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Abstract. The concept of natural pseudo-distance has proven to be a pow-

erful tool for measuring the dissimilarity between shape properties of topolog-
ical spaces, modeled as continuous real-valued functions defined on the spaces
themselves. Roughly speaking, the natural pseudo-distance is defined as the

infimum of the change of the functions’ values, when moving from one space
to the other through homeomorphisms, if possible. In this paper, we prove the
first available result about the existence of optimal homeomorphisms between
closed curves, i.e. inducing a change of the function that equals the natural

pseudo-distance. Moreover, we show that, under our assumptions, this optimal
homeomorphism is actually a diffeomorphism.

Introduction

Formalizing the concept of shape for topological spaces and manifolds, as well as
providing an efficient comparison of shapes, has been a widely researched topic in
the last decade. As such, a class of methods has been developed with the purpose
of performing a topological exploration of shapes, according to some quantitative
geometric properties provided by a real function chosen to extract shape features
[1, 3, 19, 22, 29].

In this context, Size Theory was introduced at the beginning of the 1990s [14,
15, 16], supported by the adoption of a suitable mathematical tool: the natural
pseudo-distance [10, 11, 12].

In the formalism of Size Theory, a shape is modeled as a pair (X,ϕ), where X
is a topological space and ϕ : X → R is a continuous function [1, 16]. Such a
pair is called a size pair and ϕ is called a measuring function. The role of ϕ is to
take into account only the properties considered relevant for the shape comparison
problem at hand, while disregarding the irrelevant ones, as well as to impose the
desired invariance properties (e.g., invariance with respect to isometries, or affine,
or projective transformations).

The natural pseudo-distance δ measures the dissimilarity between two size pairs
(X,ϕ), (Y, ψ). Roughly speaking, it is defined as the infimum of the variation of
the values of ϕ and ψ, when we move from X to Y through homeomorphisms,
if possible (see Definition 1.2). Therefore, two size pairs “have the same shape” if
they share the same shape properties, expressed by the measuring functions’ values,
that is, their natural pseudo-distance vanishes.
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2 A. CERRI AND B. DI FABIO

Earlier results about the natural pseudo-distance can be divided into two classes.
One class gives information on the possible values assumed by the natural pseudo-
distance δ between two size pairs (X,ϕ), (Y, ψ). For example, if the considered
topological spaces X and Y are smooth closed manifolds and the measuring func-
tions are also smooth, then it holds that δ((X,ϕ), (Y, ψ)) = C

k
, with C the distance

between two critical values of the functions ϕ and ψ, and k a suitable positive inte-
ger number [10]. In particular, the value of k can only be either 1 or 2 in the case
of curves [12], while it cannot be greater than 3 in the case of surfaces [11].

The other class of results provides estimations of the natural pseudo-distance
[4, 9, 18], with particular reference to the use of the so-called size functions [6, 9].
Size functions are shape descriptors containing information about the considered
size pairs, and admitting a discrete and complete representation by means of certain
countable sets of points in the real plane [13, 17, 23]. Comparing these sets of points
induces a distance between the associated size functions, which has proven to be a
lower bound for the natural pseudo-distance between the considered size pairs [6].
In this way, it is possible to obtain information about the natural pseudo-distance
without actually computing it. The research on size functions has led to a formal
setting, which has turned out to be useful, not only from a theoretical point of
view, but also on the application side (see, e.g., [2, 5, 8, 27, 28]).

The contribution of this paper. Besides being a useful theoretical tool for ap-
plications in shape comparison, the natural pseudo-distance is challenging from the
mathematical point of view, and several questions about its properties need further
investigation. One among them consists in establishing the conditions ensuring the
existence of optimal homeomorphisms between size pairs, i.e. homeomorphisms re-
alizing the natural pseudo-distance (cf. Definition 1.3). It is possible to show that,
in general, such homeomorphisms do not exist (see, e.g., Section 2).

In this paper, we provide the first available result about the existence of optimal
homeomorphisms (Theorem 3.4). To be more precise, our result shows that, if
the considered spaces are closed curves (i.e. compact and without boundary 1-
manifolds) endowed with Morse measuring functions such that the natural pseudo-
distance is zero, it is possible to construct a point-to-point match between such
curves, that is optimal in the sense that it does not change the measuring functions’
values. In addiction, we show that, under our assumptions, this point-to-point
match is actually a diffeomorphism. In the language of Size Theory, our result
means that the considered curves share the same shape properties with respect to
the chosen measuring functions. Moreover, from a topological point of view, our
theorem is equivalent to claim that it is possible to quotient the space of Morse
functions on the circle S1 in such a way that the equivalence classes are closed (see
Section 3.1).

