common subset of points in
the persistence diagrams ofA andX (analogously forB andX).

This idea is effectively used in the final experiment, dealing with the detection
of both full and partial similarity of shapes.

2. Background on ordinary, extended and relative persistence

Persistence involves analyzing a topological spaceY through the evolution of
a family of its subspaces nested by inclusion, i.e. a filtration. Applying homology
to the filtration allows us to measure the lifetime of topological features in passing
from a set of the filtration into a larger one. The basic assumption is that the
longer a feature survives, the more meaningful or coarse thefeature is for shape
description. Vice-versa, noise and shape details are characterized by a shorter life.

A special type of filtration is the one formed using the sublevel setsYu =
ϕ−1((−∞,u]), u∈ R, of some real-valued functionϕ : Y → R.

The filtration{Yu}u∈R is used to define ordinary persistence as follows. Given
u ≤ v ∈ R, we consider the inclusion ofYu into Yv. This inclusion induces a
homomorphism of homology groupsHk(Yu) → Hk(Yv) for everyk∈ Z. Its image
consists of the classes that live at least fromHk(Yu) to Hk(Yv) and is called the
(ordinary) kth persistent homology group of Y at(u,v). When this group is finitely
generated, we denote its rank byOrdu,v

k (Y).
The ordinary persistence paradigm allows us to rank topological features with

bounded lifetime by importance, according to the length of their life. Neverthe-



less, it does not take into account the fact that some topological features could give
rise to essential homology classes ofY that never die along the filtration, still be-
ing produced by noise or expressing shape details. To overcome this problem, we
can consider the following extension of persistence, in which all homology classes
eventually die. This allows us to rank also topological features with unbounded
lifetime.

To define extended persistence, also the superlevel setsYu = ϕ−1([u,+∞)),
u ∈ R, are used. First, we consider the filtration{(Y,Yu)}u∈R, with R inversely
ordered, in which the pair of sets(Y,Yu) is nested in(Y,Yv) wheneveru≥ v. Given
u≥ v∈ R, the inclusion of the pair(Y,Yu) into (Y,Yv) induces a homomorphism
of homology groupsHk(Y,Yu) → Hk(Y,Yv) for everyk ∈ Z. Its image is called
the relative kth persistent homology group of Y at(u,v). When this group is
finitely generated, we denote its rank byRelu,v

k (Y). Finally, concatenating the two
previous filtrations, we can define extended persistence as follows. Givenu,v∈R,
the inclusion of the pair(Yu, /0) into (Y,Yv) induces a homomorphism of homology
groupsHk(Yu) → Hk(Y,Yv) for everyk ∈ Z. Its image is called theextended kth
persistent homology group of Y at(u,v). When this group is finitely generated,
we denote its rank byExtu,v

k (Y).
More details on ordinary, relative and extended persistence can be found in

(Cohen-Steiner et al., 2009).

3. Mayer-Vietoris formulas for persistent homology

In this section we give Mayer-Vietoris formulas for ordinary, relative and ex-
tended persistent homology.

Given a triad(X,A,B) with X = A∪B, a Mayer-Vietoris formula is a rela-
tionship among the ranks of the homology groups ofX,A,B andC = A∩B. It is
obtainable from the Mayer-Vietoris sequence

· · · →Hk+1(X)→Hk(C)→Hk(A)⊕Hk(B)→Hk(X)→·· · ,

when this sequence is exact. We recall that the homomorphismHk+1(X)→Hk(C)
maps[z] to [∂ (z|A)], the homomorphismHk(C) → Hk(A)⊕ Hk(B) maps [z] to
([z], [−z]), and the homomorphismHk(A)⊕ Hk(B) → Hk(X) maps([z], [z′]) to
[z+z′].

According to the homology theory we use, different assumptions on the triad
guarantee that the Mayer-Vietoris sequence is exact. To keep these assumptions to
a minimum we shall work witȟCech homology. Indeed, iňCech homology, it is



sufficient that triads are compact and homology coefficientsare taken in a vector
space. Moreover, for triangulable spaces,Čech and simplicial homology coincide
(Eilenberg and Steenrod, 1952).

In the context of persistent homology we endowX with a continuous function
ϕ, andA,B andC with the respective restrictions ofϕ. We assume that(X,A,B) is
a compact triad, and that the homology groups of the subleveland superlevel sets
of ϕ, ϕ|A, ϕ|B, ϕ|C are finitely generated. Moreover, we take homology coefficients
in a field, so that persistent homology groups are vector spaces. These notations
and assumptions will be maintained throughout the paper.

