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A New Strategy for Reducing Selection Bias in Non-Experimental Evaluations,  

and The Case of How Public Assistance Receipt Affects Charitable Giving 

 

 

Abstract 

Prior work has analyzed the extent to which welfare recipients engage in giving money and time 

to charitable causes (Brooks, 2002, 2004; Author4 & Author1, 2009; Author1 & Author4, 2011), 

finding that public assistance is negatively associated with donating money with the relationship 

to volunteering being unclear.  Nevertheless, sticky issues of selection bias compel more 

deliberate thinking about the strength of assertions about cause and effect.  In response, we now 

conduct a multivariate cluster-based subgroup analysis approach to more confidently infer 

causality about the ways in which welfare receipt affects charitable activity.  This approach to 

dealing with the problem of selection bias capitalizes on the known treatment-associated 

variance in the X matrix, transforming data to estimate unbiased treatment effects.  We 

contribute to both the substantive and methodological literatures with this work. 

 

 



 2 

A New Strategy for Reducing Selection Bias in Non-Experimental Evaluations,  

and The Case of How Public Assistance Receipt Affects Charitable Giving 

 

 

 Much scholarship is dedicated to understanding the factors that compel one to donate 

time or money to charitable causes; but only a small portion of that scholarship considers those 

within society are least able to make those contributions.  Public opinion data shows that those 

who receive public assistance or are poor share the same values as the rest of society; and so on 

the face of it, there is no reason to believe they might behave differently in terms of their interest 

in volunteering their time or donating their money.  Nevertheless, income is a major constraint 

on one’s ability to donate money or time to charity, and it is income that public assistance 

recipients and other poor segments of our population lack.  Some research on charitable activity 

among public assistance recipients suggests that welfare receipt tends to reduce the levels of 

charitable giving (e.g., Brooks, 2002; 2004); but more recent work shows that this reduction 

might be offset by relatively higher levels of volunteering, all else equal (Author4 & Author1, 

2009).  One of the main challenges in this research is selection bias.  That is, those who use 

welfare are different – in ways that affect their outcomes of interest – from those otherwise, 

seemingly comparable individuals who do not use welfare, and this selection mechanism is not 

well understood or modeled with the kind of data commonly available. 

 Building on prior work, this paper adds to the small literature on how public assistance 

might influence recipients’ charitable activity.  We explore the issues of public assistance 

recipients’ donations of their time and (quite limited) money for charitable purposes.  We use the 

1994-2005 waves of the Panel Study of Income Dynamics (PSID), along with 2005 wave of the 

Center on Philanthropy’s Panel Study (COPPS), a PSID module that includes data on charitable 

giving and volunteering.  Importantly, we also use this question to test a new analytic approach 
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to overcoming selection bias and hope this has useful methodological lessons for program 

evaluators and policy analysts. 

 This paper is organized into four sections.  We begin with background discussion both of 

the effects of earned and public assistance income on people’s charitable behaviors.  We then 

discuss the data and methods, including the issues of selection bias problem that challenge this 

research and proposing a new analytic method that minimizes selection bias in impacts estimates.  

The third section presents results of our data analysis and discusses the findings.  We conclude 

with a discussion of the contributions and limitations of the study, as well as research and policy 

implications. 

 

Background 

 Prior research examines a variety of factors associated with individuals’ donations of 

money and time.  Here we discuss findings from that research, in particular what we know about 

the relationships between public assistance use, as well as demographic traits, and charitable 

activity. 

 

Charitable Activity and its Correlates  

 Several key personal characteristics are associated with charitable activity.  As we have 

discussed in contextualizing prior work (Author4 & Author1, 2009; Author1 & Author4, 2011), 

research documents that age may be “the variable most consistently related to giving” (Clotfelter, 

1997, 17), with donations increasing with one’s age (e.g., Arai, 2004; Brooks, 2002; Van Slyke 

& Brooks, 2005; Wilson and Musik, 1997).  Age may be related to volunteering in a curvilinear 

fashion due to physical infirmity among the elderly. Campbell and Yonish (2003) note that 
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“while there is a generally monotonic increase in volunteering as someone ages, volunteering 

falls off sharply for the elderly as they become less physically able to perform volunteer work” 

(n14, p.233).  Education is also consistently and positively correlated with charitable giving (e.g., 

Feldstein & Clotfelter, 1976; Jencks, 1987; Morgan, Dye & Hybels, 1977; Van Slyke & Brooks, 

2005; Steinberg & Wilhelm, 2003) and volunteering (Choi, 2003; McPherson & Rotolo, 1996).  

Marital status, in contrast, has a less clear association with charitable giving, but research shows 

that it matters.  Some have found a positive relationship (e.g., Andreoni, Brown & Rischall, 

2003; Choi, 2003; Jencks, 1987; Rooney et al., 2005; Van Slyke & Brooks, 2005; Wilson, 2000), 

explained by the added resources and social connections that marriage brings; but others have 

found no difference in the volunteering that married and unmarried people do, controlling for 

other factors (Fischer et al., 1991; Herzog & Morgan, 1993; Musick & Wilson, 2008).  Another 

clear link exists between religious affiliation and practice and charitable activity (Wilson & 

Musick, 1997), with being Christian (e.g., Van Slyke & Brooks, 2005) and more frequent service 

attendance (e.g., Steinberg & Wilhelm, 2003) being associated with greater giving of both time 

and money.  Health status also influences volunteer activity, with poor health reducing both 

one’s ability to volunteer (Caputo 1997) and the amount of time one volunteers (Gallagher, 

1994; Wilson & Musick, 1997), particularly among older adults (Choi, 2003).  Some research 

finds that race and ethnicity affect charitable activity, with African American and Hispanic 

families being less likely to donate or volunteer, or to donate less money or fewer hours, than 

Whites (Hodgkinson & Weitzman, 1996); but others find no effect (e.g., O’Neill & Roberts, 

2000; Rooney et al., 2005; Steinberg & Wilhelm, 2005).   

 In addition to these personal traits, two other correlates of charitable activity demand 

attention:  income, and public policy.  Substantial research has considered the impact of public 
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policy on charitable giving (Brooks, 2000; Steinberg, 1990; Steinberg, 1993).  Relevant policies 

include personal tax deductions for charitable donations and the tax exempt status of various 

investments.  The policy most relevant to this analysis for instance is tax deduction itemizing. 

