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Abstract. In this paper we compute the dimension of all the
higher secant varieties to the Segre-Veronese embedding of Pn×P1

via the section of the sheaf O(a, b) for any n, a, b ∈ Z+. We relate
this result to the Grassmann Defectivity of Veronese varieties and
we classify all the Grassmann (1, s−1)-defective Veronese varieties.

Introduction

Let X ⊂ PN be a projective non degenerate variety of dimension n.
We will always work with projective spaces defined over an algebraically
closed field K of characteristic 0. The Zariski closure of the union of
all the (s − 1)-dimensional projective spaces that are s secant to X
is called the sth secant variety of X that we will denote with σs(X)
(see Definition 1.1). For these varieties it is immediate to find an
expected dimension that is exp dimσs(X) = min{sn+ s− 1, N}. The
so called “Terracini’s Lemma” (we recall it here in Lemma 1.3) shows
that actually dim σs(X) ≤ exp dimσs(X). The varieties X ⊂ PN for
which dim σs(X) < exp dimσs(X) are said to be (s− 1)-defective. For
a fixed variety X ⊂ PN , a complete classification of all the defective
cases is known only if X is a Veronese variety (see [AH95]).

The main result of this paper is the complete classification of all the
defective secant varieties of the Segre-Veronese varieties Xn,1,a,b that
can be obtained by embedding Pn × P1 with the section of the sheaf
O(a, b) for any couple of positive integer (a, b) (see Theorem 3.1).

Nowadays this kind of problems turns out to be of certain relevance
also in the applications like Blind Identification in Signal Processing
and Independent Component Analysis (see eg. [CR06] and [SY10])
where it is often required to determine the dimensions of the varieties
parameterizing partially symmetric tensor of certain rank. The Segre-
Veronese embedding of Pn × P1 with the section of the sheaf O(a, b)
parameterizes in fact rank 1 partially symmetric tensors of order a +
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b contained in P(SaV1 ⊗ SbV2) where V1, V2 are two vector spaces of
dimensions n+ 1 and 2 respectively and with SdV we mean the space
of symmetric tensors over a vector space V . The generic element of
the sth secant variety of Segre-Veronese varieties is indeed a partially
symmetric tensor of rank s (see eg. [Ber08] for a detailed description).

The study of the dimensions of the secant varieties of Segre-Veronese
varieties of two factors begun with London (see [Lon90] and [DF01],
[CC03] for a more recent approach) who studied the case of P1×P2 em-
bedded in bi-degree (1, 3). A first generalization for P1×P2 embedded
in bi-degree (1, d) is given in [DF01]. The case for P1 × P2 embedded
in any bi-degree (d1, d2) is done by Baur and Draisma in [BD10]. L.
Chiantini e C. Ciliberto in [CC02] handle with the case P1×Pn embed-
ded in bi-degree (d, 1). In the paper [CGG05] one can find the cases
Pm × Pn with bi-degree (n + 1, 1), P1 × P1 with bi-degree (d1, d2) and
P2 × P2 with bi-degree (2, 2). In [Abr08] S.Abrescia studies the cases
Pn×P1 in bi-degree (2, 2d+1), Pn×P1 in bi-degree (2, 2d), and Pn×P1

in bi-degree (3, d). A recent result on Pn × Pm in bi-degree (1, 2) is in
[AB09b], where H. Abo and M. C. Brambilla prove the existence of two
functions s(n,m) and s(n,m) such that σs(X(n,m,1,2)) has the expected
dimension for s ≤ s(n,m) and for s ≥ s(n,m). In the same paper
it is also shown that X(1,m,1,2) is never defective and all the defective
cases for X(2,m,1,2) are described. In [Abo10] H. Abo studies the cases
Pn × Pm, when m = n or m = n + 1. Finally in [BCC10] the authors
study the cases of Pn × Pm embedded in bi-degree (1, d).

Section 4 we relate the result obtained in Theorem 3.1 with the no-
tion of Grassmann defectivity (see Definition 4.1) that allows to trans-
late that result in terms of the number of homogeneous polynomials
of certain degree a that can be written as linear combination of the
same a-th powers of linear forms (see Corollary 4.3). Regarding the
papers that treat the knowledge of Grassmann defectivity we quote
the following once: [CC02] proves that the curves are never (k, s− 1)-
defective, [CC05] completely classify the case of (1, k)-defective sur-
faces and [Cop04] studies the case of (2, 3)-defective threefolds. Our
Corollary 4.3 fits in this framework showing that the Veronese varieties
νa(Pn) are (1, s− 1)-defective if and only if a = 3 and s = 5.

1. Preliminaries and Notation

Let us recall the notion of higher secant varieties and some classical
results which we will often use. For definitions and proofs we refer the
reader to [CGG05].
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Definition 1.1. Let X ⊂ PN be a projective variety. We define the
sth higher secant variety of X, denoted by σs(X), as the Zariski closure
of the union of all linear spaces spanned by s points of X, i.e.:

σs(X) :=
⋃

P1,...,Ps∈X

〈P1, . . . , Ps〉 ⊂ PN .

The expected dimension of σs(X) is

exp dimσs(X) = min{N, s(dimX + 1)− 1},

and when σs(X) does not have the expected dimension, X is said to
be (s− 1)-defective, and the positive integer

δs−1(X) = min{N, s(dimX + 1)− 1} − dimσs(X)

is called the (s− 1)-defect of X.

