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Abstract

The ability to perform shape retrieval based not only on $ithilarity, but
also partial similarity is a key property for any contenséd search engine. We
prove that persistence diagrams can reveal a partial sitpiteetween two shapes
by showing a common subset of points. This can be explainied tise Mayer-
Vietoris formulas that we develop for ordinary, relativedaaxtended persistent
homology. An experiment outlines the potential of persiseediagrams as shape
descriptors in retrieval tasks based on both full and dasitiailarity.
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1. Introduction

Distinguishing and recognizing deformable shapes is arortapt problem,
encountered in numerous pattern recognition, computemvand computer graph-
ics applications. A major problem in the analysis of nonerighapes is finding
similarity of deformable shapes which have only partialignity, i.e., have sim-
ilar as well as dissimilar parts.

Persistent homology is an algebraic tool for measuringlogpeal features of
spaces and functions. It allows for a multi-scale analystsological data. The
scale at which a feature is significant is measured by itsgierse. Motivated
by the problem of describing and recognizing deformablg@ebapersistence of
0-homology, also known as a size function, has been studrggkfirs first in com-
puter vision (Frosini, 1992; Verri et al., 1993) and latecomputer graphics (Bi-
asotti et al., 2006). Persistence of higher homology wagrally introduced to
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study alpha-shapes and later applied to pattern recogififiarlsson et al., 2005).
Using persistent homology, we obtain a shape descript@rmg of a multiset of
points of the plane, called a persistence diagram (or a dajcdComparison of
persistence diagrams by a distance such as the Hausdaaihcksgives a stable
methodology to assess shape similarity (Cohen-Steiner, 0417).

In this paper we study how the problem of assessing partiglasity can be
dealt with using persistent homology.

To this end, we begin looking for Mayer-Vietoris formulas feersistence. A
Mayer-Vietoris formula is a formula relating the ranks oé thomology groups
of spacesX,A,B,C whenX = AUB andC = ANB. A Mayer -Vietoris formula
for ordinary persistence has been obtained in (Di Fabio amdll, 2010). Similar
formulas also for relative and extended persistence argel nontribution of this
paper.

In ordinary persistence, the Mayer-Vietoris formula ygtdlationships among
the persistence diagrams XfA,B,C. These relationships indicate that the pres-
ence ofA in X can be revealed by the presence of a common subset of points in
the persistence diagramsAfandX (analogously foB andX).

This idea is effectively used in the final experiment, deglith the detection
of both full and partial similarity of shapes.

2. Background on ordinary, extended and relative persistence

Persistence involves analyzing a topological spatierough the evolution of
a family of its subspaces nested by inclusion, i.e. a fitratiApplying homology
to the filtration allows us to measure the lifetime of topatadjfeatures in passing
from a set of the filtration into a larger one. The basic asdionps that the
longer a feature survives, the more meaningful or coarséetitere is for shape
description. Vice-versa, noise and shape details are cieaized by a shorter life.

A special type of filtration is the one formed using the sublesetsY, =
¢ ~1((—o0,u]), u € R, of some real-valued functiofr: Y — R.

The filtration{Y, } ucr is used to define ordinary persistence as follows. Given
u<velR, we consider the inclusion of, into Y,. This inclusion induces a
homomorphism of homology group(Y,) — Hk(Yy) for everyk € Z. Its image
consists of the classes that live at least frelptY,) to Hk(Y,) and is called the
(ordinary) kth persistent homology group of Y(atv). When this group is finitely
generated, we denote its rank @yd,"" (Y).

The ordinary persistence paradigm allows us to rank topodbfeatures with
bounded lifetime by importance, according to the lengthheirtlife. Neverthe-



less, it does not take into account the fact that some topabigatures could give
rise to essential homology classesyathat never die along the filtration, still be-
ing produced by noise or expressing shape details. To overtbis problem, we
can consider the following extension of persistence, ircilaill homology classes
eventually die. This allows us to rank also topological deas with unbounded
lifetime.