Another arena of policy is public assistance, which this project considers, and its role in 

inhibiting or encouraging charitable activity.  This arena is much less studied, with our recent 

work (Author4 & Author1, 2009; Author1 & Author4, 2011) and that of Brooks (2004, 2002) 

being the most direct tests of policy effects.   

 As we describe elsewhere (Author4 & Author1, 2009; Author1 & Author4, 2011), 

Brooks (2002, 2004) finds that welfare receipt negatively impacts charity, suggesting that 

welfare income functions differently from earned income in stimulating charitable activity.  

Notwithstanding their contribution to our understanding of the charitable activities of welfare 

recipients, existing studies neglect one key dimension: volunteering.  This omission is important 

because, as Brooks (2002) notes, contributions by the poor “might be especially likely to take a 

non-pecuniary form” (111).  In light of the negative effect of welfare receipt on charitable giving 

documented in the literature, the question arises:  would public assistance use have a similar, 

negative influence on recipients’ likelihood to volunteer?  Such a negative effect would be 

consistent with the notion of a “culture of welfare,” which suggests that long-term welfare 

dependency may suppress many pro-social attitudes (Brooks, 2002).  It also echoes the 

proposition that “welfare benefits discourage political involvement by cultivating personal traits 

of dependence” (Soss, 1999, 363).    

 Alternatively, receiving public assistance might have a positive effect on recipients’ 

likelihood to volunteer.  That is, government assistance might encourage beneficiaries to become 

more civically engaged.  Mettler (2002), for example, finds that the G.I. Bill’s educational 
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provisions lead to increased levels of voluntary participation by veterans (in the form of 

memberships in civic organizations and political activity).  A positive association between public 

assistance receipt and volunteering may also be interpreted from the perspective of human 

capital and career development (e.g., Menchik & Weisbrod, 1987).  Combined with job search 

(or other traditional welfare-to-work activities), volunteering can help public assistance 

recipients gain economic independence by building their confidence and the motivation 

necessary to succeed in regular employment and by providing opportunities for learning specific 

work-related skills (Herr, Wagner & Halpern, 1996).  In addition, public assistance recipients 

can also benefit from the signaling effect of volunteering: their volunteer experience can signal 

to future employers the presence of certain skills or abilities (Schiff, 1990; Ziemek, 2006). 

 The effect of public assistance receipt on charitable activity can also be understood by 

considering whether giving and volunteering are complements or substitutes.  On one hand, the 

Independent Sector’s research on giving and volunteering reveals a positive correlation between 

these two types of individual philanthropy (Hodgkinson & Weitzman, 1996).  Van Slyke and 

Brooks (2005) also find that individuals who volunteer for charitable organizations, regardless of 

their demographic attributes, are more likely to donate money as well.   They reason that 

volunteers donate money out of a sense of community.  Following this line of reasoning, then, 

government support for those who are in need might discourage their volunteer activities if 

assistance negatively affects their giving behavior.  Although no existing evidence supports this 

possibility, research finds that giving and volunteering both increase when tax policy 

encouraging giving is implemented, and that they both decrease when tax policy discouraging 

giving is in place (e.g., Andreoni et al., 1996; Brown, 1999).   
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 On the other hand, a standard economic model of constrained utility maximization would 

predict that giving and volunteering function as substitutes for each other (Slyke & Brooks, 

2005).  This is consistent with the work of Jencks (1987) and Duncan (1999), who find that when 

an individual’s likelihood to give money declines, his or her contribution of time increases, on 

average.  Following this line of reasoning, we might hypothesize that public assistance receipt 

would increase volunteerism.  Although the relationship between public assistance receipt and 

giving is negative, the relationship between public assistance receipt and volunteering could well 

be positive:  relying on public assistance reflects a severe income constraint that may rule out 

charitable giving, but, if giving and volunteering are substitutes, then volunteering would be 

more likely.  Stated differently, it is possible that a public assistance recipient’s diminished 

financial contributions might be off-set by an increase in the amount of time donated.  Prior work 

suggests that this may be the case (Author4 & Author1, 2009). 

 Beyond the discussion of giving and volunteering as complements or substitutes, one 

might consider the effect of public assistance use on charitable activity in terms of the distinction 

between luxury and necessity goods.  Luxury goods are goods whose income elasticity of 

demand exceeds one, whereas necessity goods are those whose income elasticity of demand is 

below one.  As income rises, the proportion of expenditure on luxury goods increases while that 

on necessity goods decreases (Deaton & Muellbauer, 1980).  It is plausible that gifts of money 

are luxury goods among people with low incomes.  Gifts of time, on the other hand, are necessity 

goods.  For low-income people such as welfare recipients, therefore, the “giving mix” is mostly 

in the form of time, but the mixture shifts towards money as income increases. 

In light of this discussion, we propose to examine two competing hypotheses regarding 

the effect of public assistance receipt on charitable giving and volunteering.  One hypothesis is 
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that public assistance receipt has a negative effect on charitable giving, but has a positive effect 

on volunteering.  The competing hypothesis is that public assistance receipt has a negative effect 

on both charitable giving and volunteering.   

 Research Question.  The question that this motivates is: How does public assistance 

receipt affect charitable giving?  As noted, prior work examined two dimensions of charitable 

giving:  donations of time and money.  We revisit that same question here by extending a new 

methodological approach to increase our confidence in the causal story. 

 

Methodology 

 This section details our data source, measures and the analytic approach we follow to 

answer the question. 

 

Data and Measures 

 Our analysis uses the 2005 Center on Philanthropy Panel Study supplement to the PSID.  

In particular, we merge variables from the 1994-2005 panels of the PSID to the 2005 COPPS 

supplement.  The COPPS collects data on the amount of money and number of hours donated to 

several charitable purposes:  religious, combined funds, basic needs, health, education, youth and 

family services, the arts, neighborhoods, the environment, and international aid.  In addition to 

these key indicators, the dataset contains information about households characteristics and use of 

various forms of public assistance.  Our sample in particular is the 7,822 households that 

comprise the 2005 COPPS. 
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Measures 

 As elaborated in Author4 and Author1 (2009), from the raw COPPS data, we compute 

two dependent variables:  the Amount Donated and the Hours Volunteered.  The amount donated 

is simply the sum of households’ contributions made in 2004 to a variety of charitable sources 

and is measured in dollars.
1
  Likewise, the number of hours volunteered is the sum of the head of 

households’ time donated to a variety of charitable organizations in 2002.
2
  Our descriptive 

statistics include binary versions of these variables as well as the percent of the population that 

donates money or time at all. 

