TENSOR RANKS ON TANGENT DEVELOPABLE OF SEGRE VARIETIES

E. BALLICO AND A. BERNARDI

ABSTRACT. We describe the stratification by tensor rank of the points belonging to the tangent developable of any Segre variety. We give algorithms to compute the rank and a decomposition of a tensor belonging to the secant variety of lines of any Segre variety. We prove Comon’s conjecture on the rank of symmetric tensors for those tensors belonging to tangential varieties to Veronese varieties.

INTRODUCTION

In this paper we want to address the problem of tensor decomposition over an algebraically closed field $K$ of characteristic 0 for tensors belonging to a tangent space of the projective variety that parameterizes completely decomposable tensors.

Let $V_1,\ldots,V_d$ be $K$-vector spaces of dimensions $n_1+1,\ldots,n_d+1$ respectively; the projective variety $X_{n_1,\ldots,n_d} \subset \mathbb{P}(V_1 \otimes \cdots \otimes V_d)$ that parameterizes projective classes of completely decomposable tensors $v_1 \otimes \cdots \otimes v_d \in V_1 \otimes \cdots \otimes V_d$ is classically known as a Segre variety (see Definition 1). Given a tensor $T \in V_1 \otimes \cdots \otimes V_d$, finding the minimum number of completely decomposable tensors such that $T$ can be written as a linear combination of them (see Definition 2 for the notion of “tensor rank”) is related to the tensor decomposition problem that nowadays seems to be crucial in many applications like Signal Processing (see eg. [1], [20], [13]), Algebraic Statistics ([19], [25]), Neuroscience (eg. [3]). The specific case of tensors belonging to tangential varieties to Segre varieties (Notation 1) is studied in [9] and it turns out to be of certain interest in the context of Computational Biology. In fact in [14] a particular class of statistical models (namely certain context-specific independence model – CSI) is shown to be crucial in machine learning and computational biology. L. Oeding has recently shown in [22] how to interpret the CSI model performed by [14] in terms of tangential variety to Segre variety. In this setting B. Sturmfels and P. Zwiernik in a very recent paper ([23]) show how to derive parametrizations and implicit equations in cumulants for the tangential variety of the Segre variety $X_{1,\ldots,1}$ and for certain CSI models (see [7] for a combinatorial point of view on cumulants).

In this paper, after a preliminary section, we give a complete classification of the tensor rank of an element belonging to the tangent developable of any Segre variety. In particular in Theorem 1 we will prove that if $P \in T_O(X_{n_1,\ldots,n_d})$ for certain point $O = (O_1,\ldots,O_d) \in X_{n_1,\ldots,n_d}$, then the minimum number $r$ of completely decomposable tensors $v_{1,i} \otimes \cdots \otimes v_{d,i} \in V_1 \otimes \cdots \otimes V_d$ such that $P = \sum_{i=1}^{r} [v_{1,i} \otimes \cdots \otimes v_{d,i}]$ is equal to the minimum number $\eta_{X_{n_1,\ldots,n_d}}(P)$.

1991 Mathematics Subject Classification. 14N05, 14Q05.

Key words and phrases. Secant varieties; tensor rank; tangent developable; Segre Varieties; Comon's conjecture.

The first author was partially supported by MIUR and GNSAGA of INdAM (Italy). The second author was partially supported by CIRM-FBK (TN-Italy), Marie-Curie FP7-PEOPLE-2009-IEF, INRIA Sophia Antipolis Mediterranée Project Galaad (France) and Mittag-Leffler Institut (Sweden).
for which there exist $E \subseteq \{1, \ldots, d\}$ such that $\pi(E) = \eta_{X_{n_1, \ldots, n_d}}(P)$ and $T_D(X_{n_1, \ldots, n_d}) \subseteq \langle \cup_{i \in E} Y_{O,i} \rangle$ where $Y_{O,i}$ the $n_i$-dimensional linear subspace obtained by fixing all coordinates $j \in \{1, \ldots, d\} \setminus \{i\}$ equal to $O_j \in \mathbb{P}^n$ (see Notation 3). Such a result was independently proved by J. Buczyński and J. M. Landsberg (see Theorem 7.1 in the second version of [9]). We propose here a different proof. First of all, the construction that we make in our proof allows to write explicit algorithms for the computation of the rank of a given tensor belonging to the secant variety of lines of any Segre variety (Algorithm 1) and for a decomposition of the same (Algorithm 2). Moreover in the third version of [9], the authors have removed that result.

In Section 3 we give the details for Algorithm 1 and for Algorithm 2.

In the last section we show how to use Theorem 1 in order to prove the so called “Comon’s conjecture” in the particular case in which the points $P \in \tau(X_{n_1, \ldots, n_d})$ parameterize symmetric tensors. Let us give more details on that.