Remark 1.2. Observe that classical authors used the notation Secs−1(X)
for the closure of the union of all linear spaces spanned by s indepen-
dent points of X, that is, for the object that we denote with σs(X).

The basic tool to compute the dimension of σs(X) is Terracini’s
Lemma ([Ter11]):

Lemma 1.3 (Terracini’s Lemma). Let X ⊂ PN be a projective,
irreducible variety, and let P1, . . . , Ps ∈ X be s generic points. Then the
projectivized tangent space to σs(X) at a generic point Q ∈ 〈P1, . . . , Ps〉
is the linear span in PN of the tangent spaces TX,Pi

to X at Pi, i =
1, . . . , s, hence

dimσs(X) = dim〈TX,P1 , . . . , TX,Ps〉.

Notation 1.4. We now fix the notation that we will adopt in this
paper.

For all non-negative integers n,m, a, b, let N =
(

n+a
n

)(
m+b
m

)
− 1, and

let X(n,m,a,b) ⊂ PN be the embedding of Pn×Pm into PN via the sections
of the sheaf O(a, b). This variety is classically known as a two-factors
Segre-Veronese variety.

Now define the integers q(n,m,a,b), r(n,m,a,b), and q∗(n,m,a,b):

q(n,m,a,b) =

⌊ (
n+a

n

)(
m+b
m

)
(n+m+ 1)

⌋
;

r(n,m,a,b) =

(
n+ a

n

)(
m+ b

m

)
− (n+m+ 1)q(n,m,a,b);
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q∗(n,m,a,b) =

⌈ (
n+a

n

)(
m+b
m

)
(n+m+ 1)

⌉
=

 q(n,m,a,b) for r(n,m,a,b) = 0

q(n,m,a,b) + 1 for r(n,m,a,b) > 0
.

Moreover, let us introduce the following two integers:

e(n,m,a,b) = max{s ∈ N such that dimσs(X(n,m,a,b)) = s(n+m+1)−1},
e∗(n,m,a,b) = min{s ∈ N such that dimσs(X(n,m,a,b)) = N}.

Remark 1.5. It is easy to see that

e(n,m,a,b) ≤ q(n,m,a,b) ≤ q∗(n,m,a,b) ≤ e∗(n,m,a,b).

For e(n,m,a,b) = q(n,m,a,b) and q∗(n,m,a,b) = e∗(n,m,a,b), for any s we have:

dimσs(X(n,m,a,b)) = min{N, s(n+m+ 1)− 1},
that is, the expected dimension.

Hence, if e(n,m,a,b) = q(n,m,a,b) and q∗(n,m,a,b) = e∗(n,m,a,b), then σs(X(n,m,a,b))
is never defective.

A consequence of Terracini’s Lemma is the following Corollary (see
[CGG05, Section 1] or [AB09b, Section 2] for a proof of it).

Corollary 1.6. Let R = K[x0, . . . , xn, y0, . . . , ym] be the multigraded
coordinate ring of Pn × Pm, let Z ⊂ Pn × Pm be a set of s generic
double points, let IZ ⊂ R be the multihomogeneous ideal of Z, and let
H(Z, (a, b)) be the multigraded Hilbert function of Z. Then

dimσs

(
X(n,m,a,b)

)
= N − dim(IZ)(a,b) = H(Z, (a, b))− 1.

Now we recall the fundamental tool which allows us to convert certain
questions about ideals of varieties in multiprojective space to questions
about ideals in standard polynomial rings (for a more general statement
see [CGG05, Theorem 1.1]) .

Theorem 1.7. Notation as in 1.4, let X(n,m,a,b) ⊂ PN be a two factor
Segre-Veronese variety, and let Z ⊂ Pn × Pm be a set of s generic
double points. Let H1, H2 ⊂ Pn+m be generic projective linear spaces of
dimensions n− 1 and m− 1, respectively, and let P1, . . . , Ps ∈ Pn+m be
generic points. Denote by

bH1 + aH2 + 2P1 + · · ·+ 2Ps ⊂ Pn+m

the scheme defined by the ideal sheaf Ib
H1
∩Ia

H2
∩I2

P1
∩· · ·∩I2

Ps
⊂ OP n+m.

Then
dim(IZ)(a,b) = dim(IbH1+aH2+2P1+···+2Ps)a+b

hence

dimσs

(
X(n,m,a,b)

)
= N − dim(IbH1+aH2+2P1+···+2Ps)a+b.
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Remark 1.8. Since dim(IbH1+aH2)a+b =
(

n+a
n

)(
m+b
m

)
, then the expected

dimension of (IbH1+aH2+2P1+···+2Ps)a+b is

max

{(
n+ a

n

)(
m+ b

m

)
− s(n+m+ 1); 0

}
.

It follows that σs

(
X(n,m,a,b)

)
is not defective if and only if the part of

degree a+ b of the ideal (IbH1+aH2+2P1+···+2Ps) has the expected dimen-
sion.

Since we will make use of Horace’s differential lemma several times,
we recall it here (for notation and proof we refer to [AH00], Section 2).

Lemma 1.9 (Horace’s differential lemma). Let H ⊆ Pt be a hy-
perplane, and let P1, ..., Pr be generic points in Pt.