 Our specific measures of income combine specific sources of 2004 household income as 

reported by survey respondents.  Earned Income is the sum of the household head and spouse’s 

labor income (e.g., wage, salaries, etc.).  Public Assistance Income is the sum of the household 

head and spouse income from cash public assistance (Temporary Assistance to Needy Families 

[TANF]), general assistance (GA), and food stamps.  Both income variables are converted to 

reflect annual amounts.  Although the scant prior research on public assistance use and charitable 

activity has focused on cash assistance in particular, we feel justified in using a broader 

conception of public assistance.  There is substantial overlap between cash assistance and food 

stamps use.  While some individuals receive only food stamps and not cash assistance, they may 

still be considered as somewhat reliant on the state for support.  Including food stamp recipients 

also increases the number of members in the treatment subsample, thereby increasing our ability 

to detect effects, if they exist.  

                                                 
1
 Here we use the COPPS definition of charitable giving as donations of $25 or more made to charitable 

organizations.  Since there is not a “total amount donated” variable in the COPPS data, we construct this variable by 

adding religious giving to all secular giving.  For the few households who answered the unfolding brackets questions 

(e.g., “Did you make any donations specifically for religious purposes”, etc.) rather than the amount given question, 

this variable is coded to the lower bound based on the brackets.   
2
 Since there is not a “total hours volunteered” variable in the COPPS data, we construct this variable by adding 

hours volunteered to religious organizations to hours volunteered to secular organizations.   
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Next, we compute three additional public assistance variables.  Prior Public Assistance 

Receipt identifies the number of years between 1993 and 2002 (with a total of seven possible) 

that a household had income from cash public assistance (TANF and GA) or food stamps.  

Similarly, we report the number of years of Prior Public Housing Residence between 1993 and 

2002; and we report Current Public Housing Residence as whether the household reports living 

in public housing in 2004.  We include these public housing variables as a way to control for 

other measures of disadvantage that might be associated with both public assistance use and the 

ability to donate one’s money or time to charitable causes.   

 In order to capture the possible effect of the price of giving (i.e., marginal income tax 

rates), we include a binary variable, Tax Itemizer, which equals 1 if the household head itemized 

deductions in his or her tax return (and 0 otherwise).  While the price of giving one dollar to 

charity is one dollar for taxpayers who do not itemize deductions in their tax returns, for 

itemizers the price of giving is less than a dollar, as they receive a “rebate” equal in value to their 

deductible contributions times the applicable marginal tax rate.     

 The general household characteristics are straightforward and capture the traits that prior 

research identifies as associated with charitable activity:  age, sex, number of children, marital 

status, race, ethnicity, education, religiosity, urban residence, and health status.  Our unit of 

analysis is the head of household, and some characteristics of the household more broadly are 

associated with those individuals.  Table 1 presents the variable definitions and summary 

statistics for the overall sample, as well as for the overall subgroups of those who we consider to 

be welfare recipients and non-recipients.  
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Table 1. Variable Names, Labels and Descriptive Characteristics (weighted) 
Variable label Overall Welfare Rs Non-Rs 

Charity Variables 

Donated at all 

Volunteered at all  

Amount donated ($) 

Hours volunteered 

66.9 

28.5 

$1,418 

48.3 

% 

% 

 

 

29.2 

13.8 

$159 

29.9  

69.8 

29.6 

$1,515 

49.7 

** 

** 

** 

** 

Income Variables 

Earned income  

Public assistance income 

Tax itemizer 

$47,822 

$160 

42.4 % 

$10,288 

$2,221 

6.5  

$50,712 

0 

45.1 

** 

** 

** 

Public Assistance Use Variables 

Prior public assistance use (%) 

Prior public assistance use (yrs) 

Current public housing residence (%) 

Prior public housing residence (yrs) 

11.2 

0.28 

3.4 

0.13 

% 

 

% 

 

58.2 

1.9 

15.0 

0.57  

7.6 

0.2 

2.5 

0.10 

** 

** 

** 

** 

Household Characteristics  

Age of head (yrs) 

Sex of head (female) 

Number of children 

Marital status (married) 

African American 

Hispanic 

Education (<=high school) 

Education  (yrs completed) 

49.4 

29.2 

0.6 

50.2 

14.1 

7.1 

49.3 

17.4 

% 

 

% 

% 

% 

% 

 

42.1 

60.0 

1.3 

21.4 

42.2 

13.3 

76.7 

14.8  

49.9 

26.9 

0.5 

52.4 

12.0 

6.6 

47.2 

17.6 

** 

** 

** 

** 

** 

** 

** 

** 

Catholic 

Jewish 

Protestant
 

24.0 

3.4 

57.9 

% 

% 

% 

17.1 

0.0 

66.0  

24.5 

3.6 

57.3 

** 

** 

** 

Rural location (1-10 scale) 

Good health (1-5 scale) 

3.5 

3.5  

3.5 

3.5  

3.8 

2.9 

* 

** 

Number of observations 7,822  891  6,931  

Notes: 

** statistically significant difference; p<0.05   

* statistically significant difference; p<0.10 

 

 As Table 1 shows, major differences exist in the characteristics of those who are public 

assistance recipients and those who are not.  For example, in terms of our dependent variables of 

interest, welfare recipients donate less money and less time to charitable causes.  As expected, 

they also have much less income from work, are younger, are less white, and are more likely to 

have a female household head.  These differences are statistically significant, are generally large 

in magnitude, and very likely contribute to important differences in their outcomes.  This table 

reports only the descriptive characteristics, but controlling for between-group differences is 

essential to understanding whether, given these differences, welfare recipients are more or less 

generous with their time or limited money, when it comes to acting charitably.  For this reason, 
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we spend some time in the next section considering how to deal with the bias that this would 

undoubtedly influence any estimate of the impact of public assistance receipt on charitable 

activity. 