Let $V_1 = \cdots = V_d = V$ be a vector space of dimension $n + 1$ and consider the subspace $S^d V \subset V^\otimes d$ of symmetric tensors. The intersection between the Segre variety $X_{n_1, \ldots, n_d}$ and $\mathbb{P}(S^d V)$ is a way to interpret the classical Veronese embedding of $\mathbb{P}^n$ via the sections of the sheaf $O(d)$. Therefore an element of the Veronese variety $\nu_d(\mathbb{P}^n) = X_{n_1, \ldots, n_d} \cap \mathbb{P}(S^d V)$ is the projective class of a completely decomposable symmetric tensor. Now, given a point $P \in \mathbb{P}(S^d V)$ that parameterizes a projective class of a symmetric tensor, we can look at two different decompositions of it. Let $v_{1,i} \otimes \cdots \otimes v_{d,i} \in V^\otimes d$ and let $w_{j}^{\otimes d} \in S^d V$, and ask for the minimum $r$ and the minimum $r'$ such that 

$$P = \sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{d,i} = \sum_{j=1}^{r'} w_{j}^{\otimes d}.$$ 

In 2008, at the AIM workshop in Palo Alto, USA (see the report [21]), P. Comon stated the following:

**Conjecture 1. [Comon’s Conjecture]** The minimum integer $r$ such that a symmetric tensor $T \in S^d V$ can be written as

$$T = \sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{d,i}$$

for $v_{1,i} \otimes \cdots \otimes v_{d,i} \in V^\otimes d$, $i = 1, \ldots, r$, is equal to the minimum integer $r'$ for which there exist $w_{j}^{\otimes d} \in S^d V$, $j = 1, \ldots, r'$ such that

$$T = \sum_{j=1}^{r'} w_{j}^{\otimes d}.$$ 

As far as we know this conjecture is proved if $r \leq \dim(V)$ (for a general $d$-tensor, $d$ even and large) and if $r = 1, 2$ (see [12]).

In Section 4 we show that our Theorem 1 implies that this conjecture is true also for $[T] \in \tau(X_{n_1, \ldots, n_d})$ (Corollary 2).

**Acknowledgements:** We like to thank B. Sturmfels for asking to one of us this question at the Mittag-Leffler Institut during the Spring semester 2011 “Algebraic Geometry with a view towards applications”. We also thank the Mittag-Leffler Institut (Djursholm, Stockholm, Sweden), for its hospitality and opportunities.

1. **Preliminaries**

Let us start with the classical definition of the Segre varieties.
Definition 1. For all positive integers \(d\) and \(n_i, 1 \leq i \leq d\), let 
\[ j_{n_1, \ldots, n_d} : \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d} \to \mathbb{P}^{N(n_1, \ldots, n_d)}, \]
with \(N(n_1, \ldots, n_d) := \left( \prod_{i=1}^{d} (n_i + 1) \right) - 1\), denote the Segre embedding of \(\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d}\) obtained by the section of the sheaf \(\mathcal{O}(1, \ldots, 1)\). Set \(X_{n_1, \ldots, n_d} := j_{n_1, \ldots, n_d}(\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d})\).

Observe that if we identify each \(\mathbb{P}^{n_i}\) with \(\mathbb{P}(V_i)\) for certain \((n_i + 1)\)-dimensional vector space \(V_i\), then an element \([T] \in X_{n_1, \ldots, n_d}\) can be interpreted as the projective class of a completely decomposable tensor \(T \in V_1 \otimes \cdots \otimes V_d\), i.e. there exist \(v_i \in V_i\) for \(i = 1, \ldots, d\) such that \(T = v_1 \otimes \cdots \otimes v_d\).

We can give now the definition of the rank of an element \(P \in \mathbb{P}^{N(n_1, \ldots, n_d)} = \mathbb{P}(V_1 \otimes \cdots \otimes V_d)\).

Definition 2. For each \(P \in \mathbb{P}^{N(n_1, \ldots, n_d)}\) the rank (or tensor rank) \(r_{X_{n_1, \ldots, n_d}}(P)\) of \(P\) is the minimal cardinality of a finite set \(S \subset X_{n_1, \ldots, n_d}\) such that \(P \in \langle S \rangle\), where \(\langle \cdot \rangle\) denote the linear span.

Remark 1. Fix any \(P \in \tau(X_{n_1, \ldots, n_d})\). There is a unique \(O \in X_{n_1, \ldots, n_d}\) and a unique zero-dimensional scheme \(Z \subset X_{n_1, \ldots, n_d}\) such that \(Z_{red} = \{O\}\), \(\deg(Z) = 2\) and \(P\) is contained in the line \(\langle Z \rangle\):
\[ P \in T_O X_{n_1, \ldots, n_d} = \langle Z \rangle. \]

Notation 1. Let \(\tau(X_{n_1, \ldots, n_d})\) denote the tangent developable of \(X_{n_1, \ldots, n_d}\), i.e. the union of all tangent spaces \(T_x X_{n_1, \ldots, n_d}\) of \(X_{n_1, \ldots, n_d}\). Since \(\tau(X_{n_1, \ldots, n_d})\) is closed in the Zariski topology, this is equivalent to the usual definition of the tangent developable of a submanifold of a projective space as the closure of the union of all tangent spaces.