Let Z + 2P1 + ... + 2Pr ⊂ Pt be a scheme . Let R1, ..., Rr ∈ H be
generic points, and set

W = ResHZ + 2R1|H + ...+ 2Rr|H ⊂ Pt,

T = TrHZ +R1 + ...+Rr ⊂ Pt−1 ' H.

If the following two conditions are satisfied:
Degue : dim(IW )d−1 = 0,
Dime : dim(IT )d = 0,
then

dim(IZ+2P1+...+2Pr)d = 0.

Now we recall the following useful lemma. It gives a criterion for
adding to a scheme X ⊆ PN a set of reduced points lying on a linear
space H ⊂ PN and imposing independent conditions to forms of a given
degree in the ideal of X (see [CGG05, Theorem 1.1]).

Lemma 1.10. Let d ∈ N. Let X ⊂ PN be a scheme, and let P1, . . . , Ps

be s generic distinct points lying on a linear space H ⊂ PN .
If dim(IX)d = s and dim(IX+H)d = 0, then dim(IX+P1+···+Ps)d = 0.

Finally we recall a list of results, which we will use to prove our
main theorem (see Theorem 3.1). We start with a result due to M. V.
Catalisano, A. V. Germita and A. Gimigliano about the higher secant
varieties of P1 × P1:

Theorem 1.11. [CGG05, Corollary 2.3] Let a, b, d, s be positive inte-
gers, then σs(X(1,1,a,b)) has the expected dimension except for

(a, b) = (2, 2d) (or (a, b) = (2d, 2)) and s = 2d+ 1 .

In this cases
dimσs(X(1,1,a,b)) = 3s− 2
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and the s-defect of X(1,1,a,b) is 1.

K. Baur and J. Draisma, by a tropical approach, studied the case
P2 × P1:

Theorem 1.12. [BD10, Theorem 1.3] Let a, b, d, s be positive integers,
then σs(X(2,1,a,b)) has the expected dimension except for

(a, b) = (3, 1) and s = 5 ;

(a, b) = (2, 2d) and s = 3d+ 1 or s = 3d+ 2 .

In this cases the s-defect of X(2,1,a,b) is 1.

L. Chiantini e C. Ciliberto in [CC02] studied the Grassmannians of
secant varieties of irreducible curves and they show that these varieties
always have the expected dimension. As an immediate consequence of
their [CC02, Theorem 3.8] and of a classical result about Grassmann
secant varieties (see Proposition 4.2) we immediately get the regularity
of the higher secant varieties of Pn × P1, embedded with divisors of
type (1, b) (see also [AB09a, Theorem 3.1]):

Theorem 1.13. Let n, b, s be positive integers, then σs(X(n,1,1,b)) has
always the expected dimension.

S. Abrescia studied the cases Pn × P1, embedded with divisors of
type (2, b) and (3, b):

Theorem 1.14. [Abr08, Proposition 3.1 and Theorem 3.4] Let n, b, d, s
be positive integers, then σs(X(n,1,2,b)) has the expected dimension except
for

(a, b) = (2, 2d) and d(n+ 1) + 1 ≤ s ≤ (d+ 1)(n+ 1)− 1.

In this cases σs(X(n,1,2,b)) is defective, and its defectiveness is δs =(
d(n+1)

2

)
+
(

s+1
2

)
− sd(n+ 1).

Theorem 1.15. [Abr08, Theorem 4.2] Let n, b, s be positive integers,
then σs(X(n,1,3,b)) has the expected dimension except for

n = 2, b = 1 and s = 5.

In this case σs(X(2,1,3,1)) is defective, and its defectiveness is 1.

2. Technical lemmata

This section contains several technical lemma which will be used in
the proof of the main theorem in the next section (see Theorem 3.1).
From now on we consider only the case m = 1, that means that we
focus our attention on the Segre-Veronese variety X(n,1,a,b).
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Lemma 2.1. Notation as in 1.4, let n, a, b be positive integers, n ≥ 2,
a ≥ 2, s ≤ q(n,1,a,b). If

(1) q(n−1,1,a,b) = e(n−1,1,a,b);
(2) q(n,1,a,b) ≥ q(n−1,1,a,b) + r(n−1,1,a,b);
(3) e(n,1,a−1,b) ≥ q(n,1,a,b) − q(n−1,1,a,b);
(4) e∗(n,1,a−2,b) ≤ q(n,1,a,b) − q(n−1,1,a,b) − r(n−1,1,a,b);

then σs(X(n,1,a,b)) has the expected dimension, that is,

dimσs(X(n,1,a,b)) = s(n+ 2)− 1.

Proof. It is enough to prove that for s = q(n,1,a,b), the variety σs(X(n,1,a,b))
has the expected dimension.

Let H1, H2 be as in Theorem 1.7, so H1, H2 ⊂ Pn+1 are generic
projective linear spaces. More precisly, H1 ' Pn−1 and H2 is a point.
Let P1, . . . , Pq(n,1,a,b)

, P ′1, . . . , P
′
r(n,1,a,b)

∈ Pn+1 be generic points and set

X = bH1 + aH2 + 2P1 + · · ·+ 2Pq(n,1,a,b)
+ P ′1 + · · ·+ P ′r(n,1,a,b)

⊂ Pn+1.