To define extended persistence, also the superlevel$ets¢ —1([u, +)),
u € R, are used. First, we consider the filtratiofY, YY) } ,cr, with R inversely
ordered, in which the pair of set¥, Y!) is nested inY,Y") wheneveu > v. Given
u>v € R, the inclusion of the paifY, YY) into (Y,Y") induces a homomorphism
of homology groupdHk(Y,Y") — Hy(Y,YV) for everyk € Z. Its image is called
the relative kth persistent homology group of Y (atv). When this group is
finitely generated, we denote its rank IBy.l[j"’(Y). Finally, concatenating the two
previous filtrations, we can define extended persistencalag/s. Givenu,v € R,
the inclusion of the paifYy, 0) into (Y,YV) induces a homomorphism of homology
groupsH(Yy) — Hk(Y,YV) for everyk € Z. Its image is called thextended kth
persistent homology group of Y @i,v). When this group is finitely generated,
we denote its rank bgxi."" (Y).

More details on ordinary, relative and extended persigteran be found in
(Cohen-Steiner et al., 2009).

3. Mayer-Vietorisformulasfor persistent homology

In this section we give Mayer-Vietoris formulas for ordiparelative and ex-
tended persistent homology.

Given a triad(X,A,B) with X = AUB, a Mayer-Vietoris formula is a rela-
tionship among the ranks of the homology groupXof,B andC = ANB. ltis
obtainable from the Mayer-Vietoris sequence

- — Hip1(X) — Hi(C) — Hi(A) © Hk(B) — H(X) — -+,

when this sequence is exact. We recall that the homomorghisia(X) — Hg(C)
maps|z] to [d(z,)], the homomorphisnH,(C) — Hk(A) © Hk(B) maps|Z to
([Z,[—2)), and the homomorphisrhlk(A) ® Hk(B) — Hk(X) maps([Z,[Z]) to
z+Z].

According to the homology theory we use, different assuomstion the triad
guarantee that the Mayer-Vietoris sequence is exact. Totkese assumptions to
a minimum we shall work wittCech homology. Indeed, iGech homology, it is



sufficient that triads are compact and homology coefficiamtstaken in a vector
space. Moreover, for triangulable spadéeph and simplicial homology coincide
(Eilenberg and Steenrod, 1952).

In the context of persistent homology we endgwvith a continuous function
¢, andA, B andC with the respective restrictions ¢f We assume thdiX, A, B) is
a compact triad, and that the homology groups of the subsn@kuperlevel sets
of ¢, §|a. §jg, ¢|c are finitely generated. Moreover, we take homology coefisie
in a field, so that persistent homology groups are vectorespathese notations
and assumptions will be maintained throughout the paper.

The novel idea in obtaining Mayer-Vietoris formulas for gistent homology
is that of interlacing Mayer-Vietoris sequences with lomg@& sequences contain-
ing the maps that define the persistent homology groups.elicdise of ordinary
persistence, which is defined by the homomorphidg(X,) — Hy(Xy) induced
by inclusion, we shall use the long exact sequence of the(paiX,), and the
analogous ones fok B,C. In the case of relative persistence, which is defined
by the homomorphisni (X, X") — Hy(X,X") induced by inclusion, we shall
use the long exact sequence of the tripte XV, X"), and the analogous ones for
A, B,C. Finally, in the case of extended persistence, which is ddfiry the homo-
morphismH(X,) — Hy(X,XY) induced by inclusion, we shall use the long exact
sequence of the proper trigi, X,, X"), and the analogous ones &rB,C.

3.1. A Mayer-Vietoris formula for ordinary persistence

Since(X,A,B) is a compact triad ang is continuous, alséX,,Ay,By) is a
compact triad for each € R. Therefore, for each pair of valuesv in R, with
u <v, andk € Z, we can consider the following diagram

Hoa(X) 2 HeC) —  HeA)@H(BY)  — Hi(X)