Remark 2. Let \(Y_{O,i} \subset \mathbb{P}^{N(n_1, \ldots, n_d)}\) the \(n_i\)-dimensional linear subspace just defined. Observe that, as a scheme-theoretic intersection, we have that:
\[ T_O X_{n_1, \ldots, n_d} \cap X_{n_1, \ldots, n_d} = \bigcup_{i=1}^{d} Y_{O,i}. \]

Moreover, if \(Z \subset X_{n_1, \ldots, n_d}\) is the unique degree 2 zero-dimensional scheme such that \(\langle Z \rangle = T_O X_{n_1, \ldots, n_d}\) as in Remark 1, then there is a unique minimal subset \(E \subseteq \{1, \ldots, d\}\) such that \(\langle Z \rangle \subseteq \langle \cup_{i \in E} Y_{O,i} \rangle\). The integer \(\sharp(E)\) will be called the type \(\eta_{X_{n_1, \ldots, n_d}}(P)\) of \(P\):
\[ \eta_{X_{n_1, \ldots, n_d}}(P) := \min \{\sharp(E) \mid E \subseteq \{1, \ldots, d\}, \langle Z \rangle \subseteq \langle \cup_{i \in E} Y_{O,i} \rangle\}. \]

Notice that \(2 \leq \eta_{X_{n_1, \ldots, n_d}}(P) \leq d\). Moreover for a general \(Q \in T_O X_{n_1, \ldots, n_d}\) we have that \(\eta_{X_{n_1, \ldots, n_d}}(Q) = d\). Moreover every integer \(k \in \{2, \ldots, d\}\) is the type of some point of \(\tau(X_{n_1, \ldots, n_d}) \cap X_{n_1, \ldots, n_d}\). Finally for all \(Q \in X_{n_1, \ldots, n_d}\) we write \(\eta_{X_{n_1, \ldots, n_d}}(Q) = 1\) and say that \(Q\) has type 1.

In Theorem 1 we will actually prove that if \(P \in \tau(X_{n_1, \ldots, n_d})\), then the integer \(\eta_{X_{n_1, \ldots, n_d}}(P)\) just introduced in (3) is actually the rank of \(P\). Before proving that theorem we need to introduce the notion of seant varieties and other related objects.
Lemma 2.1.5, for much more). Hence Theorem 1 will give the complete stratification by Lemma 1. 

where the integer \( t \) is the minimal integer \( t \in \mathbb{N} \) such that \( r_{X_{n_1, \ldots, n_d}}(P) = t \). Thus Theorem 1 may be considered as the description of the ranks of all points with border rank \( 2 \) (Corollary 1). 

Notice that \( b_{X_{n_1, \ldots, n_d}}(P) = 1 \iff r_{X_{n_1, \ldots, n_d}}(P) = 1 \iff P \in X_{n_1, \ldots, n_d} \). Thus Theorem 1 may be considered as the description of the ranks of all points with border rank \( 2 \) (Corollary 1). 

For the case of Veronese varieties, i.e. the case of symmetric tensors, and symmetric border rank 2 or 3, see [5] and references therein.

2. Proof of Theorem 1.

This section is entirely devoted to the proof of Theorem 1. 

Before going into the details of the proof of Theorem 1, we need to remind the following elementary lemma (see e.g. [2], Lemma 1).

**Lemma 1.** Fix any \( P \in \mathbb{P}^{n_1, \ldots, n_d} \) and two zero-dimensional subschemes \( A, B \) of \( X_{n_1, \ldots, n_d} \) such that \( A \neq B \), \( P \in (A) \), \( P \notin (B) \). Then \( h^1(\mathbb{P}^{n_1, \ldots, n_d}, \mathcal{I}_{A \cup B}(1)) > 0 \).

**Lemma 2.** Fix a zero-dimensional scheme \( \tilde{W} \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d} \). Then \( h^1(\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d}, I_{\tilde{W}}(1, \ldots, 1)) = h^1(\mathbb{P}^{n_1}, I_{n_1}(\tilde{W})(1)) \).

**Proof.** It is sufficient to observe that \( j_{n_1, \ldots, n_d} \) is the linearly normal embedding induced by the complete linear system \( |O_{\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d}}(1, \ldots, 1)| \) and that \( h^1(\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d}, O_{\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d}}(1, \ldots, 1)) = 0 \).

We are now ready to prove Theorem 1.

**Theorem 1.** Let \( \tau(X_{n_1, \ldots, n_d}) \) be the tangential variety of the Segre variety \( X_{n_1, \ldots, n_d} \). For each \( P \in \tau(X_{n_1, \ldots, n_d}) \) we have that the tensor rank of \( P \) is:

\[
r_{X_{n_1, \ldots, n_d}}(P) = \eta_{X_{n_1, \ldots, n_d}}(P)
\]

where the integer \( \eta_{X_{n_1, \ldots, n_d}}(P) \) is the type of \( P \) defined in (3).
We write here the strategy of the proof in order to help the reader in following it. First of all, we observe that if \( \eta_{X_{n_1, \ldots, n_d}}(P) = 1 \) there is nothing to prove. So we assume that there exist a point \( O \in X_{n_1, \ldots, n_d} \) such that \( P \in T_O(X_{n_1, \ldots, n_d}) \setminus \{O\} \).