Let H ⊂ Pn+1 be a generic hyperplane through the point H2. Now

specialize the points P1, · · · , Pq(n−1,1,a,b)
onH, and denote by P̃1, · · · , P̃q(n−1,1,a,b)

the specialized points and by X̃ the specialized scheme.
Now denote by Z the scheme

Z = bH1 + aH2 + 2P̃1 + · · ·+ 2P̃q(n−1,1,a,b)

+2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq(n,1,a,b)−r(n−1,1,a,b)
+ P ′1 + · · ·+ P ′r(n,1,a,b)

.

(Observe that this is possible, in fact, by the inequality (2), we have
q(n,1,a,b) − r(n−1,1,a,b)≥q(n−1,1,a,b)

). By this notation we have

X̃ = Z + 2Pq(n,1,a,b)−r(n−1,1,a,b)+1 + · · ·+ 2Pq(n,1,a,b)
,

that is, X̃ is union of Z and r(n−1,1,a,b) generic double points.
We will apply the Horace’s differential lemma (see Lemma 1.9) to

the scheme X̃, with t = n+ 1, d = a+ b, r = r(n−1,1,a,b).
Let R1, ..., Rr(n−1,1,a,b)

be generic points in H, and let

W = ResHZ + 2R1|H + ...+ 2Rr(n−1,1,a,b)
|H ⊂ Pn+1,

T = TrHZ +R1 + ...+Rr(n−1,1,a,b)
⊂ Pn ' H.

If we will prove that
Degue : dim(IW )a+b−1 = 0,
Dime : dim(IT )a+b = 0,
then by Lemma 1.9 we will have dim(IeX)a+b = 0.
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It is easy to see that

T = bH ′1 + aH2 + 2P̃1|H + · · ·+ 2P̃q(n−1,1,a,b)
|H +R1 + ...+Rr(n−1,1,a,b)

,

where H ′1 = H1 ∩ H ' Pn−2. Thus by (1), by Theorem 1.7 and by
Remark 1.8 we immediately get

dim(IT )a+b = 0.

Now we calculate the dimension of IW in degree a+ b− 1. We have

W = ResH(bH1 + aH2 + 2P̃1 + · · ·+ 2P̃q(n−1,1,a,b)

+2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq(n,1,a,b)−r(n−1,1,a,b)
+ P ′1 + · · ·+ P ′r(n,1,a,b)

)

+2R1|H + ...+ 2Rr(n−1,1,a,b)
|H

= bH1 + (a− 1)H2 + P̃1 + · · ·+ P̃q(n−1,1,a,b)

+2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq(n,1,a,b)−r(n−1,1,a,b)

+P ′1 + · · ·+ P ′r(n,1,a,b)
+ 2R1|H + · · ·+ 2Rr(n−1,1,a,b)

|H .

In order to compute the dimension of dim(IW )a+b−1, we first consider
the scheme:

W ′ = bH1 + (a− 1)H2 + 2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq(n,1,a,b)−r(n−1,1,a,b)

+2R1 + ...+ 2Rr(n−1,1,a,b)
.

The points H2, R1, . . . , Rr(n−1,1,a,b)
lie on H ' Pn, but

]{H2, R1, . . . , Rr(n−1,1,a,b)
} ≤ n+ 1,

hence we may say that W ′ is union of bH1 + (a− 1)H2 and q(n,1,a,b) −
q(n−1,1,a,b) generic double points. So by (3) we know that the dimension
of IW ′ in degree a+ b− 1 is as expected. It follows that the dimension
in degree a+ b− 1 of its subscheme

W ′′ = bH1 + (a− 1)H2 + 2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq(n,1,a,b)−r(n−1,1,a,b)

+2R1|H + ...+ 2Rr(n−1,1,a,b)
|H .

is also as expcted, that is,

dim(IW ′′)a+b−1

=

(
n+ a− 1

n

)
(b+ 1)− (n+ 2)(q(n,1,a,b) − q(n−1,1,a,b)) + r(n−1,1,a,b).

From here, since

W = W ′′ + P̃1 + · · ·+ P̃q(n−1,1,a,b)
+ P ′1 + · · ·+ P ′r(n,1,a,b)

and since the points P ′1, . . . , P
′
r(n,1,a,b)

are generic, we easily get that

dim(IW−( eP1+···+ ePq(n−1,1,a,b)
))a+b−1
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=

(
n+ a− 1

n

)
(b+1)−(n+2)(q(n,1,a,b)−q(n−1,1,a,b))+r(n−1,1,a,b)−r(n,1,a,b)

= q(n−1,1,a,b).

Now, in order to prove that dim(IW )a+b−1 = 0, or, equivalently, that

the q(n−1,1,a,b) points P̃i lying on H, gives independent conditions to the
forms of degree a+b−1 of IW−( eP1+···+ ePq(n−1,1,a,b)

), we apply Lemma 1.10

with
X = W − (P̃1 + · · ·+ P̃q(n−1,1,a,b)

).

Since obviously 2Ri|H ⊂ H, we have

X +H = bH1 + (a− 1)H2 + 2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq(n,1,a,b)−r(n−1,1,a,b)

+P ′1 + · · ·+ P ′r(n,1,a,b)
+ 2R1|H + · · ·+ 2Rr(n−1,1,a,b)

|H +H

= bH1 + (a− 1)H2 +H + 2Pq(n−1,1,a,b)+1 + . . .
+2Pq(n,1,a,b)−r(n−1,1,a,b)

+ P ′1 + · · ·+ P ′r(n,1,a,b)
.