The novel idea in obtaining Mayer-Vietoris formulas for persistent homology
is that of interlacing Mayer-Vietoris sequences with long exact sequences contain-
ing the maps that define the persistent homology groups. In the case of ordinary
persistence, which is defined by the homomorphismHk(Xu) → Hk(Xv) induced
by inclusion, we shall use the long exact sequence of the pair(Xv,Xu), and the
analogous ones forA,B,C. In the case of relative persistence, which is defined
by the homomorphismHk(X,Xu) → Hk(X,Xv) induced by inclusion, we shall
use the long exact sequence of the triple(X,Xv,Xu), and the analogous ones for
A,B,C. Finally, in the case of extended persistence, which is defined by the homo-
morphismHk(Xu) → Hk(X,Xv) induced by inclusion, we shall use the long exact
sequence of the proper triad(X,Xu,Xv), and the analogous ones forA,B,C.

3.1. A Mayer-Vietoris formula for ordinary persistence

Since(X,A,B) is a compact triad andϕ is continuous, also(Xu,Au,Bu) is a
compact triad for eachu ∈ R. Therefore, for each pair of valuesu, v in R, with
u≤ v, andk∈ Z, we can consider the following diagram

Hk+1(Xu)
δk→ Hk(Cu) → Hk(Au)⊕Hk(Bu) → Hk(Xu)

↓hk+1 ↓ fk ↓gk ↓hk

Hk+1(Xv)
δ ′

k→ Hk(Cv) → Hk(Av)⊕Hk(Bv) → Hk(Xv)
↓ ↓ ↓ ↓

Hk+1(Xv,Xu)
δ ′′

k→ Hk(Cv,Cu)→Hk(Av,Au)⊕Hk(Bv,Bu)→Hk(Xv,Xu)
↓ ↓ ↓ ↓

Hk(Xu)
δk−1
→ Hk−1(Cu) → Hk−1(Au)⊕Hk−1(Bu) → Hk−1(Xu)

(1)

where the horizontal lines are part of exact Mayer-Vietorissequences of the triads
(Xu,Au,Bu), (Xv,Av,Bv), and(Xv,Av,Bv) relative to(Xu,Au,Bu), and the vertical



lines are part of long exact sequences of the pairs(Xv,Xu), (Av,Au), (Bv,Bu),
(Cv,Cu).

Theorem 3.1. For every u,v∈ R, with u≤ v, and for every k∈ Z,

Ordu,v
k (X) = Ordu,v

k (A)+Ordu,v
k (B)−Ordu,v

k (C)+ rkδ ′
k− rkδ ′′

k + rkδk−1,

with δ ′
k, δ ′′

k , andδk−1 as in Diagram(1).

This result has been proved in (Di Fabio and Landi, 2010). Theproof is based
on observing thatOrdu,v

k (X) = rkhk, Ordu,v
k (A)+Ordu,v

k (B) = rkgk, Ordu,v
k (C) =

rk fk, with hk,gk, fk as in Diagram (1). Moreover, it uses some algebraic results
that can be restated as follows.

Lemma 3.2. If Lk, Mk, Nk are finitely generated vector spaces for every k∈ Z,
and all the vertical and horizontal lines are exact in the diagram

...
...

...
...

...
...

...
↓ ↓ ↓ ↓ ↓ ↓ ↓

· · · → Lk+1
∆k→ Mk → Nk → Lk → ·· · → M0 → N0 → L0 → 0

↓λk+1 ↓µk ↓νk ↓λk ↓µ0 ↓ν0 ↓λ0

· · · → L′
k+1

∆′
k→ M′

k → N′
k → L′

k → ·· · → M′
0 → N′

0 → L′
0 → 0

↓ ↓ ↓ ↓ ↓ ↓ ↓

· · · → L′′
k+1

∆′′
k→ M′′

k → N′′
k → L′′

k → ·· · → M′′
0 → N′′

0 → L′′
0 → 0

↓ ↓ ↓ ↓ ↓ ↓ ↓

· · · → Lk
∆k−1
→ Mk−1→Nk−1→ Lk−1→ ·· · → 0 0 0

↓ ↓ ↓ ↓
...

...
...

...

thenrkλk = rkνk− rkµk + rk∆′
k− rk∆′′

k + rk∆k−1.