Moreover we point out that the inequality \( r_{X_{n_1, \ldots, n_d}}(P) \leq \eta_{X_{n_1, \ldots, n_d}}(P) \) (see (4)) is obvious, then we need only to prove the reverse inequality.

Then we split the proof in the following cases:

(a) If all the \( n_i = 1 \) and \( \eta_{X_{1, \ldots, 1}}(P) = d \Rightarrow r_{X_{1, \ldots, 1}}(P) = d \). This is proved by absurd: we assume that \( \eta_{X_{1, \ldots, 1}}(P) = d \) and that \( r_{X_{1, \ldots, 1}}(P) < d \) and we show that in each of the following sub-cases we get a contradiction:

- (a1) \( O \notin \langle S \rangle \), where \( S \) is the set of points computing the rank of \( P \);
- (a2) \( O \in S \);
- (a3) \( O \notin S \) and \( O \in \langle S \rangle \).

(b) If all the \( n_i = 1 \) and \( \eta_{X_{1, \ldots, 1}}(P) < d \Rightarrow r_{X_{1, \ldots, 1}}(P) = \eta_{X_{1, \ldots, 1}}(P) \).

(c) We conclude the proof by showing that the theorem is true for all \( n_i \geq 2 \) (this part may be bypassed quoting [18] where it is shown that secant variety of lines of a Segre variety is contained in the subspace variety).

**Proof.** Fix \( P \in \tau(X_{n_1, \ldots, n_d}) \) and look for \( r_{X_{n_1, \ldots, n_d}}(P) \).

Since \( \eta_{X_{n_1, \ldots, n_d}}(P) = 1 \Leftrightarrow P \in X_{n_1, \ldots, n_d} \Leftrightarrow r_{X_{n_1, \ldots, n_d}}(P) = 1 \), the case \( P \in X_{n_1, \ldots, n_d} \) is obvious. Hence we may assume \( P \notin X_{n_1, \ldots, n_d} \). Take \( O \in X_{n_1, \ldots, n_d} \) and \( Z \subset X_{n_1, \ldots, n_d} \) with \( Z_{red} = \{O\} \), \( \deg(Z) = 2 \) and \( P \in \langle Z \rangle \), hence, as in (1), we have that

\[
P \in T_O X_{n_1, \ldots, n_d} = \langle Z \rangle.
\]

As we have seen above, both the point \( O \in X_{n_1, \ldots, n_d} \) and the degree 2 zero-dimensional scheme \( Z \subset X_{n_1, \ldots, n_d} \) that satisfy (1) exist, and moreover they are uniquely determined by \( P \). Moreover we can think of \( Z \subset X_{n_1, \ldots, n_d} \) as

\[
Z = j_{n_1, \ldots, n_d}(\tilde{Z})
\]

with \( \tilde{Z} \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d} \) and \( \tilde{Z} \cong Z \).

Now, as in Remark 2, fix \( E \subseteq \{1, \ldots, d\} \) such that

\[
\sharp(E) = \eta_{X_{n_1, \ldots, n_d}}(P)
\]

and

\[
P \in \langle \cup_{i \in E} Y_{O,i} \rangle
\]

(where \( Y_{O,i} \) are defined as in Notation 3).

Since each \( Y_{O,i} \subset \mathbb{P}^{n_1, \ldots, n_d} \) is a linear subspace, then for each \( i \in E \) there is \( Q_i \in Y_{O,i} \) such that \( P \in \langle \cup_{i \in E} Q_i \rangle \). Thus

\[
(4) \quad r_{X_{n_1, \ldots, n_d}}(P) \leq \eta_{X_{n_1, \ldots, n_d}}(P).
\]

Therefore we need simply to prove the opposite inequality.

For each \( j \in \{1, \ldots, d\} \) and each \( Q_j \in \mathbb{P}^{n_j} \) (or, with the same abuse of notation as in Notation 2, we can think at a point \( Q \) in the Segre variety obtained as \( j_{n_1, \ldots, n_d}(\tilde{Q}) \) with \( \tilde{Q} = (Q_1, \ldots, Q_d) \in \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_d} \) and then write \( Q = (Q_1, \ldots, Q_d) \in X_{n_1, \ldots, n_d} \)), set:

\[
(5) \quad X_{n_1, \ldots, n_d}(Q_j, j) := \{(A_1, \ldots, A_d) \in X_{n_1, \ldots, n_d} : A_j = Q_j\}.
\]

Hence \( X(Q_j, j) \) is an \( (n_1 + \cdots + n_d - n_j) \)-dimensional product of \( d - 1 \) projective spaces embedded as a Segre variety in a linear subspace of \( \mathbb{P}^{N(n_1, \ldots, n_d)} \).

Now our proof splits in two parts: in the first one ((a) together with (b)) we study the case of the Segre product of \( d \) copies of \( \mathbb{P}^1 \)'s (i.e. we prove the theorem for \( \tau(X_{1, \ldots, 1}) \)); in part
(c) we generalize the result obtained for $X_{1,\ldots,1}$ to the general case $X_{n_1,\ldots,n_d}$ with $n_i \geq 1$, $i = 1, \ldots, d$.