Ihiia L Lok Lhy
Het() % HeG) —  HdA)BH(BY)  — He(X%)
l o ! ! (1)
Hice 1 (X X) 2 Hi(CuyCu) — Hic(Av, Au) & Hic(By, Bu) — Hic (X, Xo)
! ! ! !
Hi(Xu) %t Hi—1(Cu) — Hi—1(Au) @ Hk-1(By) — Hi—1(Xu)

where the horizontal lines are part of exact Mayer-Vieteeguences of the triads
(Xu,Au, Bu), (Xv,Ay,By), and(Xy, Ay, By) relative to(Xy, Ay, By), and the vertical



lines are part of long exact sequences of the paisXy), (Av,Au), (By,Bu),
(CV7CLI)-

Theorem 3.1. For every uv € R, with u<v, and for every k Z,
Ord,¥(X) = Ord,"¥(A) + Ord, "' (B) — Ord"(C) + rkg, — rkg, + rkd_1,
with ¢, 9/, and 1 as in Diagram(1).

This result has been proved in (Di Fabio and Landi, 2010). grbef is based
on observing tha®rd,""(X) = rkhy, Ord,""(A) + Ord,"'(B) = rkgk, Ord,”'(C) =
rk fx, with hy, gk, fk as in Diagram (1). Moreover, it uses some algebraic results
that can be restated as follows.

Lemma 3.2. If Lx, My, Nk are finitely generated vector spaces for every K,
and all the vertical and horizontal lines are exact in thegtam

T Lol

o= Lgat % M - Nk - Lk —--— Mg — Np — Lg — O

1M Lk v LA Lo v A
A/

e — L{<+l . Ml/< — N|/( — Lf( — e — |V|6—> N6 — L/0 — 0
! ! ! ! ! ! !

co Ly B M S N o L oo MY o N L 0
! ! ! ! ! ! !

oo Lk MG —Nei—Leg—ee— 00 00 0

! ! ! !

thenrkAy = rkvy — rkpy + rkA, — rkAy + rkAy_q.

3.2. A Mayer-Vietoris formula for relative persistence

In almost the same way as for ordinary persistence, we camcdeal Mayer-
Vietoris formula for relative persistence.

For eachu > v e R, (X,XY,X") is a compact triad witiX" C XY C X. So, we
can consider the following long exact sequence of the triple

= Hk(XV,Xu) — Hk(X,Xu) — Hk(X,XV) — Hk_l(XV,X“) — ...



Analogous exact sequences exist B,C. Therefore we have the following
diagram for everk € Z:

Hk+1(X,X“)g> He(C,CY) —  Hx(A A& H(B,BY) — Hg(X,X"Y)

I B L 19 Lhy
Hi1(X, XY) i Hk(C,CY) —  H(AAY)@H(B,BY) — Hy(X,XY)
! - ! ! ! 2
Hi (XY, XY) L Hk_1(CY,CY) — Hx_1(AY,A") @ Hy_1(BY, BY) — Hy_1(XY, XY)
! ~ ! ! !
-1

Hi (X, XY) 25 He 1(C,CY) — Hie1(AAY) & H_1(B,BY) — Hi_1(X, XY)

where the horizontal lines are part of exact Mayer-Vieteeguences of the triads
(X, A, B) relative to(X", A", BY), (X, A, B) relative to(XY,A,BY), and(XY, A", BY)
relative to(XY, A", BY), and the vertical lines are part of long exact sequences of
the triples(X, XY, XY), (A,AY,AY), (B,BY,BY), (C,C",CY). _
Applying Lemma 3.2 to Diagram (2), and observing tRa]""(X) = rkh,
Rel"'(A) + Rel(B) = rkgk, Re}"’(C) = rkfy, we deduce the following result.

Theorem 3.3. For every uv € R, with u> v, and for every k Z,
Rel"(X) = Re["Y(A) + Rel"Y(B) — Ref"Y(C) 4 rkd) — rkdy_; +rkdy_1,
with cii _”_1, andd,_; as in Diagram(2).

3.3. Mayer-Vietoris formulas for extended persistence

We now deduce Mayer-Vietoris formulas for extended perarst. The main
difference with the previous cases is that, here, both sabéind superlevel sets
are involved, withu, v varying inR. So, it will be necessary to distinguish the two
casess < vandu > v.