 

Analytic Methods 

 Both dependent measures are continuous, are truncated at zero, and include relatively 

large numbers of observed zeroes.  Prior research has shown that charitable giving data may have 

a non-normal and heteroskedastic error structure (Rooney, Steinberg & Schervish, 2001, 2004; 

Steinberg, Rooney & Chin, 2002).  Under these circumstances, Ordinary Least Squares (OLS) 

regression coefficients are biased and inconsistent.  In line with much of the literature on 

charitable giving, we estimate our models using Tobit, a censored regression technique (Brooks, 

2002; Van Slyke & Brooks, 2005).
3
   

 With this functional form, our prior work has used a difference-in-difference strategy and 

propensity score matching (Author1 & Author4, 2011) to reduce the amount of bias in our 

impact estimates that derived from selection processes, primarily due to the selection process 

associated with welfare use.  While we stand behind that approach and our prior work, at the 

very least for the transparency of the approach, we believe it is important to re-test our results 

using different methods, both as a robustness check and to advance research methods used in 

examining policy effects. 

 In turn, this paper uses an atheoretical approach that we propose minimizes bias from 

selection.  The analysis clusters cases as similar; and within each cluster the comparison of 

                                                 
3
 It should be noted that, while Tobit accommodates the large number of zeroes in the dependent variable, it is not 

robust to either non-normality or heteroskedasiticity.  However, a recent study by Wilhelm (2006) provides support 

for using Tobit with this particular data, arguing that despite rejection of the underlying assumptions of Tobit at 

higher levels of statistical significance, the Tobit estimates are numerically close to more robust methods.   
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welfare and non-welfare users generates an estimate of impact with minimal bias from selection.  

Two features of our analysis are especially unique, as previously described in Author2 (2009) 

and Author2 and Author3 (2010) and applied in Author1, Author3 and Author2 (2009).  The first 

distinct feature is our use of cluster analysis, specifically incorporating data transformed through 

Multiple Correspondence Analysis (MCA).  The MCA creates a data structure that eliminates 

variance in the X matrix that is associated with treatment assignment, and the cluster analysis 

enhances the possibility of finding local spaces in which variables are balanced.   

The second feature – the measure of Global Imbalance – is a single measure of the 

balance in data and is based on the concept of inertia as a measure of dependence between 

categorical covariates and the treatment assignment indicator.  Whereas common practice is to 

assess variable-by-variable the extent to which comparison and treatment groups are matched, 

the GI measure allows an overall assessment of how well-matched cases are.  For example, while 

Table 1 considers one-by-one the differences between the two groups, the GI measure assesses 

the comparability between groups, taking into account variation in all baseline covariates 

simultaneously.  This is particularly useful in our case because we expect to examine many 

subsets of matched treatment and comparison cases, and a variable-by-variable assessment of 

their balance is likely not only to be tedious but also to reveal differences that exist purely by 

chance, some of which may be real and others of which may be only random, the distinction 

between which is un-knowable. Appendix A details the technical aspects of the GI measure and 

its test of statistical significance. 

In brief, we use a three-step approach for estimating unbiased treatment effects in non-

experimental data, as follows: 

1. Measure and test balance: compute GI measure on the whole sample and test its statistical 

significance.  
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2. If imbalance exists (which is probable in all non-experimental data), perform a subgroup 

analysis, which involves the following: 

 Use Multiple Correspondence Analysis (MCA) to obtain a continuous and a low-

dimensional representation of the X-space. 

 Enter the MCA coordinates into a cluster analysis to identify homogeneous groups. 

3. Measure and test balance within each cluster, and compute local treatment effects within 

balanced clusters, pruning observations in unbalanced clusters. 

Intuitively, when data are not balanced, a transition from the global predictor space to local 

predictor spaces is done by means of cluster analysis in order to estimate unbiased treatment 

effects.  This approach can be considered a subgroup analysis where the primary goal is to get a 

cluster partition that generates balanced groups, thereby minimizing selection bias and 

generating unbiased impact estimates. 

 

Results & Discussion 

 This section reports on the results from each of the three steps described above, and then 

presents findings from this process, comparing them to results from our prior work and then 

discussing implications. 

 Step 1.  In implementing the three-step analysis, we begin by computing the GI measure 

for the entire sample.  As reported in Table 2, the resulting value of 0.0406 can be interpreted as 

demonstrating the presence of imbalance in data.  This is not surprising given the obvious 

differences revealed in Table 1.  The GI measure falls in the critical region, thereby demanding 

data adjustment in order to estimate treatment effects not biased by selection.  Essentially, Table 

2 reports a single measure of sample balance; whereas Table 1 identified the variable-by-variable 

differences in sample characteristics.  
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Table 2. Balance in the Overall Sample 

Treatment Comparison GI Interval balance 

891 6,931 0.0406 (0;0.0006) no 

 

 Step 2.  The second step involves cluster analysis to identify homogeneous groups on the 

basis of MCA coordinates.  The MCA was carried out using the following variables:  age of 

head, sex of head, number of children, age of youngest child, African-American, Hispanic, 

marital status, education, single female, years of school completed, rural location, health of head, 

work status (working, retired, disabled), head hours worked, spouse hours worked, earned 

income, prior public assistance use, current and prior public housing residence.   

The result of the MCA is a set of new variables (factorial coordinates) that are continuous 

and orthogonal one other.  On the basis of these new MCA coordinates, we perform a cluster 

analysis to generate homogeneous groups.  Although cluster analysis is an atheoretical approach, 

the variables we enter in to this preceding MCA regardless have theoretically justification as 

useful predictors of public assistance receipt.  While others have used cluster analysis to 

understand how various treated subgroups are impacted (e.g., Author1, 2005; Yoshikawa, 

Rosman, & Hsueh, 2001), what makes this approach different is both (1) the MCA that 

transforms the data to minimize bias in cluster-based treatment-comparison group impact 

analyses, and (2) the introduction of the GI measure to conclude if a particular cluster has 

balanced treatment-comparison cases.  In previous research (Author1, Author3, & Author2, 

2009), we used a Ward algorithm on the MCA coordinates to generate clusters.  Here, the sample 

size is greater than 5,000 units and therefore requires substantial computational resources to 

perform the distance matrix computation.  To overcome this computational challenge, we use a 

mixed clustering method (Lebart et al., 1984), a combination of clustering around moving 
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centers  and Ward’s hierarchical aggregation of stable groups, which is the best adapted to large 

datasets.  We use the SAS software for MCA and cluster analysis.  