In the initial contribution to establishing stability properties of Reeb graphs
proposed in [7], our result has been used to prove the positive definiteness of an
editing distance between Reeb graphs of closed curves. This editing distance results
to be suitable to compare Reeb graphs shape descriptors for curves. Indeed, it has
been shown that changes in functions imply smaller changes in the editing distance.
This proves stability of Reeb graphs of curves under function perturbations.

In general, the subject of our work fits in the current mathematical research and
interest in simple closed curves, motivated by problems concerning shape compar-
ison and matching in Computer Vision. For example, in [24] and [25] the authors



ON CERTAIN OPTIMAL DIFFEOMORPHISMS BETWEEN CLOSED CURVES 3

analyse (from a mathematical point of view) the (dis)similarity judgement induced
by human perception in comparing 2-dimensional shapes. Modeling these shapes as
compact, simply connected planar regions bounded by simple closed curves, they
are led to study Riemannian metrics on the space of closed curves. In [20] and
[21] the author, inspired by problems coming from applied sciences, studies certain
correspondences (the so-called bimorphisms) between simple closed planar curves,
in order to model in a rigorous way the concept of “optimal match” between these
objects. Indeed, the problem of curve matching is a lively research topic in dis-
ciplines such as Image Analysis, Image Comparison and Pattern Recognition. In
these contexts, matching two closed curves allows, for example, the comparison of
two planar images by taking into account their silhouettes or contour curves, with
applications, e.g., in medicine, cognitive science, and information technology.

Outline. The paper is divided into three sections. Section 1 deals with some of
the standard facts on the comparison of size pairs via the natural pseudo-distance.
In particular, the definition of the natural pseudo-distance δ and its main prop-
erties are recalled, focusing on the concepts of optimal homeomorphism and d-
approximating sequence. Section 2 is devoted to the description of some simple
and clarifying examples showing that all the conditions we require in stating our
main result are necessary. In Section 3 we prove our main result concerning the ex-
istence and the construction of an optimal C2-diffeomorphism between two smooth
closed curves endowed with Morse measuring functions (Theorem 3.4).

1. Preliminaries

In Size Theory, a size pair is a pair (X,ϕ), where X is a non-empty, compact,
locally connected Hausdorff space and ϕ : X → R is a continuous function called
a measuring function. Let Size be the collection of all the size pairs, and let
(X,ϕ), (Y, ψ) be two size pairs. We denote by H(X,Y ) the set of all homeomor-
phisms from X to Y .

Definition 1.1. If H(X,Y ) 6= ∅, the function Θ : H(X,Y ) → R given by

Θ(f) = max
x∈X

|ϕ(x)− ψ(f(x))|

is called the natural size measure with respect to the measuring functions ϕ and ψ.

Roughly speaking, Θ(f) measures how much f changes the values taken by the
measuring functions, at corresponding points.

Definition 1.2. We shall call natural pseudo-distance the (extended) pseudo-
distance δ : Size× Size→ R ∪ {+∞} defined as

δ ((X,ϕ), (Y, ψ)) =

{
inf

f∈H(X,Y )
Θ(f), if H(X,Y ) 6= ∅

+∞, otherwise.

Note that δ is not a distance, since two different size pairs (X,ϕ), (Y, ψ) can
have a vanishing pseudo-distance. In that case, X and Y are only sharing the same
shape properties with respect to the chosen functions ϕ and ψ, respectively.

A simple example shows this fact. Let us consider the circle X = {(u, v) ∈
R

2 : u2 + v2 = 1} and the ellipse Y = {(u, v) ∈ R
2 : au2 + v2 = 1} for a fixed

real number a > 0, a 6= 1. Moreover, let us endow X and Y with the measuring
functions ϕ = ξ|X and ψ = ξ|Y , respectively, where ξ : R2 → R is the continuous
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function taking each (u, v) ∈ R
2 to its ordinate v. In this case, it can be proved

that δ ((X,ϕ), (Y, ψ)) = 0. Indeed, it is easy to check that a homeomorphism exists
deforming X into Y without changing the points’ ordinates.