Theorem 3.4. For every uv € R, and ke Z, the following statements hold:
(i) Ifu<v,then

Ext(X) = Ext™(A) +Ext™(B) — Exic™(C) + ko — 1k + ko1

with 3‘2 3{, and 3;(,1 as in Diagram(4).



(i) Ifu>v,then
Ext'(X) = Exi""(A) + Exi"(B) — Exi"(C) + rkdy, — rkdy  +rkd_1,
with &, & ,, andd,_; as in Diagram(5).

Proof. Let us consider the tria@X, X, XV) for fixedu,v € R, and, for the sake of
conciseness, let us denotgu XY simply by VXY andX, N XY by "XY.

Since this triad X, X,, X") is compact, and hence proper, for every € R,
its homology sequence

co = H(Ku, XY — H(X,XY) = Hi(X,PXY) — Hican (Ko, "X — ... ()

is exact (Eilenberg and Steenrod, 1952). Let us considaraggy the two cases
u<vandu>v.
(i) If u<v, then”XY = 0. So (3) becomes

.= He(Xy) — He(X, XY) — Hk(X,UXL\J/) — He1(Xy) — -

Applying analogous arguments & B,C, for everyk € Z, we can consider the
following diagram

Hot(X) % HW(Cy) —  HdA)&H(By)  — He(X)
Lhiia i L Lok i
Hie 106X % HE(C,CY) — H(AAY) @ H(B,BY) — Hi(X,XY)
| ! ! ! (4)

Hice 106, UXY) 2 H(C,UCY) — HiA UAY) @ Hi(B,UBY) — Hie(X,UXY)

! ! ! !
HX) %5 Hea(C) — Hica(A) ©Hic1(By) — Hica(X)

where the horizontal lines are part of exact Mayer-Vieteeiguences of the triads
(XusAu, Bu), (X, A, B) relative to(X", AY, BY), and(X, A, B) relative to(VXY,“ A}, “BY,),
and the vertical lines are part of long exact sequences q@irthger triadg X, X,, XV),
(A AL, AY), (B,By,BY), (C,Cy,CY).

We observe thaExt," (X) = rkhy, Exi"V(A) + ExtV(B) = rkdk, Ext'(C) =
rkf,. Therefore, applying Lemma 3.2, we obtain the claimed fdamu

(ii) If u>v, then“XY = X. So (3) becomes

o H%, X)) — H(XXY) = H(X,X) — Hie 1 (6, TXY) —



This implies that, for everk € Z, Hy(Xy,"XY) is isomorphic taH (X, X"). Con-
sequently, by the commutativity of the diagram

H(Xa) —%> Hy (X, XY)

T I
Hi(Xu, "XY)
it follows that Ext."(X) = rkhy. Similar considerations apply #,B,C. Hence,

for everyk € Z, Exi;"Y(A) + ExiY(B) = rkgk andExi'(C) = rkfy, with g and
fi as in the following diagram

HotX) % H(G) —  HdA)@H(By)  —  H(X)

LR N L 1k Lhe
Hic (%, XY % Hi(Cu, "CY) — Hi(Aa, "AY) @ Hy(Bu, "BY) — Hi(Xa, "XY)
L ! NG
HEXY) 25 HCa(0CY) — Hca(OA) S HIC1(OBY) — Hica(OXY)
! ! ! !

HX) 2 HicaGo) —  Hica(A) @Hci(By)  — Hica(X)
where the horizontal lines are part of exact Mayer-Vieteeguences of the triads
(Xu, Au, Bu), (Xu, Ay, By) relative to(" XY, "AY,"'BY,), and the triad"'XY,"'AY, "BY),
respectively, and the vertical lines are part of long exaguences of the pairs
(Xu,"X)s (A, "AY), (Bu,"BY), (Cu,"CY).
The claim is again an immediate consequence of Lemma 3.2. n

4. Detection of sub-part similarity of shapes by persistence

Persistent homology groups describe the shape of a 3paseseen through
a functiong, but the quantitative comparison of two shapes is perforositg a
representation of these groups, the so-cgtkeidistence diagram

A persistence diagramy(Y) is a set of pointgu, v) € R? each corresponding
to a pairing between the birth ofkahomology class atl and its death at along
the filtration ofY, union the points on the diagond@y(Y) can be partitioned into
the ordinary sub-diagramDQ"(Y), therelative sub-diagramDRel(Y), and the
extended sub-diagrar®E*(Y) (Cohen-Steiner et al., 2009).