So
dim(IX+H)a+b−1 = dim(IResH(X+H))a+b−2,

where
ResH(X +H) = bH1 + (a− 2)H2

+2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq(n,1,a,b)−r(n−1,1,a,b)
+ P ′1 + · · ·+ P ′r(n,1,a,b)

.

By (4) we immediately get that

dim(IResH(X+H))a+b−2 = 0.

So, by Lemma 1.10, it follows that dim(IW )a+b−1 = 0.
Thus, by Lemma 1.9 we get dim(IeX)a+b = 0, and from here, by the

semicontinuity of the Hilbert function we have dim(IX)a+b = 0, that is,
the expected dimension.

Since the P ′i are generic points, it immediately follows that also

X− (P ′1 + · · ·+ P ′r(n,1,a,b)
) = bH1 + aH2 + 2P1 + · · ·+ 2Pq(n,1,a,b)

has the expected dimension. So by Remark 1.8 we are done.
�

Lemma 2.2. Notation as in 1.4, let n, a, b positive integers, n ≥ 2,
a ≥ 2, s ≥ q∗(n,1,a,b). If

(1) q(n−1,1,a,b) = e(n−1,1,a,b);
(2*) q∗(n,1,a,b) ≥ q(n−1,1,a,b) + r(n−1,1,a,b);

(3*) e(n,1,a−1,b) ≥ q∗(n,1,a,b) − q(n−1,1,a,b);

(4*) e∗(n,1,a−2,b) ≤ q∗(n,1,a,b) − q(n−1,1,a,b) − r(n−1,1,a,b);

then σs(X(n,1,a,b)) has the expected dimension, that is,

dimσs(X(n,1,a,b)) = N.
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Proof. Observe that (1) in Lemma 2.1 is the same condition of (1) in
this Lemma 2.2.

It is enough to prove that dim σs(X(n,1,a,b)) = N , for s = q∗(n,1,a,b).
For r(n,1,a,b) = 0, we have q∗(n,1,a,b) = q(n,1,a,b), and the conclusion

immediately follows from Lemma 2.1.
Assume r(n,1,a,b) > 0, hence q∗(n,1,a,b) = q(n,1,a,b) + 1.
Let H1, H2 be as in Theorem 1.7, so, as in the previous lemma,

H1 ' Pn−1 and H2 is a point.
Let P1, . . . , Pq∗

(n,1,a,b)
∈ Pn+1 be generic points and set

X∗ = bH1 + aH2 + 2P1 + · · ·+ 2Pq∗
(n,1,a,b)

⊂ Pn+1.

Let H ⊂ Pn+1 be a hyperplane passing through the point H2 and, as
in Lemma 2.1, specialize the points P1, · · · , Pq(n−1,1,a,b)

on H. Denote

by P̃1, · · · , P̃q(n−1,1,a,b)
the specialized points and by X̃∗ the specialized

scheme.
The proof is analogous to the one of Lemma 2.1, hence we describe

it briefly.
Since by (2*) we have q∗(n,1,a,b) − r(n−1,1,a,b) ≥ q(n−1,1,a,b), we can con-

sider the following scheme:

Z = bH1 + aH2

+2P̃1 + · · ·+ 2P̃q(n−1,1,a,b)
+ 2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq∗

(n,1,a,b)
−r(n−1,1,a,b)

.

We apply the Horace’s differential lemma (see Lemma 1.9), with t =

n+ 1 and d = a+ b, to X̃∗, which is union of Z and r(n−1,1,a,b) generic
double points.

Let R1, ..., Rr(n−1,1,a,b)
be generic points in H, and let

W = ResHZ + 2R1|H + ...+ 2Rr(n−1,1,a,b)
|H ⊂ Pn+1,

T = TrHZ +R1 + ...+Rr(n−1,1,a,b)
⊂ Pn ' H.

Note that T is the same scheme T that appears in the proof of Lemma
2.1, so by (1), by Theorem 1.7 and by Remark 1.8 we get that

dim(IT )a+b = 0.

With regard to W we have:

W = bH1 + (a− 1)H2 + P̃1 + · · ·+ P̃q(n−1,1,a,b)
+ 2Pq(n−1,1,a,b)+1 + . . .

+2Pq∗
(n,1,a,b)

−r(n−1,1,a,b)
+ 2R1|H + ...+ 2Rr(n−1,1,a,b)

|H .

Let
W ′ = bH1 + (a− 1)H2

+2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq∗
(n,1,a,b)

−r(n−1,1,a,b)
+ 2R1 + ...+ 2Rr(n−1,1,a,b)

.
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Now W ′ is union of (bH1 + (a− 1)H2) and q∗(n,1,a,b) − q(n−1,1,a,b) generic

double points. So by (3*) the dimension of (IW ′)a+b−1 is as expected.
It follows that the dimension of the degree a + b − 1 part of the

following scheme:

W − (P̃1 + · · ·+ P̃q(n−1,1,a,b)
) = bH1 + (a− 1)H2

+2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq∗
(n,1,a,b)

−r(n−1,1,a,b)
+ 2R1|H + ...+ 2Rr(n−1,1,a,b)

|H ,
is also as expcted. That is, (recall that q∗(n,1,a,b) = q(n,1,a,b) + 1)

dim(IW−( eP1+···+ ePq(n−1,1,a,b)
))a+b−1

=

(
n+ a− 1

n

)
(b+ 1)− (n+ 2)(q∗(n,1,a,b) − q(n−1,1,a,b)) + r(n−1,1,a,b).