On the other hand, if we endowX and Y with the functions ϕ̂ = ξ̂|X and ψ̂ = ξ̂|Y ,

respectively, where ξ̂ : R2 → R is the continuous function taking each (u, v) ∈ R
2

to its Euclidean distance from the axis origin, it follows that δ
(
(X, ϕ̂), (Y, ψ̂)

)
=

∣∣∣ 1√
a
− 1

∣∣∣ > 0.

Therefore, in our framework, we can say that X and Y have the same “shape”
if compared with respect to their height, while they have a different “shape” when
considered in terms of the distance from their center of mass.

Definition 1.3. Let (X,ϕ), (Y, ψ) be two size pairs with H(X,Y ) 6= ∅. We shall
say that f ∈ H(X,Y ) is an optimal homeomorphism if Θ(f) = δ ((X,ϕ), (Y, ψ)).

Let us observe that such a homeomorphism may not exist, and even when it
exists, it is not straightforward to define it. On the other hand, Definition 1.2
implies that, ifH(X,Y ) 6= ∅, we can always find a sequence (fk) of homeomorphisms
from X to Y such that lim

k→∞
Θ(fk) = δ ((X,ϕ), (Y, ψ)).

Definition 1.4. Let (X,ϕ), (Y, ψ) be two size pairs with δ ((X,ϕ), (Y, ψ)) = d <∞.
Every sequence (fk) of homeomorphisms fk : X → Y such that lim

k→∞
Θ(fk) = d is

said to be a d-approximating sequence from (X,ϕ) to (Y, ψ).

Remark 1.5. We observe that (fk) is a d-approximating sequence from (X,ϕ) to
(Y, ψ) if and only if (f−1

k ) is a d-approximating sequence from (Y, ψ) to (X,ϕ).

The main goal of this paper is to show that an optimal differentiable of class C2

homeomorphism (from now on an optimal C2-diffeomorphism, or simply an optimal
diffeomorphism) exists between two size pairs (X,ϕ) and (Y, ψ), under the following
conditions:

(a) δ((X,ϕ), (Y, ψ)) = 0;
(b) X and Y are two curves;
(c) ϕ and ψ are Morse (i.e., of class C2 with invertible Hessian at each critical

point [26]) .

This result will be formally given and proved later in the case that the curves
are closed (Theorem 3.4). However, we remark that the closedness requirement
will be made only for the sake of simplicity. Indeed, it can be weakened to com-
pact 1-manifolds having non-empty boundary, without much affecting the following
reasonings.

2. Some explanatory examples

We provide here three meaningful examples showing that assumptions (a), (b),
(c) introduced in Section 1 are necessary to ensure the existence of an optimal
diffeomorphism between two size pairs (X,ϕ) and (Y, ψ). Indeed, if one among
them is dropped, then an homeomorphism attaining the natural pseudo-distance
might not exist, implying that Theorem 3.4 is false.

Without loss of generality, in the examples and figures we describe here, we shall
always assume that the spaces X and Y are embedded in R

3 and both ϕ and ψ are
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the z-coordinate functions, i.e. ϕ = z|X , ψ = z|Y . Moreover, by abuse of notation,
we will simply write ϕ = ψ = z.

The first two examples we make ready to describe are taken from [10].

Example 1 (Hypothesis (a) fails). This example shows that, if two size pairs
satisfy hypotheses (b) and (c), but have a non-vanishing natural pseudo-distance,
then an optimal homeomorphism may not exist.

xA

xB

xC
x εD

x εE y εE

yC

y εD

gε

z

2ε

X Y

max z

min z

Figure 1. An example of two closed curves X, Y endowed with the Morse

function z. No optimal homeomorphism exists between (X, z), (Y, z) because
their natural pseudo-distance is non-zero.

Let us consider the two size pairs (X, z), (Y, z) depicted in Figure 1, where X
and Y are smooth closed curves in R

3, embedded in the real plane, endowed with
the Morse function z.