3.2. A Mayer-Vietoris formula for relative persistence

In almost the same way as for ordinary persistence, we can deduce a Mayer-
Vietoris formula for relative persistence.

For eachu≥ v∈ R, (X,Xv,Xu) is a compact triad withXu ⊆ Xv ⊆ X. So, we
can consider the following long exact sequence of the triple:

. . . → Hk(X
v
,Xu) → Hk(X,Xu) → Hk(X,Xv) → Hk−1(X

v
,Xu) → . . .



Analogous exact sequences exist forA,B,C. Therefore we have the following
diagram for everyk∈ Z:

Hk+1(X,Xu)
δ̄k→ Hk(C,Cu) → Hk(A,Au)⊕Hk(B,Bu) → Hk(X,Xu)

↓h̄k+1 ↓ f̄k ↓ḡk ↓h̄k

Hk+1(X,Xv)
δ̄ ′

k→ Hk(C,Cv) → Hk(A,Av)⊕Hk(B,Bv) → Hk(X,Xv)
↓ ↓ ↓ ↓

Hk(Xv,Xu)
δ̄ ′′

k−1
→ Hk−1(Cv,Cu)→Hk−1(Av,Au)⊕Hk−1(Bv,Bu)→Hk−1(Xv,Xu)

↓ ↓ ↓ ↓

Hk(X,Xu)
δ̄k−1
→ Hk−1(C,Cu) → Hk−1(A,Au)⊕Hk−1(B,Bu) → Hk−1(X,Xu)

(2)

where the horizontal lines are part of exact Mayer-Vietorissequences of the triads
(X,A,B) relative to(Xu,Au,Bu), (X,A,B) relative to(Xv,Av,Bv), and(Xv,Av,Bv)
relative to(Xu,Au,Bu), and the vertical lines are part of long exact sequences of
the triples(X,Xv,Xu), (A,Av,Au), (B,Bv,Bu), (C,Cv,Cu).

Applying Lemma 3.2 to Diagram (2), and observing thatRelu,v
k (X) = rkh̄k,

Relu,v
k (A)+Relu,v

k (B) = rkḡk, Relu,v
k (C) = rk f̄k, we deduce the following result.

Theorem 3.3. For every u,v∈ R, with u≥ v, and for every k∈ Z,

Relu,v
k (X) = Relu,v

k (A)+Relu,v
k (B)−Relu,v

k (C)+ rkδ̄ ′
k− rkδ̄ ′′

k−1 + rkδ̄k−1,

with δ̄ ′
k, δ̄ ′′

k−1, andδ̄k−1 as in Diagram(2).

3.3. Mayer-Vietoris formulas for extended persistence

We now deduce Mayer-Vietoris formulas for extended persistence. The main
difference with the previous cases is that, here, both sublevel and superlevel sets
are involved, withu,v varying inR. So, it will be necessary to distinguish the two
casesu < v andu≥ v.

Theorem 3.4. For every u,v∈ R, and k∈ Z, the following statements hold:

(i) If u < v, then

Extu,v
k (X) = Extu,v

k (A)+Extu,v
k (B)−Extu,v

k (C)+ rkδ̂ ′
k− rkδ̂ ′′

k + rkδ̂k−1

with δ̂ ′
k, δ̂ ′′

k , andδ̂k−1 as in Diagram(4).



(ii) If u ≥ v, then

Extu,v
k (X) = Extu,v

k (A)+Extu,v
k (B)−Extu,v

k (C)+ rkδ̃ ′
k− rkδ̃ ′′

k−1 + rkδ̃k−1,

with δ̃ ′
k, δ̃ ′′

k−1, andδ̃k−1 as in Diagram(5).

Proof. Let us consider the triad(X,Xu,Xv) for fixedu,v∈ R, and, for the sake of
conciseness, let us denoteXu∪Xv simply by∪Xv

u andXu∩Xv by ∩Xv
u.

Since this triad(X,Xu,Xv) is compact, and hence proper, for everyu,v ∈ R,
its homology sequence

. . . → Hk(Xu,
∩Xv

u) → Hk(X,Xv) → Hk(X,
∪Xv

u) → Hk−1(Xu,
∩Xv

u) → . . . (3)

is exact (Eilenberg and Steenrod, 1952). Let us consider separately the two cases
u < v andu≥ v.

(i) If u < v, then∩Xv
u = /0. So (3) becomes

. . . → Hk(Xu) → Hk(X,Xv) → Hk(X,
∪Xv

u) → Hk−1(Xu) → . . . .