= r(n,1,a,b) − (n+ 2) + q(n−1,1,a,b) ≤ q(n−1,1,a,b) − 1.

In order to prove that dim(IW )a+b−1 = 0, we apply Lemma 1.10 with

X = W − (P̃1 + · · ·+ P̃q(n−1,1,a,b)
).

We have
X +H = bH1 + (a− 1)H2 +H

+2Pq(n−1,1,a,b)+1 + · · ·+ 2Pq∗
(n,1,a,b)

−r(n−1,1,a,b)
.

So
dim(IX+H)a+b−1 = dim(IResH(X+H))a+b−2,

where

ResH(X+H) = bH1+(a−2)H2+2Pq(n−1,1,a,b)+1+· · ·+2Pq∗
(n,1,a,b)

−r(n−1,1,a,b)
.

By (4*) we immediately get dim(IResH(X+H))a+b−2 = 0, so by Lemma
1.10 we have that dim(IW )a+b−1 = 0.

Thus, by Lemma 1.9 we get dim(IfX∗)a+b = 0, and from here, by the
semicontinuity of the Hilbert function we have dim(IX∗)a+b = 0, that is,
the expected dimension. Finally by Remark 1.8 we get the conclusion.

�

Lemma 2.3. Notation as in 1.4, let n, a, b, s be positive integers, n ≥ 2,
a ≥ 2. Let (1), (3*), (4) be as in the statements of Lemma 2.1 and
Lemma 2.2, that is,

(1) q(n−1,1,a,b) = e(n−1,1,a,b);
(3*) e(n,1,a−1,b) ≥ q∗(n,1,a,b) − q(n−1,1,a,b);

(4) e∗(n,1,a−2,b) ≤ q(n,1,a,b) − q(n−1,1,a,b) − r(n−1,1,a,b);

then σs(X(n,1,a,b)) has the expected dimension, that is,

dimσs(X(n,1,a,b)) = min{N, s(n+ 2)− 1}.
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Proof. Let also (2), (3), (2*), (4*) be as in the statements of Lemmas
2.1 and 2.2. Since (2)⇒ (2∗), (3∗)⇒ (3), (4)⇒ (4∗), (4)⇒ (2), then
the conclusion immediately follows from Lemmas 2.1 and 2.2.

�

3. Segre-Veronese embeddings of Pn × P1

Now that we have introduced all the necessary tools that we need for
the main theorem of this paper, we are ready to state and to prove it.
In Section 1, Theorems 1.11, 1.12, 1.13. 1.14, 1.15 highlighted several
defective higher secant varieties of Pn × P1, embedded with divisors of
type (a, b). The next theorem shows that those are the only defective
cases.

Theorem 3.1. Notation as in 1.4, let n, a, b, s, d be positive integers.
The variety σs

(
X(n,1;a,b)

)
⊂ PN , (N =

(
n+a

n

)
(b + 1) − 1), has the

expected dimension for any n, a, b, s, except in the following cases:

n = 2, (a, b) = (3, 1), s = 5,

and

(a, b) = (2, 2d), d(n+ 1) + 1 ≤ s ≤ (d+ 1)(n+ 1)− 1.

Proof. We will prove the theorem by induction on n + a. For n = 1
and n = 2 the conclusion follows from Theorem 1.11 and from Theorem
1.12, respectively. If a = 1, 2, 3 we get the conclusion by Theorems 1.13,
1.14, 1.15. So assume n ≥ 3 and a ≥ 4.

We want to apply Lemma 2.3. We will check that n, a, b, s verify the
inequalities (1), (3*) and (4) of Lemma 2.3, that is:

(1) q(n−1,1,a,b) = e(n−1,1,a,b);
(3*) e(n,1,a−1,b) ≥ q∗(n,1,a,b) − q(n−1,1,a,b);

(4) e∗(n,1,a−2,b) ≤ q(n,1,a,b) − q(n−1,1,a,b) − r(n−1,1,a,b).

The inequality (1) holds by induction. Moreover, by the induction
hypothesis, we have

e(n,1,a−1,b) = q(n,1,a−1,b).

Hence in order to show that (3*) holds we will check that

q(n,1,a−1,b) − q∗(n,1,a,b) + q(n−1,1,a,b) ≥ 0, (†)
that is, (

n+a−1
n

)
(b+ 1)− r(n,1,a−1,b)

(n+ 2)
−

⌈(
n+a

n

)
(b+ 1)

(n+ 2)

⌉

+

(
n+a−1

n−1

)
(b+ 1)− r(n−1,1,a,b)

(n+ 1)
≥ 0.
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For n = 3 and a = 4 we have q∗(3,1,4,b) = q(3,1,4,b) = 7(b + 1), and

q(3,1,3,b) = 4(b+ 1) hence

q(n,1,a−1,b)−q∗(n,1,a,b)+q(n−1,1,a,b) = 4(b+1)−7(b+1)+
15(b+ 1)− r(2,1,4,b)

4

≥ 1

4
(3(b+ 1)− 3) ≥ 0.