As can be seen in Figure 1, the points xA, xB ∈ X are critical points of the
function z and z(xC) = 1

2 (z(xA) + z(xB)) = z(yC). In [12] it has been proved
that the natural pseudo-distance between homeomorphic smooth closed curves,
endowed with Morse measuring functions, is always obtainable in terms of some
critical values of the measuring functions. Actually, in this example it is possible
to show that the natural pseudo-distance between (X, z) and (Y, z) takes the value
d = 1

2 (z(xA) − z(xB)). On the other hand, it will also be proved that no optimal
homeomorphism exists. Indeed, we can construct a sequence of homeomorphisms
(fk), such that lim

k→∞
Θ(fk) =

1
2 (z(xA) − z(xB)), and show that Θ(f) > 1

2 (z(xA) −

z(xB)) for every homeomorphism f ∈ H(X,Y ). The first step consists in proving
that, for every ε > 0, a homeomorphism gε : X → Y exists, such that Θ(gε) ≤
1
2 (z(xA) − z(xB)) + 2ε. Accordingly, consider the points x εD, x

ε
E , y

ε
D and y εE in

Figure 1, verifying z(x εD) = z(y εD) = z(xC) + ε and z(x εE) = z(y εE) = z(xC) − ε.
We can choose a homeomorphism gε, taking the arc x εD xCx

ε
E to the arc y εD yCy

ε
E

in such a way that gε(x
ε
D) = y εD and gε(x

ε
E) = y εE . Outside the arc x εDxCx

ε
E in X

define gε by mapping, in the unique possible way, every point x to a point gε(x)
satisfying z(x) = z(gε(x)). For every k ∈ N \ {0} set fk = g 1

k
. It can be easily

verified that lim
k→∞

Θ(fk) =
1
2 (z(xA)− z(xB)).
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It only remains to prove that Θ(f) ≤ 1
2 (z(xA)− z(xB)) for no homeomorphism

f ∈ H(X,Y ). Indeed, if such a homeomorphism existed, then, for every x ∈ X, we
would have |z(x)− z(f(x))| ≤ 1

2 (z(xA)− z(xB)). By replacing x with xA and xB ,

respectively, we obtain that 1
2 (3z(xA)−z(xB)) ≥ z(f(xA)) ≥

1
2 (z(xA)+z(xB)) and

1
2 (z(xA)+z(xB)) ≥ z(f(xB)) ≥

1
2 (3z(xB)−z(xA)), respectively. Hence, z(f(xA)) ≥

z(yC) ≥ z(f(xB)). As a consequence, by extending this f to the whole curve, at
least one point x ∈ X could be found such that |z(x)−z(f(x))| > 1

2 (z(xA)−z(xB)),
contradicting our assumption.

Example 2 (Hypothesis (b) fails). This example shows that there may not exist
an optimal homeomorphism between two size pairs satisfying hypotheses (a) and
(c), but missing hypothesis (b).

xA

f ◦ γ
γ

z

X Y

Figure 2. An example of two size pairs (X, z) and (Y, z), whose natural

pseudo-distance is zero. No optimal homeomorphism exists between (X, z),
(Y, z) because X and Y are not curves.

Consider the smooth surfaces X and Y displayed in Figure 2 and the corre-
sponding measuring function z. It is easy to show that the natural pseudo-distance
between the two size pairs is zero. Indeed, it is possible to isotopically deform
the left surface to the right one by “torsion”, exchanging the positions of the two
smallest humps. This deformation can be performed by an arbitrarily small change
in the values of the z-coordinate. Therefore, a sequence of homeomorphisms (fk)
from X to Y can be constructed, such that lim

k→∞
Θ(fk) = 0. However, no optimal

homeomorphism exists between the two size pairs. Suppose indeed there exists a
homeomorphism f such that Θ(f) = 0. Consider a path γ as in Figure 2, chosen
in such a way that, in the image of the path, z(x) = z(xA) for no point x ∈ X
different from xA. It can be easily verified that the image of the path f ◦ γ has to
contain more than one point at which z takes the value z(xA). This contradicts our
assumptions, since Θ(f) = 0 implies z(f(x)) = z(x) for every x in the image of γ.
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Example 3 (Hypothesis (c) fails). This last example shows that there may not
exist an optimal homeomorphism between two closed curves having vanishing nat-
ural pseudo-distance if such curves are endowed with measuring functions missing
hypothesis (c).

xA xB yC

x εA x εB y εA y εB
gε

z

ε

X Y

Figure 3. An example of two size pairs (X, z) and (Y, z), whose natural

pseudo-distance is zero. No optimal homeomorphism exists between (X, z),
(Y, z) because z|X is not Morse.