 The result of the mixed clustering method is depicted on a dendrogram, a tree diagram 

used to document the clustering process.  Based on the dendrogram’s structure, we mostly 

closely examine the 8-, 13-, 19-, 24-, 31- and 40-cluster solutions.  We retain the 40-cluster 

solution because it provides balance within a suitable number of clusters, compared with other 

examined cluster solutions.  With the 40-cluster solution, we measure and test balance within 

each group, using the GI measure, which is a clear advantage over the more traditional variable-

by-variable assessment of group similarity.  

 Table 3 shows the results of this cluster analysis in terms of balance, including the 

number of treatment and comparison cases that each cluster includes.  In this illustration, 13 of 

the clusters result in having unbalanced characteristics by our GI measure.  In total, they 

represent about 35.7 percent of the observations of the original sample, which are then excluded 

from our third analytic step.  Compared to a more commonly-used propensity score matching 

approach (e.g., Author1 & Author4, 2011), this cluster-based approach retains much more of the 

sample. 
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Table 3. Balance by Clusters, 40-Cluster Solution 

Cluster Comparison Treatment GI Interval Balance 

1 801 5 0.003 (0;0.004) Yes 

2 250 14 0.024 (0;0.015) No 

3 446 8 0.006 (0;0.007) yes 

4 250 9 0.017 (0;0.017) yes 

5 111 3 0.025 (0;0.030) yes 

6 40 2 0.072 (0;0.073) yes 

7 91 10 0.022 (0;0.034) yes 

8 31 3 0.065 (0;0.102) yes 

9 171 3 0.024 (0;0.021) no 

10 97 6 0.028 (0;0.033) yes 

11 68 26 0.040 (0;0.042) yes 

12 137 10 0.035 (0;0.025) no 

13 133 4 0.058 (0;0.027) no 

14 309 29 0.010 (0;0.010) yes 

15 119 43 0.036 (0;0.026) no 

16 169 8 0.014 (0;0.019) yes 

17 138 10 0.036 (0;0.022) no 

18 263 14 0.015 (0;0.015) yes 

19 218 19 0.010 (0;0.014) yes 

20 427 9 0.009 (0;0.009) yes 

21 59 15 0.022 (0;0.048) yes 

22 288 20 0.017 (0;0.012) no 

23 63 10 0.018 (0;0.050) yes 

24 70 11 0.030 (0;0.042) yes 

25 195 25 0.027 (0;0.015) no 

26 85 99 0.020 (0;0.020) yes 

27 130 36 0.035 (0;0.019) no 

28 139 12 0.023 (0;0.025) yes 

29 366 17 0.009 (0;0.009) yes 

30 258 78 0.020 (0;0.010) No 

31 45 24 0.038 (0;0.059) Yes 

32 63 33 0.039 (0;0.039) Yes 

33 11 12 0.070 (0;0.161) Yes 

34 43 43 0.033 (0;0.046) Yes 

35 75 118 0.024 (0;0.021) Yes 

36 123 12 0.034 (0;0.028) No 

37 13 38 0.044 (0;0.068) Yes 

38 59 38 0.021 (0;0.039) Yes 

39 243 14 0.016 (0;0.013) no 

40 334 2 0.023 (0;0.011) no 

Notes: GI refers to the measure of global imbalance, which assesses holistically whether within-cluster treatment 

and comparison cases are balanced (similar) or imbalanced (dissimilar). 

 

 Step 3.  During the final stage of the procedure, we analyze the effects of public 

assistance receipt on two outcomes of interest, the amount donated to charity and the number of 
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hours volunteering within each of the remaining 27 balanced clusters.  We estimate our giving 

and volunteering models by cluster, fitting a Tobit model (Verbeek, 2008) as follows: 

iii wy  *
            i =1,2,…,N 

0 y  if     0y

0  y  if   yy

*

ii

*

i

*

ii





             

 where  

  y is the outcome of interest (dollars donated or hours volunteered),  

  w is a vector of indicators of charitable activity,  

    is a random disturbance term, assumed to be  2,0 NID  and independent from   

                         iw , and 

  

  the subscript i indexes individuals.  

Using the SAS qlim procedure, we fit a Tobit model for each cluster to estimate the effect 

of public assistance use on the outcome of interest.  At this point, we do not include any 

additional variables in the model, at least in part because the number of observations of either 

treatment or comparison group members is sometimes smaller than the number of explanatory 

variables we would include.  Instead, we perform a single regression within each of the 27 

balanced clusters, under the presumption that they include well-matched treatment and 

comparison group members on the basis of the GI measure and test’s result within clusters; and, 

while heterogeneous, their selection as cluster-matched cases means that, on aggregate, they 

should also retain the properties of supporting solid internal validity. 

 Because Tobit coefficients are not directly interpretable, we also compute and report 

marginal effects (Greene, 1999) to judge the magnitude and importance of estimated effects.  

The marginal effect represents the instantaneous effect that a change in a certain variable has on 

the dependent variable while keeping all the other covariates constant. 
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 Our main findings appear in Table 4, which summarizes the Tobit regression results 

along with the computed marginal effects of receiving public assistance on the amount of money 

donated and on the number of hours volunteered.  Considering the dependent variable of the 

amount of money donated, among these 27 balanced clusters, five show a positive effect of 

welfare receipt on donations and the remaining 22 show a negative effect.  None of the positive 

effects are statistically significant.  Fourteen of the negative effects are statistically significant; 

and among those, just five are in clusters where we have sufficient sample size to be confident of 

the results.  The magnitude of the effect between the treatment and comparison group members 

in Cluster 18, for example, would be interpreted as follows:  holding all other variables constant 

at the mean, being a public assistance recipient is associated with making $1,052 less in 

charitable contributions relative to those who do not receive assistance. 
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Table 4.  The Effect of Public Assistance Use on Charitable Activity, by Balanced Cluster 