Assume (n, a) 6= (3, 4). In order to prove that (†) holds, it is enough
to show that(

n+a−1
n

)
(b+ 1)

(n+ 2)
−
(

n+a
n

)
(b+ 1)

(n+ 2)
+

(
n+a−1

n−1

)
(b+ 1)

(n+ 1)
− 2 ≥ 0.

This inequality is equivalent to the following one:(
n+ a− 1

n− 1

)
(b+ 1)− 2(n+ 1)(n+ 2) ≥ 0.

For n > 3 and a = 4, since b ≥ 1, we have(
n+ a− 1

n− 1

)
(b+ 1)− 2(n+ 1)(n+ 2) ≥ 2

(
n+ 3

4

)
− 2(n+ 1)(n+ 2)

=
1

24
(n+ 1)(n+ 2)((n+ 3)n− 24) ≥ 1

24
(5)(6)(28− 24) ≥ 0.

For n ≥ 3 and a > 4, since b ≥ 1 we have(
n+ a− 1

n− 1

)
(b+ 1)− 2(n+ 1)(n+ 2) ≥

(
n+ 4

5

)
2− 2(n+ 1)(n+ 2)

=
(n+ 1)(n+ 2)

60
((n+ 4)(n+ 3)n− 120) ≥ 1

3
(126− 120) ≥ 0.

So we have proved that (3*) holds.

Now we have to check that (4) holds, that is:
(4) e∗(n,1,a−2,b) ≤ q(n,1,a,b) − q(n−1,1,a,b) − r(n−1,1,a,b).
We consider the following five cases:
Case (a): a > 4;
Case (b): a = 4, n > 3 and b odd;
Case (c): a = 4, n = 3 and b odd;
Case (d): a = 4, n = 3 and b even;
Case (e): a = 4, n > 3 and b even.
In Case (a) by the induction hypothesis, in Cases (b) and (c) by

Theorem 1.14, we get

e∗(n,1,a−2,b) = q∗(n,1,a−2,b).



14 E. BALLICO, A. BERNARDI, AND M.V.CATALISANO

Then in Cases (a), (b) and (c), in order to show that (4) holds we have
check that

q∗(n,1,a−2,b) − q(n,1,a,b) + q(n−1,1,a,b) + r(n−1,1,a,b) ≤ 0, (‡)
that is, ⌈(

n+a−2
n

)
(b+ 1)

(n+ 2)

⌉
−
(

n+a
n

)
(b+ 1)− r(n,1,a,b)

(n+ 2)

+

(
n−1+a

n−1

)
(b+ 1)− r(n−1,1,a,b)

(n+ 1)
+ r(n−1,1,a,b) ≤ 0.

It is easy to show that f(b, n, a) ≥ 0 implies that the inequality (‡)
holds, where

f(b, n, a) = (b+ 1)

(
n− 2 + a

n− 1

)(
n− n− 1

a

)
−(n+ 1)(n+ 2)− r(n−1,1,a,b)n(n+ 2).

In Case (a), since b ≥ 1, a ≥ 5, r(n−1,1,a,b) ≤ n, and n ≥ 3 we get

f(b, n, a) ≥ 2

(
n+ 3

4

)
4n+ 1

5
− (n+ 1)(n+ 2)− n2(n+ 2)

=
n+ 2

60
(n(n+ 1)(4n2 + 13n+ 3− 60)− 60)

≥ n+ 2

60
(216− 60) ≥ 0.

In Case (b) (where a = 4 and n ≥ 4), since b ≥ 1, r(n−1,1,a,b) ≤ n, we
get

f(b, n, a) ≥ 2

(
n+ 2

3

)
3n+ 1

4
− (n+ 1)(n+ 2)− n2(n+ 2)

=
n+ 2

12
(n(n+ 1)(3n+ 1− 12)− 12) ≥ 6

12
(20− 12) ≥ 0.

So (‡) holds both in Case (a) and in Case (b).
In Case (c), since a = 4 and n = 3, we have

q∗(n,1,a−2,b) = q∗(3,1,2,b) = 2(b+ 1); q(n,1,a,b) = q(3,1,4,b) = 7(b+ 1)

q(n−1,1,a,b) = q(2,1,4,b) =
15(b+ 1)− r(2,1,4,b)

4
.

Hence, since b ≥ 1, r(2,1,4,b) ≤ 3, we get

q∗(n,1,a−2,b) − q(n,1,a,b) + q(n−1,1,a,b) + r(n−1,1,a,b)

= 2(b+ 1)− 7(b+ 1) +
15(b+ 1)− r(2,1,4,b)

4
+ r(2,1,4,b)
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=
1

4
(−5(b+ 1) + 3r(2,1,4,b)) ≤ −

1

4
.

It follows that (‡) holds in Case (c).
Now we are left with Cases (d) and (e). Since e∗(n,1,a−2,b)+q(n−1,1,a,b)+

r(n−1,1,a,b) is an integer, recalling that q(n,1,a,b) =

⌊
(n+4

n )(2d+1)

(n+2)

⌋
, then the

inquality (4) is equivalent to the following:

e∗(n,1,a−2,b) + q(n−1,1,a,b) + r(n−1,1,a,b) ≤
(

n+4
n

)
(2d+ 1)

(n+ 2)
.

Let g(n, 4, 2d) = e∗(n,1,a−2,b) + q(n−1,1,a,b) + r(n−1,1,a,b) −
(n+4

n )(2d+1)

(n+2)
.