Let us consider the two size pairs (X, z) and (Y, z) in Figure 3, where X and Y
are smooth closed curves. As can be seen, the measuring function z is not Morse
on X.

We see that the natural pseudo-distance between (X, z) and (Y, z) is vanishing,
but an optimal homeomorphism does not exist. Indeed, such a map should verify
max
x∈X

|z(x) − z(f(x))| = 0, and therefore it should take each point of the segment

xAxB to the point yC , against the injectivity.

Remark 2.1. The above Example 3 can be generalized to manifolds of any dimen-
sion. Indeed, it can be shown that taking a Morse function ϕ on an n-dimensional
closed manifold X, n ≥ 1, it is always possible to find a continuous real-valued func-
tion ψ on the same manifold such that the natural pseudo-distance between (X,ϕ)
and (X,ψ) is zero, but no optimal homeomorphism of X exists.

3. Main theorem

In this section we prove the main result of this paper (Theorem 3.4). It states
that an optimal C2-diffeomorphism exists between two closed curves, endowed with
Morse measuring functions, and whose natural pseudo-distance is zero. Roughly
speaking, the proof involves the idea to construct an optimal homeomorphism f be-
tween the two curves as a continuous extension of a bijective map between measur-
ing functions’ critical points. Then we show that f is locally a C2-diffeomorphism.

Let us now introduce some notations and assumptions we shall adopt in the rest
of this section.

Let (X,ϕ), (Y, ψ) be two size pairs, with X, Y two closed curves, and ϕ, ψ Morse
measuring functions, and suppose that δ ((X,ϕ), (Y, ψ)) = 0.
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For the sake of simplicity, from now on we shall assume that the considered
curves are connected. However, note that this last hypothesis can be weakened to
any finite number of connected components, without much affecting the following
reasonings.

Let us now consider two parameterizations hX : S1 → X, hY : S1 → Y . Con-
sidering the clockwise orientation on S1 ⊂ R

2, the homeomorphisms hX , hY allow
us to induce an orientation on X and Y , respectively. Accordingly, for every two
distinct points x, x′ ∈ X (respectively y, y′ ∈ Y ), we shall denote by x y x′ (resp.
y y y′) the oriented path on X (resp. Y ), induced by hX (resp. hY ), from the
point x (resp. y) to the point x′ (resp. y′), going clockwise along S1, and including
both x and x′ (resp. y and y′).

Let us consider a 0-approximating sequence (fk)k∈N
of homeomorphisms from

(X,ϕ) to (Y, ψ), i.e. such that lim
k→∞

Θ(fk) = 0. Since homeomorphisms between

closed curves can be orientation-preserving or not, for the sake of simplicity we
shall assume (possibly by considering a subsequence of (fk)) that the orientation
is maintained by each fk. Indeed, if this is not the case, we can consider a new

parametrization ĥY inducing an orientation that is opposite to the one induced by
hY .

Let (x1, . . . , xn), n ≥ 2, be the ordered set of critical points of ϕ, taken in X
following the orientation induced by hX , and starting from x1 arbitrarily chosen.
Obviously, they are even in number, and correspond, alternatively, to the minima
and maxima of ϕ on X. From the compactness of X and Y , we can assume
(possibly by considering a subsequence of (fk)) that there exists lim

k→∞
fk(xi) for

every i = 1, . . . , n. Indeed, since (fk(x1)) is a bounded sequence, we can assume
(possibly by considering a subsequence) that it converges on Y . But (fk(x2)) is
also a bounded sequence, therefore we can also assume (possibly by considering a
subsequence) that it converges on Y . By applying recursively the same reasoning,
we then get that there exists lim

k→∞
fk(xi) for every i = 1, . . . , n.

Let us denote lim
k→∞

fk(xi) by yi for every i = 1, . . . , n.

Remark 3.1. For every x ∈ X such that there exists lim
k→∞

fk(x), the equality

ϕ(x) = ψ( lim
k→∞

fk(x)) holds. Indeed, since (fk) is a 0-approximating sequence,

|ϕ(x)− ψ( lim
k→∞

fk(x))| = lim
k→∞

|ϕ(x)− ψ(fk(x))| = 0.

Let us now prove that y1, . . . , yn are n distinct points of Y .