(a) Here we assume $n_i = 1$ for all $i$ and $n_{X_{1,\ldots,1}}(P) = d$.

Assume $r := r_{X_{1,\ldots,1}}(P) < d$ and fix a 0-dimensional scheme $S \subset X_{n_1,\ldots,n_d}$ that computes the rank $r$ of $P$, i.e. fix

$$
\tilde{S} \subset \mathbb{P}^1 \times \cdots \times \mathbb{P}^1
$$

such that

$$
j_{n_1,\ldots,n_d}(\tilde{S}) = S, P \in (S) \text{ and } \pi(j_{n_1,\ldots,n_d}(S)) = r.
$$

Write

$$
S = \{Q_1, \ldots, Q_r\}
$$

and let $(Q_{i,1}, \ldots, Q_{i,d})$ be the components of each $Q_i \in X_{1,\ldots,1}$ with $i = 1, \ldots, r$, i.e. let $Q_i = (Q_{i,1}, \ldots, Q_{i,d}) \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ s.t. $j_{n_1,\ldots,n_d}(Q_i) = Q_i$ and then, according with Notation 2, write $Q_i = (Q_{i,1}, \ldots, Q_{i,d})$.

Now write

$$
\tilde{O} = (O_1, \ldots, O_d) \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^1
$$

and

$$
O = j_{n_1,\ldots,n_d}(\tilde{O}).
$$

Choose homogeneous coordinates on $\mathbb{P}^1$. Since $X_{1,\ldots,1}$ is a homogeneous variety, it is sufficient to prove the case $O_i = [1,0]$ for all $i = 1, \ldots, d$.

Notice that $\text{deg}(Z \cup S) = r + 2$ if $O \notin S$ and $\text{deg}(Z \cup S) = r + 1$ if $O \in S$.

Since $S$ computes $r_{X_{1,\ldots,1}}(P)$, we have $P \notin (j_{n_1,\ldots,n_d}(\tilde{S}'))$ for any $S' \subset \tilde{S}$. Since $P \notin O$ and $\{O\}$ is the only proper subscheme of $Z = T_0(X_{n_1,\ldots,n_d})$, we have $P \notin (Z')$ for all proper subschemes $Z'$ of $Z$. Since $P \in (S) \cap (S)$, then, by Lemma 1, we have $h^1(I_{S \cup Z}(1)) > 0$. Thus to get a contradiction and prove Theorem 1 in the case $n_i = 1$ for all $i = 1, \ldots, d$ and $n_{X_{1,\ldots,1}}(P) = d$, it is sufficient to prove $h^1(I_{S \cup Z}(1)) = 0$, i.e. $h^1(\mathbb{P}^1 \times \cdots \times \mathbb{P}^1, I_{\tilde{S} \cup \tilde{O}}(1, \ldots, 1)) = 0$ where, as above, $\tilde{Z} \subset \mathbb{P}^1 \times \cdots \times \mathbb{P}^{nd}$ s.t. $Z = j_{n_1,\ldots,n_d}(\tilde{Z})$.

First assume the existence of an integer $j \in \{1, \ldots, d\}$ such that $Q_{1,j} = [1,0]$ for all $i \in \{1, \ldots, r\}$.

We get $S \subset X_{1,\ldots,1}([1,0], j)$, where $X_{n_1,\ldots,n_d}(Q_{j}, j)$ is defined in (5). Hence $P \in (X_{1,\ldots,1}([1,0], j))$. However $T_0X_{1,\ldots,1} \cap X_j = (\cup_{i \neq j} Y_{O,i})$. Hence $\eta(P) \leq d - 1$, but this is a contradiction. Thus:

for each $j \in \{1, \ldots, d\}$ there is $Q_{i,j} \in S$ such that $Q_{i,j} \neq [1,0]$.

(a1) Here we assume $O \notin (S)$.

Since $S$ computes $r_{X_{1,\ldots,1}}(P)$, it is linearly independent, i.e. (by Lemma 2) $h^1(\mathbb{P}^1 \times \cdots \times \mathbb{P}^1, I_{\tilde{S}}(1, \ldots, 1)) = 0$.

Since $O \notin (S)$, we get that $\tilde{S} \cup (\tilde{O})$ is linearly independent, i.e. $h^1(\mathbb{P}^1 \times \cdots \times \mathbb{P}^1, I_{\tilde{S} \cup \tilde{O}}(1, \ldots, 1)) = 0$.

We fix $i \in \{1, \ldots, r\}$ such that $Q_{1,i} \neq [1,0]$ (we just saw the existence of such an integer $i$).

Write $S_i := S \cap X_{1,\ldots,1}(Q_{1,i}, 1)$, where $X_{n_1,\ldots,n_d}(Q_{1}, j)$ is defined in (5). By construction $Q_i \in S_i$ and hence $T(S_i) \geq 1$.