Since Cases (d) and (e), where b is even (say b = 2d), and a = 4,
from Theorem 1.14 we have

e∗(n,1,a−2,b) = (d+ 1)(n+ 1),

it follows that

g(n, 4, 2d) = (d+ 1)(n+ 1)

+

(
n−1+4

4

)
(2d+ 1)− r(n−1,1,4,2d)

(n+ 1)
+ r(n−1,1,4,2d) −

(
n+4

4

)
(2d+ 1)

(n+ 2)
.

In Case (d) (where n = 3), since
15(2d+1)−r(2,1,4,2d)

4
is an integer and

0 ≤ r(2,1,4,2d) ≤ 3, if d is even we have r(2,1,4,2d) = 3, if d is odd we have
r(2,1,4,2d) = 1. Hence
• for d even (so d ≥ 2) we have

g(n, 4, 2d) = 4(d+ 1) +
15(2d+ 1) + 9

4
− 7(2d+ 1)

=
12− 10d

4
≤ −2 < 0.

• for d odd (so d ≥ 1) we have

g(n, 4, 2d) = 4(d+ 1) +
15(2d+ 1) + 3

4
− 7(2d+ 1)

=
6− 10d

4
≤ −1 < 0.

In Case (e), since d ≥ 1, r(n−1,1,4,2d) ≤ n and n ≥ 4, we get

g(n, 4, 2d) = (d+ 1)(n+ 1) +
(n+ 3)(n+ 2)(n+ 1)n(2d+ 1)

24(n+ 1)

+
nr(n−1,1,4,2d)

n+ 1
− (n+ 4)(n+ 3)(n+ 2)(n+ 1)(2d+ 1)

24(n+ 2)
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=
12(n+ 1)− (2d+ 1)(3n2 + n)

24
+
nr(n−1,1,4,2d)

n+ 1

≤ 12(n+ 1)− 3(3n2 + n)

24
+

n2

n+ 1

=
9n+ 12− 9n2

24
+
n2 − 1

n+ 1
+

1

n+ 1

=
−3n2 + 11n+ 4

8
− 1 +

1

n+ 1
= −(n− 4)(3n+ 1)

8
− n

n+ 1
< 0

Thus we have proved that (4) holds in Cases (d) and (e).
The conclusion now immediately follows from Lemma 2.3.

�

4. Grassmann Defectivity

In this section we want to point out the consequences of Theorem
3.1 in terms of Grassmann defectivity. First of all let us recall some
definitions and some results.

Definition 4.1. LetX ⊂ PN be a closed, irreducible and non-degenerate
projective variety of dimension n. Let 0 ≤ k ≤ s − 1 < N be integers
and let G(k,N) be the Grassmannian of the Pk’s contained in PN .

The Grassmann secant variety denoted with Seck,s−1(X) is the Zariski
closure of the set

{Λ ∈ G(k,N)|Λ lies in the linear span of s independent points of X}.

The expected dimension of this variety is

exp dim(Seck,s−1(X)) = min{sn+ (k + 1)(s− 1− k), (k + 1)(N − k)}.

Analogously to the classical secant varieties we define the (k, s − 1)-
defect of X as the number:

δk,s−1(X) = exp dim(Seck,s−1(X))− dimSeck,s−1(X).

(For general information about these defectivities see[CC01] and [DF01]).
In [DF01] C. Dionisi e C. Fontanari prove the following proposition,

previously proved by Terracini in [Ter15] in the specific case in which
X is a Veronese surface.

Proposition 4.2. [DF01, Proposition 1.3] Let X ⊂ PN be an ir-
reducible non-degenerate projective variety of dimension n. Let φ :
Pk × X → PN(k+1)+k be the Segre embedding of Pk × X. Then X is
(k, s − 1)-defective with defect δk,s−1(X) = δ if and only if φ(Pk ×X)
is (s− 1)-defective with defect δs−1(φ(Pk ×X)) = δ.
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Hence the following corollary arises as natural consequence of Theo-
rem 3.1 and Proposition 4.2.

Corollary 4.3. The Veronese varieties νa(Pn) are (1, s− 1)-defective
if and only if n = 2, a = 3 and s = 5.

Proof. Apply Theorem 3.1, in the specific case of the Segre-Veronese
embedding of Pn × P1 with O(a, 1). Then use Proposition 4.2. �

Following Terracini’s paper, we can translate the previous result in
terms of the number of homogeneous polynomials of certain degree a
that can be written as linear combination of a-th powers of the same
linear forms; in fact, the problem of finding when Seck,s−1(νa(Pn)) co-
incides with the Grassmannian G(k,N), (N =

(
n+a

a

)
−1), is equivalent

to a question related to the decomposition of k+1 general forms of de-
gree a as linear combination of a-th powers of the same s linear forms.
The classical version of this problem is originally due to A. Terracini
(see [Ter15]) and J. Bronowski (see [Bro33]). In terms of forms the
Corollary 4.3 can be translated as follows:

Remark 4.4. The closure of the set of all pairs of homogeneous de-
gree a polynomials in n + 1 variables which may be written as linear
combinations of a-th powers of the same s linear forms L1, . . . , Ls ∈
K[x0, . . . , xn]1 has the expect dimension if and only if (n, a, s) 6= (2, 3, 5).
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