Lemma 3.2. For every i, j ∈ {1, . . . , n}, if yi = yj, then xi = xj.

Proof. Let yi = yj . By contradiction, let us assume that xi 6= xj . Then, for
every k ∈ N, fk(xi) 6= fk(xj), and lim

k→∞
fk(xi) = lim

k→∞
fk(xj). Moreover, as a

consequence of Remark 3.1, ϕ(xi) = ψ(yi) = ψ(yj) = ϕ(xj). Since ϕ is Morse, it
is necessarily non-constant on the path xi y xj . Therefore there exists at least
one point x ∈ xi y xj , such that |ϕ(x) − ϕ(xi)| > 0. Since we are assuming that
each fk is orientation-preserving, it follows that fk(x) ∈ fk(xi) y fk(xj) for every
k ∈ N. Passing to the limit, we have therefore lim

k→∞
fk(x) = yi. Hence, once again by

Remark 3.1, 0 = |ϕ(x)−ψ(yi)| = |ϕ(x)−ϕ(xi)| > 0, leading to a contradiction. �

In the sequel, for i 6= 1, . . . , n, we assume that xi (resp. yi) is equal to x(i mod n)

(resp. y(i mod n)).
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The result below shows that each yi is a critical point of ψ “of the same type”
of the corresponding xi.

Lemma 3.3. For every i ∈ {1, . . . , n}, the following statements hold:

(i) If xi is a local minimum point of ϕ, then yi is a local minimum point of
ψ.

(ii) If xi is a local maximum point of ϕ, then yi is a local maximum point of
ψ.

Proof. Let us prove only (i). Statement (ii) can be verified analogously.
Let xi be a local minimum point of ϕ. Then xi−1 and xi+1 are local maximum

points of ϕ, with ϕ(xi) < ϕ(xi−1), ϕ(xi+1). Since ϕ(xj) = ψ(yj) for every index
j, it follows that ψ(yi) < ψ(yi−1), ψ(yi+1). Moreover, since each fk is assumed to
be orientation-preserving, if xi ∈ xi−1 y xi+1, then fk(xi) ∈ fk(xi−1) y fk(xi+1)
for every k ∈ N. Hence, passing to the limit, it holds that yi ∈ yi−1 y yi+1, with
yi−1, yi, yi+1 distinct because of Lemma 3.2.

Contrary to our assertion, let us now suppose that yi is not a local minimum
point of ψ. Then, we can find a point y ∈ yi−1 y yi+1 such that ψ(y) < ψ(yi) <
ψ(yi−1), ψ(yi+1). Consequently, there exists k ∈ N such that, for every k ≥ k, y ∈
fk(xi−1) y fk(xi+1), implying that, by the orientation-preservation assumption,
f−1
k (y) ∈ xi−1 y xi+1 for every k ≥ k. Possibly by considering a subsequence

of (f−1
k ), we can assume that (f−1

k (y)) converges. Let x = lim
k→∞

f−1
k (y). Then

x ∈ xi−1 y xi+1. Therefore ϕ(x) ≥ ϕ(xi) = ψ(yi) > ψ(y), leading to 0 =
lim
k→∞

|ϕ(f−1
k (y)) − ψ(y)| = |ϕ(x) − ψ(y)| > 0, thus getting a contradiction (cf.

Remarks 1.5 and 3.1). �

We observe that ψ does not admit any other critical point besides y1, . . . , yn.
Indeed, let us suppose that ψ has m critical points, m > n, and that (possibly by
extracting a subsequence of (fk)) (f

−1
k ) converges at all such points. Then we can

apply Lemmas 3.2 and 3.3 by interchanging the roles of X and Y . In this way, we
obtain that the number of critical points of ϕ is not smaller than m, leading to a
contradiction.

We are now ready to give the main result of this paper.

Theorem 3.4. Let (X,ϕ), (Y, ψ) be two size pairs, with X,Y closed curves, and
ϕ : X → R, ψ : Y → R Morse measuring functions such that δ ((X,ϕ), (Y, ψ)) = 0.
Then there exists an optimal C2-diffeomorphism f : X → Y .

Proof. Let us define f : X → Y as follows:

• f(xi) = yi;
• for every x ∈ xi y xi+1, f(x) = y with y ∈ yi y yi+1 and ψ(y) = ϕ(x).