Cluster 

Amount of Money Donated Number of Hours Volunteered 

Parameter 

Estimate 

Marginal 

Effect P-value 

Parameter 

Estimate 

Marginal 

Effect P-value 

1^ -2,321.1  -1,583.36  <0.01 ** -226.0  -83.1  0.26  

3^  -1,254.9  -816.94  <0.01 ** -171.7  -49.1  0.36  

4^ -2,062.2  -1,254.06  <0.01 ** -122.2  -34.0  0.43  

5^ -3,894.6  -2,240.43  <0.01 ** -769.6  -209.3  <0.01 ** 

6^ -1,358.1  -751.48  <0.01 ** 93.1  20.9  0.72  

7 -784.7  -370.96  0.35  -295.1  -99.3  0.13  

8^ -11,939.0  -4,000.14  <0.01 ** -1,651.3  -327.1  <0.01 ** 

10^ -2,485.0  -1,137.76  <0.01 ** 247.1  43.5  0.16  

11 -164,453.0  -510.47  0.03 ** -55.0  -8.6  0.64  

14 -1,022.4  -454.91  0.13  -141.6  -30.5  0.44  

16^ -5,101.0  -2,459.59  <0.01 ** 437.9  100.6  0.03 ** 

18 -1,961.0  -1,052.91  <0.01 ** -176.9  -40.8  0.36  

19 -638.4  -256.03  0.34  -122.6  -19.2  0.52  

20^ -1,795.9  -1,055.62  <0.01 ** -58.1  -14.4  0.69  

21 -1,081.9  -406.93  0.17  -59.6  -9.9  0.82  

23 498.6  82.96  0.32  68.9  6.7  0.31  

24 443.9  153.90  0.41  -37.9  -8.1  0.58  

26 14.3  3.32  0.98  -106.8  -25.8  0.56  

28 -1,456.6  -779.13  0.01 ** -51.5  -10.9  0.59  

29 -1,357.4  -808.69  0.17  -23.9  -9.3  0.82  

31 -113.3  -39.78  0.78  14.4  2.1  0.65  

32 -642.1  -206.03  0.05 ** -231.8  -35.9  0.48  

33 104.6  24.28  0.47  -2,999.6  -437.6  <0.01 ** 

34 -864.0  -186.92  0.10 * -6.0  -0.8  0.98  

35 -138.1  -34.38  0.68  68.8  14.6  0.59  

37 172.2  37.36  0.32  3,422.6  67.9  <0.01 ** 

38 -188.5  -60.85  0.68  -39.3  -3.6  0.72  

Notes: 

^  Although we estimate parameters, we urge caution in interpretation because of low statistical power due to few 

observations for a treatment level. 

The parameter estimate is that associated with the treatment variable, indicating that the sample member received 

welfare.  So, these are interpreted as the effect of receiving welfare on the money and time donations.  No additional 

controls are included. 

**   Statistically significant, p<0.05 

*   Statistically significant, p<0.10 

 

 Next, considering volunteer hours, only two of the five statistically significant results are 

in clusters where we have enough observations to be confident in the results.  That said, those 

two effects operate in opposite directions:  the finding from Cluster 33 suggests that those public 

assistance recipients volunteer many fewer hours (437 per year) than non-recipients; whereas 

those recipients in Cluster 37 volunteer 68 more hours annually than their non-recipient 

counterparts, holding other variables constant. 
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 Each of these individual analyses within cluster is between matched members of the 

treatment group (received public assistance) and the comparison group (did not receive public 

assistance).  In part for the observation that a cluster-by-cluster analysis involves relatively few 

cases within some selected clusters, we are prevented from controlling for other variables that 

might explain charitable activity.  Recall that cluster membership was determined by the MCA 

coordinates, which were based on a theoretical model of public assistance use, and so we assert 

that the treatment and comparison cases within each cluster minimize selection bias related to 

public assistance use; but there may be variability in the data related to charitable activity that we 

could control for in increasing the precision of our estimates of the impact of public assistance 

receipt on charitable activity.  If this is the case, then future analysis might consider collectively 

all of the observations within the balanced clusters in an aggregate analysis that would permit 

more precise estimate of impacts through controlling for other variables. 

 While we undertake this analysis to maximize the internal validity of our findings (that is 

minimize bias in impact estimates), we also remain concerned with the external validity.  That is, 

our process resulted in some unbalanced clusters, the cases we pruned from subsequent analysis.  

Further, several of the remaining clusters show no effect of having received public assistance on 

either money or time donated to charity.  We might be interested to know the characteristics of 

those whose public assistance receipt has no effect on their charitable activity; and we are also 

likely interested in the characteristics of those clusters in which there is a statistically significant 

effect, at least in part to gauge the extent to which these results might be generalizable. 

   In response, we provide the descriptive characteristics of those clusters in which balance 

between the treatment group (welfare recipients) and comparison group (non-recipients) exists 
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and there is some evidence of a statistically significant effect.  Tables 5.1 and 5.2 present these 

results. 

Table 5.1. Descriptive Statistics, by Cluster, among Selected Balanced Clusters (with small 

sample size)  

Variable 

Sample 

mean 

Cluster 

1 3 4 5 6 8 10 16 20 

Dollars effect   –  ** –  ** –  ** –  ** –  ** –  ** –  ** –  ** –  ** 

Hours effect   – – – – + –  ** + +  ** – 

Observations  806 454 259 114 42 34 103 177 436 

Treatment  5 8 9 3 2 3 6 8 9 

Comparison  801 446 250 111 40 31 97 169 427 

Age of head 44.7 44.9 43.2 41.3 43.0 36.5 35.6 39.3 45.1 43.0 

Female head (%) 29.5 0.0 1.3 4.6 2.7 0.0 17.6 2.9 1.7 0.0 

# children 0.90 1.04 0.92 0.97 0.83 0.95 1.11 1.16 0.72 1.06 

African-Am. (%) 33.7 13.5 26.6 31.7 9.7 7.1 5.9 25.2 24.3 37.8 

Hispanic (%) 6.1 0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 

Married (%) 51.1 91.6 77.3 69.5 73.7 69.1 67.7 68.0 76.3 90.1 

≤high school (%) 31.7 0.0 0.0 0.0 100.0 0.0 26.5 100.0 0.0 100.0 

Working (%) 75.4 97.8 95.2 93.8 93.9 92.9 91.2 92.2 97.2 97.5 

Retired (%) 10.8 0.0 0.0 0.0 0.9 2.4 2.9 1.0 0.0 0.0 

Head work hrs 1,696 2,344 2,236 2,194 223 2,141 2,138 2,279 2,225 2,315 

Spouse work hrs  732 1,511 1,154 1,145 1,040 1,276 1,098 1,155 1,193 1,643 

Earned income($) 47,269 8,279 55,791 66,091 51,686 54,852 52,070 53,216 49,817 76,261 

Prior PA (yrs) 0.44 0.01 0.05 0.08 0.20 0.19 0.14 0.08 0.06 0.06 

Pub. housing (%) 5.13 0.12 1.10 1.93 1.75 2.38 0.00 1.94 0.56 0.69 

Prior housing (yrs) 0.19 0.02 0.07 0.07 0.02 0.04 0.02 0.17 0.05 0.103 

Notes: 

These selected balanced clusters are those marked in Table 1 as having low statistical power due to few observations 

for a treatment level.  We therefore urge caution in interpretation of the effects. 