Applying analogous arguments toA,B,C, for everyk ∈ Z, we can consider the
following diagram

Hk+1(Xu)
δ̂k→ Hk(Cu) → Hk(Au)⊕Hk(Bu) → Hk(Xu)

↓ĥk+1 ↓ f̂k ↓ĝk ↓ĥk

Hk+1(X,Xv)
δ̂ ′

k→ Hk(C,Cv) → Hk(A,Av)⊕Hk(B,Bv) → Hk(X,Xv)
↓ ↓ ↓ ↓

Hk+1(X,∪Xv
u)

δ̂ ′′
k→ Hk(C,∪Cv

u)→Hk(A,∪Av
u)⊕Hk(B,∪Bv

u)→Hk(X,∪Xv
u)

↓ ↓ ↓ ↓

Hk(Xu)
δ̂k−1
→ Hk−1(Cu) → Hk−1(Au)⊕Hk−1(Bu) → Hk−1(Xu)

(4)

where the horizontal lines are part of exact Mayer-Vietorissequences of the triads
(Xu,Au,Bu), (X,A,B) relative to(Xv,Av,Bv), and(X,A,B) relative to(∪Xv

u,∪Av
u,

∪Bv
u),

and the vertical lines are part of long exact sequences of theproper triads(X,Xu,Xv),
(A,Au,Av), (B,Bu,Bv), (C,Cu,Cv).

We observe thatExtu,v
k (X) = rkĥk, Extu,v

k (A)+Extu,v
k (B) = rkĝk, Extu,v

k (C) =

rk f̂k. Therefore, applying Lemma 3.2, we obtain the claimed formula.
(ii ) If u≥ v, then∪Xv

u = X. So (3) becomes

. . . → Hk(Xu,
∩Xv

u) → Hk(X,Xv) → Hk(X,X) → Hk−1(Xv,
∩Xv

u) → . . . .



This implies that, for everyk∈ Z, Hk(Xu,
∩Xv

u) is isomorphic toHk(X,Xv). Con-
sequently, by the commutativity of the diagram

Hk(Xu)
ĥk //

h̃k &&M

M

M

M

M

M

M

M

M

M

Hk(X,Xv)

Hk(Xu,
∩Xv

u)

∼=

OO

it follows thatExtu,v
k (X) = rkh̃k. Similar considerations apply toA,B,C. Hence,

for everyk ∈ Z, Extu,v
k (A)+ Extu,v

k (B) = rkg̃k andExtu,v
k (C) = rk f̃k, with g̃k and

f̃k as in the following diagram

Hk+1(Xu)
δ̃k→ Hk(Cu) → Hk(Au)⊕Hk(Bu) → Hk(Xu)

↓h̃k+1 ↓ f̃k ↓g̃k ↓h̃k

Hk+1(Xu,
∩Xv

u)
δ̃ ′

k→ Hk(Cu,
∩Cv

u)→Hk(Au,
∩Av

u)⊕Hk(Bu,
∩Bv

u)→Hk(Xu,
∩Xv

u)
↓ ↓ ↓ ↓

Hk(
∩Xv

u)
δ̃ ′′

k−1
→ Hk−1(

∩Cv
u) → Hk−1(

∩Av
u)⊕Hk−1(

∩Bv
u) → Hk−1(

∩Xv
u)

↓ ↓ ↓ ↓

Hk(Xu)
δ̃k−1
→ Hk−1(Cu) → Hk−1(Au)⊕Hk−1(Bu) → Hk−1(Xu)

(5)

where the horizontal lines are part of exact Mayer-Vietorissequences of the triads
(Xu,Au,Bu), (Xu,Au,Bu) relative to(∩Xv

u,∩Av
u,

∩Bv
u), and the triad(∩Xv

u,∩Av
u,

∩Bv
u),

respectively, and the vertical lines are part of long exact sequences of the pairs
(Xu,

∩Xv
u), (Au,

∩Av
u), (Bu,

∩Bv
u), (Cu,

∩Cv
u).

The claim is again an immediate consequence of Lemma 3.2.

4. Detection of sub-part similarity of shapes by persistence

Persistent homology groups describe the shape of a spaceY as seen through
a functionϕ, but the quantitative comparison of two shapes is performedusing a
representation of these groups, the so-calledpersistence diagram.