Let us prove that f is well defined and bijective on X. Since the restriction of f to
{x1, . . . , xn} is injective because of Lemma 3.2 and the sets of critical points of ϕ
and ψ have the same cardinality, it is sufficient to show that, for every index i, if
ϕ is strictly increasing (resp. decreasing) on the arc xi y xi+1, then ψ is strictly
increasing (resp. decreasing) on the arc yi y yi+1.

Let ϕ be strictly increasing on the arc xi y xi+1 (the other case can be shown
similarly). Under our assumptions, we have ϕ(xi) < ϕ(xi+1), with xi a local
minimum point and xi+1 a local maximum point of ϕ. Therefore, by Remark 3.1,
it follows that ψ(yi) < ψ(yi+1), and by Lemma 3.3, yi is a local minimum point
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and yi+1 is a local maximum point of ψ. By contradiction, let us suppose that ψ
is not strictly increasing on the arc yi y yi+1. Since ψ is Morse on the curve Y ,
there exists at least one index  ∈ {1, . . . , n},  6= i, i + 1, such that the critical
point y of ψ belongs to yi y yi+1. Then, the critical point x of ϕ is such that

lim
k→∞

fk(x) = y, but x /∈ xi y xi+1. This means that there exists k ∈ N such

that, for every k ≥ k, fk(x) ∈ fk(xi) y fk(xi+1) , but x /∈ xi y xi+1. Hence, we
get an absurd because each fk is a homeomorphism.

Let us observe that, by construction, f is a homeomorphism, and it attains the
natural pseudo-distance, that is Θ(f) = 0.

To conclude the proof, it remains to show that f is locally a C2-diffeomorphism.
For every x ∈ X\{x1, . . . , xn}, there exists a sufficiently small neighborhood U of

x in X such that ϕ|U and ψ|f(U)
are C2-diffeomorphism. Then ϕ = ψ◦f throughout

U implies f = ψ−1 ◦ ϕ throughout U . As a consequence, f is a C2-diffeomorphism
on U .

If x = xi, i ∈ {1, . . . , n}, then, by the well-known Morse Lemma [26], there
is a local coordinate system s in an open arc U of X containing x, and a C2-
diffeomorphism hϕ : U → R such that hϕ(x) = 0 and ϕ ◦ h−1

ϕ (s) = ϕ(x) ± s2

throughout hϕ(U). Moreover, f(x) = yi. Therefore, in an open arc V of Y con-
taining f(x) there is a C2-diffeomorphism hψ : V → R such that hψ(f(x)) = 0

and ψ ◦ h−1
ψ (s) = ψ(f(x))± s2 throughout hψ(V ). Let hϕ(U) ∩ hψ(V ) be an open

interval (a, b), with 0 ∈ (a, b). By the assumption δ ((X,ϕ), (Y, ψ)) = 0, necessarily
ϕ(x) = ψ(f(x)), and by Lemma 3.3, either ϕ ◦ h−1

ϕ (s) = ψ ◦ h−1
ψ (s) = ϕ(x) + s2

throughout (a, b) (in the case x and f(x) are minima of ϕ and ψ, respectively), or
ϕ ◦ h−1

ϕ (s) = ψ ◦ h−1
ψ (s) = ϕ(x)− s2 throughout (a, b) (in the case x and f(x) are

maxima of ϕ and ψ, respectively). In both cases, f = ψ−1 ◦ϕ = h−1
ψ ◦ hϕ through-

out h−1
ϕ ((a, 0)) and h−1

ϕ ((0, b)) since ψ is invertible in h−1
ψ ((a, 0)) and h−1

ψ ((0, b)),

respectively. By continuity, f = h−1
ψ ◦ hϕ throughout h−1

ϕ ((a, b)), i.e. f is a C2-

diffeomorphism on h−1
ϕ ((a, b)). �

As an immediate consequence of the previous theorem, we have the following
Corollary 3.5, establishing a necessary and sufficient condition so that the natural
pseudo-distance between two size pairs vanishes.

Corollary 3.5. Let (X,ϕ), (Y, ψ) be two size pairs, with X,Y closed curves, and
ϕ : X → R, ψ : Y → R Morse measuring functions. Then δ ((X,ϕ), (Y, ψ)) = 0 if
and only if there exists a C2-diffeomorphism f : X → Y such that ϕ = ψ ◦ f .