**   Statistically significant, p<0.05 

*   Statistically significant, p<0.10 
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Table 5.2. Descriptive Statistics, by Cluster, among Selected Balanced Clusters (with larger 

sample size)  

Variable 

Sample 

mean 

Cluster 

11 18 28 32 34 37 

Dollars effect   –  ** –  ** –  ** –  ** –  ** + 

Hours effect   – – – – – +  ** 

Observations  94 277 151 96 22 51 

Treatment  26 14 12 33 12 38 

Comparison  68 263 139 63 11 13 

Age of head 44.7 38.7 42.8 44.4 41.3 58.3 51.3 

Female head (%) 29.5 78.3 3.3 0.0 99.6 59.1 56.8 

# children 0.90 1.06 0.89 0.80 1.58 1.22 0.56 

African-Am. (%) 33.7 69.2 16.3 55.6 88.5 50.0 78.4 

Hispanic (%) 6.1 0.0 0.0 0.0 7.3 9.1 0.0 

Married (%) 51.1 2.1 72.9 0.0 0.0 36.4 17.7 

≤high school (%) 31.7 36.2 46.2 100.0 43.8 18.2 43.1 

Working (%) 75.4 72.3 93.9 95.4 88.5 4.6 0.0 

Retired (%) 10.8 0.0 0.0 0.0 0.0 31.8 0.0 

Head work hrs 1,696 1,509 2,217 2,028 1,981 156 50 

Spouse work hrs  732 37 1,083 0.0 0.0 195 167 

Earned income($) 47,269 18,254 52,609 36,378 17,915 3,903 1,824 

Prior PA (yrs) 0.44 0.39 0.10 0.32 3.46 3.54 6.01 

Pub. housing (%) 5.13 18.09 0.36 2.65 20.83 18.18 13.73 

Prior housing (yrs) 0.19 0.26 0.06 0.30 1.09 0.86 1.19 

Notes: 

These selected balanced clusters are those marked in Table 1 as having sufficient numbers of observations to instill 

greater confidence in interpretation of the effects. 

**   Statistically significant, p<0.05 

*   Statistically significant, p<0.10 

 

 In brief, it is clear that our clusters represent relatively heterogeneous subgroups of the 

overall sample.  Many dimensions of variation exist, even along just those variables that we have 

measured here.  The consistent effect across most of the clusters (where results are statistically 

significant) is that current public assistance receipt is associated with lower donations to charity.  

This is in line with our prior work, which found that public assistance use itself suppressed 

donations of money, but that as public assistance income rises so too do money donations 

(Author4 & Author1, 2009).  Note, however, that the present analysis does not (yet) consider the 

role of the amount of public assistance income, only public assistance receipt, since the cluster-

by-cluster analysis includes only an unbiased selection-to-welfare (treatment) indicator.  Most of 

the reported effects on volunteer hours are not statistically significant; but, among the three that 

are, two of them are positive effects, which is sync with our prior research and supports the 
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possibility that donations of money and time are substitutes for one another.  Our research here, 

however, suggests that this is not a widespread finding but instead isolated to some specific sub-

populations.  The characteristics of the subgroup represented in cluster 37 suggest that it might 

be classified as “children of the Great Society.”  Specifically, with an average age of 51, this 

somewhat older group was born around 1953, and they are relatively evenly split between men 

and women.  With very low income from work, and a much greater proportion being African 

American, compared to the sample mean,  they have greater connection to public assistance, with 

an average of six years (of the prior seven) as public assistance recipients, and greater 

proportions living in public housing.  Despite these characteristics, this group has greater levels 

of volunteering, perhaps suggesting that their upbringing during the Great Society and Civil 

Rights movements of the sixties is associated with greater evidence of giving back. 

 

Conclusion 

 Prior research has considered the effects of public policy on charitable activity, although 

relatively little of that considers the role of public assistance.  Prior work has aimed to minimize 

problems associated with selection bias in estimating policy impacts, and the current work makes 

another attempt to do so.  Here we apply a creative clustering approach devised and applied in 

Author2 (2009), Author3 and Author2 (2010) and Author1, Author3, and Author2 (2009). 

 Although our prior work made the case for this approach on the basis of it minimizing 

researcher influence over elements of the process, this particular application highlights that this 

objectivity may in fact be somewhat compromised.  Specifically, the choice of algorithm to use 

in cluster analysis can have important implications for analytic results (e.g., Aldenderfer & 

Blashfield, 1984), and here we chose to use a mixed classification method.  It is possible that a 
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different choice at this point in the analysis might have resulted in a different combination of 

treatment and comparison cases being grouped together, perhaps in a different number of 

clusters.  This observation suggests that future research that uses this approach might test the 

sensitivity of various algorithms at the cluster analysis stage.  Nevertheless, as Lebart et al. 

(1984) mention, some of the greatest minds in Multivariate Statistical Analysis of the French 

School of Analyse des données, the efficacy of the method of classification around moving 

centers is largely attested to by empirical results and is the partitioning method that best 

accommodates large datasets like ours. 