A persistence diagramDk(Y) is a set of points(u,v) ∈ R
2 each corresponding

to a pairing between the birth of ak-homology class atu and its death atv along
the filtration ofY, union the points on the diagonal.Dk(Y) can be partitioned into
the ordinary sub-diagram, DOrd

k (Y), the relative sub-diagram, DRel
k (Y), and the

extended sub-diagram, DExt
k (Y) (Cohen-Steiner et al., 2009).



Algebraically, points ofDOrd
k (Y) are those points(u,v) ∈ R

2, with u < v, that
have positive multiplicityµu,v

k (Y), whereµu,v
k (Y) is equal to

lim
ε→0+

(
Ordu+ε,v−ε

k (Y)−Ordu−ε,v−ε
k (Y)−Ordu+ε,v+ε

k (Y)+Ordu−ε,v+ε
k (Y)

)
.

Ordinary persistence can reveal sub-part similarity of shapes by showing com-
mon subsets of points in the corresponding persistence diagrams. This fact is
illustrated by an example in Table 1, and implicitly stated in the following result
from (Di Fabio and Landi, 2010).

Theorem 4.1. For every p= (u,v)∈R
2, with u< v, and every k∈Z, the following

statements hold:

(i) Denotingδ ′′
k : Hk+1(Xv,Xu)→ Hk(Cv,Cu) byδ v,u

k , if p∈ DOrd
k (X)∪DOrd

k (C)

andlimε→0+

(
rkδ v−ε,u−ε

k − rkδ v−ε,u+ε
k + rkδ v+ε,u+ε

k − rkδ v+ε,u−ε
k

)
≤0, then

p∈ DOrd
k (A)∪DOrd

k (B).
(ii) Assuming that bothϕ andϕ|C have at most a finite number of homological

k-critical values, if p∈ DOrd
k (A)∪DOrd

k (B) and at least one of its coordi-
nates is neither a homological(k+1)-critical value ofϕ nor a homological
(k−1)-critical value ofϕ|C, then p∈ DOrd

k (X)∪DOrd
k (C).

The proof of this result is based on the Mayer-Vietoris formula for ordinary
persistence given in Theorem 3.1, which yields a relation linking the multiplicities
of points ofDOrd

k (X), DOrd
k (A), DOrd

k (B), andDOrd
k (C).

5. Experiment and discussion

In Table 2, we show a retrieval test on a data set containing 15shapes: 5 hu-
mans, 5 horses and 5 centaurs (Bronstein et al., 2008). Each shape differs by an
articulation and additional parts. We assume as ground truth that a man and a
centaur are dissimilar in the sense of a full similarity criterion, yet, parts of these
shapes (the upper part of the centaur and the upper part of theman) are simi-
lar. Likewise, a horse and a centaur are similar because theyshare a common
part (bottom part of the horse body). At the same time, a man and a horse are
dissimilar.

Each shape is modeled by taking as topological space the set of black pix-
els with the 8-neighbor adjacency topology, and as filteringfunction the function
“minus the distance from the center of the bounding box”. Shapes are analyzed
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Table 1: The 1-homology ordinary persistence diagrams of a triangle meshX and its sub-parts
A,B,C are computed with respect to the functionϕ(x,y,z) = |y+z|+ |y−z|.

Table 2: Retrieval from the mythological 2D dataset. The first column contains the query shapes.
In each row retrieved shapes are ordered by increasing distance. The first retrieved shape is omitted
being always equal to the query shape.



using only ordinary and extended 0-th persistence. Table 2 shows the retrieval
obtained using the Hausdorff distance on extended sub-diagrams and the partial
Hausdorff pseudo-distance on the ordinary sub-diagrams. The partial Hausdorff
pseudo-distance automatically selects a fixed fraction of the persistence diagrams
points giving the best matching and uses only this subset to compute the Haus-
dorff distance (Huttenlocher et al., 1993) . We considered the 98% of points of
each ordinary persistence sub-diagram.

Our test shows that, by using persistent homology to retrieve shapes from this
dataset, the similarity relations assumed as ground truth are respected.

Based on these results we conclude that persistent homology performs nicely
for the needs of automatic partial similarity assessment, and could be exploited in
content-based shape search engines.

Since in this paper we developed Mayer-Vietoris formulas also for relative
and extended persistence, possible advances could concernobtaining from these
formulas results analogous to Theorem 4.1. One difficulty inthis respect is that
one should first develop an appropriate notion of multiplicity for points to belong
to these sub-diagrams.
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