Assume for now that $S_i \neq S$ and that there exist $j \in S \setminus S_i$ such that $Q_{j,2} \neq [1,0]$. Set $S_2 := S \cap X_{1,\ldots,1}(Q_{j,2})$. And so on constructing subsets $S_1, \ldots, S_j$ of $S$ such that:

- $S_j \notin \cup_{1 \leq i < j} S_i$,
- $Q_{h,i} \neq [1,0]$ for all $k \in S_i$,
- $S_i = S \cap X_{1,\ldots,1}(Q_{h,i}, i)$ for all $h \in S_i$,

until we arrive at one of the following cases:
(i) \( S_1 \cup \cdots \cup S_j = S \);
(ii) \( S_1 \cup \cdots \cup S_j \neq S \) and \( Q_{k,j+1} = [1,0] \) for all \( k \in S \setminus (S_1 \cup \cdots \cup S_j) \).

Now fix an index \( m_{i+1} \in S_{i+1} \setminus S_i \), \( 1 \leq i \leq j - 1 \), and set
\[
D_i := X_{1 \ldots i}(Q_{m_i,i}), \quad 1 \leq i \leq j,
\]
i.e. according with (5), \( D_i := \{(A_1, \ldots, A_d) \in X_{m_1 \ldots m_d} : A_i = Q_{m_i} \) with \( m_i \in S_i \setminus S_{i-1} \} \) for \( 1 \leq i \leq j \).

First assume that (i) occurs (with \( j \) minimal).

Fix \( B_i \in \mathbb{P}^1 \setminus \{[1,0]\} \), \( j + 1 \leq i \leq d - 1 \) and set:
\[
\begin{align*}
& D_i := X_{1 \ldots i}(B_i,i), \text{ if } j + 1 \leq i \leq d - 1;
& D_d := X_{1 \ldots i}(O_d,d);
& D := \bigcup_{i=1}^d D_i.
\end{align*}
\]

Notice that obviously \( D \in |O_{X_{1 \ldots 1}(1)}| \) and also that \( S \cup \{O\} \subset D \).

Moreover observe that \( O \in D_i \) if and only if \( i = d \).

Finally, \( D_d \) is smooth at \( O \) and \( T_O D \) is spanned by \( \bigcup_{i=1}^{d-1} X_{1 \ldots i}(O_1,i) \).

Therefore \( Z \not\subseteq D \) and \( Z \cup S \) imposes one more condition to \( |O_{\mathbb{P}^1 \times \cdots \times \mathbb{P}^1}(1, \ldots, 1)| \) than \( S \cup \{O\} \).

Since \( j_1 \ldots 1(S \cup \{O\}) \) is linearly independent, we get \( h^1(\mathbb{P}^1 \times \cdots \times \mathbb{P}^1, I_{S \cup O}(1, \ldots, 1)) = 0 \) that is a contradiction.

Now assume that (ii) occurs and set:
\[
\begin{align*}
& M_{j+1} = X_{1 \ldots j+1}([1,0],j+1);
& M_h := X_{1 \ldots j+1}([1,0], h), \text{ for all } h \in \{j+2, \ldots \};
& D' := \bigcup_{i=1}^d D_i \cup \bigcup_{h=j+1}^d M_h.
\end{align*}
\]

Notice that \( D' \in |O_{X_{1 \ldots 1}(1)}| \) and that \( S \cup \{O\} \subset D' \).

The hypersurface \( M_{j+1} \) is the unique irreducible component of \( D' \) containing \( O \).

Since \( M_{j+1} \) is smooth at \( O \) and \( T_O M_{j+1} \) is spanned by \( \bigcup_{i=j+1}^{d-1} X_{1 \ldots i}(O_1,i) \), we get as above that \( h^1(\mathbb{P}^1 \times \cdots \times \mathbb{P}^1, I_{S \cup O}(1, \ldots, 1)) = 0 \), and again a contradiction.

(a2) Here we assume \( O \in S \).

Hence \( S \cup \{O\} = S \) and \( j_1 \ldots 1(S \cup \{O\}) \) is linearly independent. Set \( S' := S \setminus \{O\} \). We make the construction of step (a1) with \( S' \) instead of \( S \), defining the subsets \( S_i \) of \( S' \) until we get an integer \( j' \) such that \( S' = S_1 \cup \cdots \cup S_{j'} \) or \( S_1 \cup \cdots \cup S_{j'} \neq S' \) and \( Q_{j+1,d} = [1,0] \) for all \( i \in S' \setminus (S_1 \cup \cdots \cup S_{j'}) \).

In both cases we add the other \( d-j \) hypersurfaces, exactly one of them containing \( O \). Since \( \deg(Z \cup S) = \deg(S \cup \{O\}) + 1 \), we get \( h^1(\mathbb{P}^1 \times \cdots \times \mathbb{P}^1, I_{S \cup O}(1, \ldots, 1)) = 0 \) as in step (a1) and hence we get a contradiction.

(a3) Here assume \( O \notin S \) and \( O \in \langle S \rangle \).

Hence \( \langle Z \rangle \subset \langle S \rangle \). Thus there is \( S' \subset S \) such that \( \sharp(S') = \sharp(S) - 1 \) and \( \langle S' \cup \{O\} \rangle = \langle S \rangle \).

Hence the set \( S_1 := S' \cup \{O\} \) computes \( r_{X_{1 \ldots 1}}(P) \). Apply step (a2) to the set \( S_1 \).