 Related is the point that the selection of an optimal cluster solution also involves some 

subjectivity.  Although several reasonable solutions can be identified, the rationale for choosing 

one over another is not objective.  In fact, our selection of the 40-cluster solution was based on 

the rationale that it seemed like that solution retained enough of its cases to be useful; but as 

analysis continued, we observed that several of the resulting clusters had too few treatment cases 

to instill confidence.  This is another arena where this method might be subjected to further 

sensitivity testing 

 Despite these caveats, we believe this approach has promise.  It includes an improvement 

over conventional propensity score matching, which requires subjective judgment on model 

specification.  In contrast, our strategy groups each observation in the treatment group with those 

in the control group whose observed characteristics are similar; within balanced clusters, units 

are different only with respect to whether they received treatment.  In turn, estimated impacts are 

not biased in any systematic way.  Such a conclusion is enhanced by the observation that the GI 

measure is a global measure of comparability between groups, objective because it is based on 

the concept of variance observed in the data, among baseline covariates (considered 
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simultaneously) and the assignment-to-treatment indicator variable.  It is also enhanced by the 

use of the multivariate imbalance test that allows determining the imbalance’s significant, 

thereby overcoming standard variable-by-variable test of balance that can not consider 

interaction among variables.  This strategy is based on the assumption of “no omitted variable 

bias,” meaning that relevant variables involved in the selection process are known (Author3 & 

Author2, 2010).  Future work might also explore the sensitivity of the multivariate test of 

imbalance to specific failure of the unconfoundedness assumption. 

 This paper has taken a question – how does public assistance receipt affect charitable 

giving? – and applied a new, cluster-based approach to minimize bias that arises specifically in 

the selection-to-welfare process.  The preliminary substantive findings reported accord with prior 

research.  Specifically, we observe some evidence that public assistance suppresses money 

donations, in line with Brooks (2002, 2004) and Author4 & Author1 (2009).  Findings regarding 

volunteer hours are less clear, with evidence that there may be no effect (as in Author1 & 

Author4, 2011) or a positive effect (as in Author4 & Author1, 2009).  What is clear is that there 

is substantial heterogeneity within the population, and this heterogeneity demands an analytic 

approach that recognizes it, as we had done here, rather than on ignoring it and assessing only 

average treatment effects.  This work offers a useful application of a new method to capitalize on 

treatment group heterogeneity and minimize the effect of selection bias in computing treatment 

effects in non-experimental evaluations.
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APPENDIX A (See Author1, Author 3 & Author2, 2009) 

 This technical appendix explains the computation of the measure of Global Imbalance 

(GI) and the imbalance test we propose using to ascertain whether selection bias (1) poses a 

problem for an evaluation’s impact analysis and (2) has been eliminated from cluster subgroups. 

 

The GI Measure 

 Author2 (2009) and Author3 and Author2 (2010) report that the between-group inertia of 

a cloud of units denotes the GI measure expressed as: 
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 where  

  Q denotes the number of baseline covariates introduced in the analysis 

  T denotes the number of treatment levels; 

  QJ  denotes the set of all categories of the Q variables considered; 

  tjb is the number of units with category QJj  in the treatment group Tt ;  

  tk.  is the group size Tt ; and 

  jk.  is the number of units with category QJj . 

 The GI measure is the result of using Conditional MCA (Escofier, 1988) that allows 

quantifying the between-group inertia.  Such a measure originates from the consideration that 

when the dependence between X and T is out of control of researchers displaying the 

relationship among them on a factorial space represents a first step for discovering the hidden 

relationship.  In fact, if dependence between X and T exists, any descriptive factorial analysis 

may exhibit this link. 
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 A conventional method dealing with the factorial decomposition of the variance related to 

the juxtaposition of the X matrix and the T variable is Multiple Correspondence Analysis (MCA) 

framework.
4
  Given that the variability (inertia) of a data matrix can be decomposed into 

eigenvalues and eigenvectors, and referring to MCA for the study of the relationship between 

variables and of the structure induced by variables on the population, the presence of a 

conditioning variable (T) will strongly influence the structure of the matrix decomposition 

process.  Hence, a conditional analysis could be useful in order to isolate the part of the 

variability of the X-space due to the assignment mechanism.  Conditioning applied to problems 

arising from the dependence between categorical covariates and an external categorical variable 

was first studied by Escofier (1988) with the resulting Conditional Multiple Correspondence 

Analysis (MCA_cond).  

 Referring to Huygens’ overall inertia decomposition of total inertia (
T

I ) as within-groups 

(
W

I ) and between-groups (
B

I ), MCA_cond consists in a factorial decomposition of the within-

group inertia.  In turn, MCA_cond could be also considered as an intra analysis since the inertia 

induced by the conditioning variable (T) is not taken into account.  Specifically, an inter-group 

analysis considers the relative position of groups, whereas an intra-group analysis detects and 

describes differences between units within each group by not considering the effect due to the 

partition’s structure.  In the evaluation context, this structure is induced by the non-random 

selection mechanism.  An intra-analysis allows measuring the influence of conditioning, which 

means, as reported in Author3 & Author2 (2010), obtaining a measure of comparability between 

treatment groups. 

                                                 
4
 For a comprehensive description of this method, computational details, and its applications, refer to Lebart et al. 

(1984), and for problems in the presence of a conditioning variable, refer to Author 3 and Author 2 (2010) and 

Author 2 and Author 3 (2011). 
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 This method especially works in the presence of categorical covariates.  Eventually, 

continuous variables could be transformed into categorical by dividing them in classes.  The 

need to work with categorical covariates stems from the consideration that, as reported in Cox 

and Wermuth (1998), in the social sciences, background knowledge tends to be qualitative. 

 The key result of using MCA_cond is represented by the quantified “Between-group 

Inertia” (
b

I ).  The no omitted variable bias assumption underlying the approach assumes a 

crucial role and, thus, must be emphasized.  The assignment mechanism is assumed to be known, 

which means that the X matrix includes all baseline variables associated with both the treatment 

assignment and the observed outcome. 

 

The Imbalance Test 

 To determine the significance of the detected imbalance, we perform an Imbalance test. 

We specify the null hypothesis of no dependence between X and T as: 
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obtained by Estadella and Aluja (2005), who have studied the asymptotic distribution function of 
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plausible values for GI defined as: 
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Specifically, if the GI calculated on the specific dataset is outside the interval, then the null 

hypothesis of no dependence between X and T is rejected and data are deemed unbalanced.  
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Simulation results show that where the test detects balance unbiased estimates of the ATE are 

obtained (Author2, 2009; Author3 & Author2, 2010). 

 

 