Algebraically, points oDO"(Y) are those pointéu,v) € R?, with u < v, that
have positive multiplicityuy, ™ (Y), wherep,(Y) is equal to

im (Ordf(”g"’_g(Y) — OrdY SV 5 (Y) — OrdU T EVEE (v) + Ord,‘j—w(v)) .
E—

Ordinary persistence can reveal sub-part similarity ofpskaby showing com-
mon subsets of points in the corresponding persistenceatiey This fact is
illustrated by an example in Table 1, and implicitly statedhe following result
from (Di Fabio and Landi, 2010).

Theorem 4.1. For every p= (u,v) € R?, with u< v, and every k Z, the following
statements hold:

(i) Denotingdy : Hiy1(Xy, Xu) — Hk(Cy,Cy) by 82, if p € DO (X)uDPM(C)
andlim,_o+ (rké&’_g’“_‘E — kBT rkgy TENTE rkéll’*s’“_g) <0, then
p e DP(A)UDLM(B).

(i) Assuming that botlp and ¢c have at most a finite number of homological
k-critical values, if pc DP'(A) UDP"(B) and at least one of its coordi-

nates is neither a homologicék+ 1)-critical value of¢ nor a homological
(k— 1)-critical value of¢c, then pe D™ (X) UDQ™(C).

The proof of this result is based on the Mayer-Vietoris folanior ordinary
persistence given in Theorem 3.1, which yields a relatiokihig the multiplicities
of points ofDP™(X), DP™(A), DP(B), andDQd(C).

5. Experiment and discussion

In Table 2, we show a retrieval test on a data set containinghapes: 5 hu-
mans, 5 horses and 5 centaurs (Bronstein et al., 2008). Eagple shiffers by an
articulation and additional parts. We assume as groundl that a man and a
centaur are dissimilar in the sense of a full similarityemibn, yet, parts of these
shapes (the upper part of the centaur and the upper part ahaing are simi-
lar. Likewise, a horse and a centaur are similar becauseshaye a common
part (bottom part of the horse body). At the same time, a mahaahorse are
dissimilar.

Each shape is modeled by taking as topological space thef &ddak pix-
els with the 8-neighbor adjacency topology, and as filtefimgtion the function
“minus the distance from the center of the bounding box”. f&lsaare analyzed



DE"(X) DE" (A DE"(B) DE"(C)

Table 1: The 1-homology ordinary persistence diagrams ofaagle meshX and its sub-parts
A B,C are computed with respect to the functig(x,y,z) = |y+2 + |y— 2.
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Table 2: Retrieval from the mythological 2D dataset. The ildumn contains the query shapes.
In each row retrieved shapes are ordered by increasingndistd he first retrieved shape is omitted
being always equal to the query shape.




using only ordinary and extended O-th persistence. Tableo@'s the retrieval
obtained using the Hausdorff distance on extended subratizand the partial
Hausdorff pseudo-distance on the ordinary sub-diagrarhs. partial Hausdorff
pseudo-distance automatically selects a fixed fractiohepersistence diagrams
points giving the best matching and uses only this subsedrgpate the Haus-
dorff distance (Huttenlocher et al., 1993) . We considehed38% of points of
each ordinary persistence sub-diagram.

Our test shows that, by using persistent homology to retréhapes from this
dataset, the similarity relations assumed as ground trethespected.

Based on these results we conclude that persistent homo&gyrms nicely
for the needs of automatic partial similarity assessmertt,cauld be exploited in
content-based shape search engines.

Since in this paper we developed Mayer-Vietoris formulao dbr relative
and extended persistence, possible advances could cavataining from these
formulas results analogous to Theorem 4.1. One difficultshis respect is that
one should first develop an appropriate notion of multipliéor points to belong
to these sub-diagrams.
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