(b) Here we assume \( n_i = 1 \) for all \( i \) and \( r := \eta_{X_{1 \ldots 1}}(P) < d \).

Let \( E \subset \{1, \ldots, d\} \) be the minimal subset such that \( P \in \langle U_{\cup E} \rangle \). By the definition of the type \( \eta_{X_{1 \ldots 1}}(P) \) of \( P \) we have \( \sharp(E) = \eta_{X_{1 \ldots 1}}(P) \). Set \( X' := \{(U_1, \ldots, U_d) \in X_{1 \ldots 1} : U_i = [1,0] \) for all \( i \notin E\} \). We identify \( X' \) with a Segre product of \( r \) copies of \( \mathbb{P}^1 \). Obviously \( \eta_{X'}(P) = \eta_{X_{1 \ldots 1}}(P) \).

By step (a) we have \( r_{X'}(P) = \eta_{X'}(P) \). We have \( r_{X_{1 \ldots 1}}(P) = r_{X'}(P) \) by the classification property of tensors ([9], Corollary 2.2, or [16], Proposition 3.1.4.1).

(c) Here we assume \( n_i \geq 2 \) for some \( i \).

Since \( P \in \bigcup_{i=1}^n Y_{D_i} \), there is \( U_i \in Y_{D_i} \) such that \( P \in \{(U_1, \ldots, U_d) \}. \) Let \( U_i^\dagger \in \mathbb{P}^n \) be the \( i \)-th component of \( U_i \). The line \( L_i \subset \mathbb{P}^n \) is the line spanned by \( O_i \) and \( U_i^\dagger \). We have
Proof. This corollary follows straightforward from Theorem 1 and the fact that

Let us write for convenience

Theorem 1.

τ

rank of tensor of border rank 2 (Algorithm 1) and also an Algorithm that gives one of its

spaces over

Let

Corollary 1.

q

Hankel operator

The proof of Theorem 1 turns out to be useful to produce an algorithm to compute the

Corollary 1. Let

P ∈ \{Π_{i=1}^d L_i\} and \(\eta_{X_1,\ldots,n_d}(P) = \eta_{X_1,\ldots,n_d}(P)\), where we identify

j_{n_1,\ldots,n_d}(Π_{i=1}^d L_i)

with the Segre variety \(X_1,\ldots,1\). By parts (a) and (b) we have

r_{X_1,\ldots,n_d}(P) = \eta_{X_1,\ldots,n_d}(P).

We have

r_{X_1,\ldots,n_d}(P) = r_{X_1,\ldots,n_d}(P)

by the concision property of tensors ([9], Corollary 2.2, or [16], Proposition 3.1.4.1).

\[ \square \]

Corollary 1. Let \(P ∈ \sigma_2(X_{n_1,\ldots,n_d})\), then:

\[ \bullet \] \(r_{X_1,\ldots,n_d}(P) = 1\) if \(P \in X_{n_1,\ldots,n_d}\);\n
\[ \bullet \] \(r_{X_1,\ldots,n_d}(P) = 2\) if either \(P ∈ \sigma_2(X_{n_1,\ldots,n_d}) \setminus \tau(X_{n_1,\ldots,n_d})\) or there exist \(O ∈ X_{n_1,\ldots,n_d}, O \neq P\), and \(Y_{O,i}, Y_{O,j} \in \mathbb{P}^{n_1,\ldots,n_d}\) as in Notation 3, such that \(P ∈ T_O(X_{n_1,\ldots,n_d}) ⊂ Y_{O,i} \cup Y_{O,j}\) for certain \(i \neq j \in \{1,\ldots,d\}\);\n
\[ \bullet \] \(r_{X_1,\ldots,n_d}(P) = k\) with \(3 ≤ k ≤ d\) if \(k\) is the minimum integer s.t. there exist \(\bigcup_{j=1,\ldots,k} Y_{O_{i,j}}\) for certain \(i_j \in \{1,\ldots,d\}\) such that \(\bigcup_{j=1,\ldots,k} Y_{O_{i,j}}\) is a subvariety of \(X_{n_1,\ldots,n_d}\) when it is not empty.

\[ \square \]

The three cases of this Corollary actually occur and can be deduced from the proof of Theorem 1.

Example 1. Let us write for convenience \(P^{n_i} = \mathbb{P}(V_i)\) for certain \((n_i,1)\)-dimensional vector

spaces over \(K\).

\[ \bullet \] The points \(P ∈ \mathbb{P}(V_1 \otimes \cdots \otimes V_d)\) for which there exist \(v_i ∈ V_i\), for \(i = 1,\ldots,d\), such that \(P = [v_1 \otimes \cdots \otimes v_d]\), have \(r_{X_1,\ldots,n_d}(P) = 1\).

\[ \bullet \] Let \(P_1 = [v_{1,1} \otimes \cdots \otimes v_{1,d}], P_2 = [v_{2,1} \otimes \cdots \otimes v_{2,d}] \in X_{n_1,\ldots,n_d}\), where \(v_{1,1} \otimes \cdots \otimes v_{1,d}, v_{2,1} \otimes \cdots \otimes v_{2,d} ∈ V_1 \otimes \cdots \otimes V_d\) linearly independent, then \(P = \lambda_1 P_1 + \lambda_2 P_2\), for non-zero \(\lambda_1, \lambda_2 ∈ K\), has \(r_{X_1,\ldots,n_d}(P) = 2\).