Proof. The direct statement immediately follows from Theorem 3.4. Conversely,
if such a diffeomorphism f exists, then, by Definition 1.1, Θ(f) = 0. Since 0 ≤
δ ((X,ϕ), (Y, ψ)) ≤ Θ(f), the claim is proved. �

Figure 4 shows an example of how Corollary 3.5 can be used to decide if different
closed curves have “the same shape” when compared with respect to a particular
property (i.e., when a particular measuring function is considered).

For every i = 1, . . . , 4, the plane curve Ci is endowed with the Morse measuring
function ϕi, taking each point of Ci to its Euclidean distance from the fixed point
p ∈ R

2. The critical points of ϕi, i = 1, . . . , 4, are displayed in figure. The size
pairs are chosen in such a way that the natural pseudo-distance δ ((Ci, ϕi), (Cj , ϕj))
is equal to 0 for every i, j = 1, . . . , 4. Indeed, as in the proof of Theorem 3.4, we
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Figure 4. Four size pairs (Ci, ϕi), with ϕi : Ci → R, ϕi(x) = ‖x−p‖ for ev-

ery x ∈ Ci. For each two of these pairs, there exists an optimal diffeomorphism,
defined as in the proof of Theorem 3.4.

can easily define diffeomorphisms fij : Ci → Cj by matching each critical point of
ϕi with the corresponding critical point of ϕj , and then extending linearly such a
correspondence. Obviously, fij preserves the measuring functions’ values, hence,
by Corollary 3.5, δ ((Ci, ϕi), (Cj , ϕj)) = 0.

In this way, we could say that the four closed curves share the same shape
property that is described by the chosen measuring functions and is characterized
by the presence of 4 humps.

We observe that the shape property described in this example is invariant under
rotations and reflections of the curves with respect to the point p, and under non-
rigid deformations preserving the local minimum and maximum values, as well as
the relative order of critical points of the associated measuring functions. This last
invariance property could be particularly useful in Computer Vision applications,
since it usually happens that two shapes can be perceived as similar even if they
are non-rigidly related.

3.1. A topological interpretation of Theorem 3.4. From a topological point
of view, our main result can be used to characterize the Morse functions on the
circle S1 up to the composition with C2-diffeomorphisms of S1 that do not change
functions’ values. Indeed, if we replace X and Y by S1 in Theorem 3.4, we can
consider the set of Morse functions on S1, M(S1,R), endowed with the uniform
convergence topology. Then, we can quotient such a space defining the following
equivalence relation ∼: for every ϕ,ψ ∈ M(S1,R), ϕ ∼ ψ if there exists a diffeo-
morphism f : S1 → S1 such that ϕ = ψ ◦ f . In this way, we can rephrase Theorem
3.4 as follows.

Theorem 3.4 (restated). The equivalence classes defined by the relation ∼ are
closed in M(S1,R).

As an immediate consequence, we have that the natural pseudo-distance induces

a distance δ̃ on the space M(S1,R)/∼, by setting δ̃([ϕ], [ψ]) = δ
(
(S1, ϕ), (S1, ψ)

)

for every [ϕ], [ψ] ∈ M(S1,R)/∼.

4. Conclusions and future works

In this paper we have proved that there always exists an optimal diffeomorphism
between two size pairs (X,ϕ), (Y, ψ) having vanishing natural pseudo-distance, un-
der the assumptions that X,Y are closed curves, and ϕ,ψ are Morse measuring
functions. We point out that this result is the first available one concerning the
existence of optimal homeomorphisms between size pairs. Indeed, until now the
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research has been developed mainly focusing on the relations between the natural
pseudo-distance and the measuring functions’ critical values, as well as on the esti-
mation of the natural pseudo-distance via lower bounds provided by size functions.
Our result opens the way to further investigations, in order to obtain a general-
ization to the case of n-dimensional manifolds, n > 1. To this end, as shown in
Example 2, it is clear that we should consider measuring functions either satisfying
more restrictive conditions (e.g. simple Morse functions), or taking values in R

m,
with 1 < m ≤ n (in general, we are not interested in the case m > n since, at least
in the perspective of shape comparison, this would increase the dimensionality of
the problem). In the latter case, an interesting research line appears to be, for
example, to consider measuring functions having finite preimage for each point in
the range, or characterized by a behavior analogous to that of Morse functions in
the 1-dimensional case.
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