\[ \bullet \] We can observe that, for any \(r ≤ d\), with an abuse of notation, there is an obvious way to see \(V_1 \otimes \cdots \otimes V_r\) as a natural subspace of \(V_1 \otimes \cdots \otimes V_d\). Roughly speaking this is the same to say that the Segre variety of \(r\) factors can be seen as a subvariety of the Segre variety of \(d\) factors. Let \(O = [w_1 \otimes \cdots \otimes w_r] ∈ X_{n_2,\ldots,n_d} ⊂ X_{n_1,\ldots,n_d}\).

Take \(v_i ∈ V_i, i = 1,\ldots,r\), such that \(\{w_1,\ldots,w_r\}\) are linearly independent, then

\(P = \lambda_1 [v_1 \otimes w_2 \otimes \cdots \otimes w_r] + \cdots + \lambda_r [v_1 \otimes \cdots \otimes w_{r-1} \otimes v_r]\)

has rank \(r\) certain non zero \(\lambda_1,\ldots,\lambda_r ∈ K\).

3. Algorithms

The proof of Theorem 1 turns out to be useful to produce an algorithm to compute the

rank of tensor of border rank 2 (Algorithm 1) and also an Algorithm that gives one of its
decompositions (Algorithm 2).

We need to introduce the notion of Flattening and the definition of Hankel operator.

Definition 5. Let \(V_1,\ldots,V_d\) be vector spaces of dimension \(n_1 + 1,\ldots,n_d + 1\) respectively. Let \(J_1, J_2\) be a partition of the set \(\{1,\ldots,d\}\). If

\(J_1 = \{h_1,\ldots,h_s\}\) and \(J_2 = \{1,\ldots,d\} \setminus J_1 = \{k_1,\ldots,k_{d-s}\}\), the 

\((J_1, J_2)\)-Flattening of \(V_1 \otimes \cdots \otimes V_d\) is the following:

\[ V_{J_1} \otimes V_{J_2} = (V_{h_1} \otimes \cdots \otimes V_{h_s}) \otimes (V_{k_1} \otimes \cdots \otimes V_{k_{d-s}}). \]

Definition 6. Let \(n := \sum_{i=1}^d n_i\), set \(R := K[x_1,\ldots,x_n]\). For any \(Λ ∈ \mathbb{R}^n\), we define the

Hankel operator \(H_Λ\) as \(H_Λ : R → \mathbb{R}^n, p → p \cdot Λ\) where \(p \cdot Λ\) is the linear operator \(p \cdot Λ : R → K, q → Λ(pq)\).
Algorithm 1 (Rank of a border rank 2 tensor).

Input: A tensor \( T \in V_1 \otimes \cdots \otimes V_d \), with \( V_1, \ldots, V_d \) vector spaces of dimension \( n_1 + 1, \ldots, n_d + 1 \) respectively.

Output: Either \( T \notin \sigma_2(X_{n_1, \ldots, n_d}) \), or the rank of \( T \).

1. Write \( T \) as an element of \( V_{J_1} \otimes V_{J_2} \) for any \((J_1, J_2)\)-Flattening of \( V_1 \otimes \cdots \otimes V_d \).
2. Compute all the \( 2 \times 2 \) minors of \( V_{J_1} \otimes V_{J_2} \) for any \((J_1, J_2)\)-Flattening of \( V_1 \otimes \cdots \otimes V_d \).
   If all of them are equal to 0, then \( r(T) = 1 \) (see eg [15]), otherwise go to Step (3).
3. Compute all the \( 3 \times 3 \) minors of \( V_{J_2} \otimes V_{J_4} \) for any \((J_1, J_2)\)-Flattening of \( V_1 \otimes \cdots \otimes V_d \).
   If at least one of them is different from 0, then \( T \notin \sigma_2(X_{n_1, \ldots, n_d}) \) and this algorithm stops here; otherwise \( T \in \sigma_2(X_{n_1, \ldots, n_d}) \) (see [17]) and go to Step (4).
4. Find \( \Lambda \in (V_1 \otimes \cdots \otimes V_q)^* \) that extends \( T^* \) (for a precise definition of extension see [4]) and such that \( rl(H_\Lambda) = 2 \) then pass to Step (5).
5. Compute the roots of \( T \) with \( l \) and check if the eigenspaces are simple. If yes then the rank of \( T \) is 2 (see [4]), otherwise go to Step (6).
6. Write \( T \) as a multilinear polynomial \( t \) in the ring \( K[x_{1,0}, \ldots, x_{1,n_1}; \ldots; x_{d,0}, \ldots, x_{d,n_d}] \), then pass to Step (7).
7. Use [10] to write \( t \) in the minimum number \( q \) of variables. Then the rank of \( t \) is equal to \( q/2 \) (in fact, from the proof of Theorem 1, it is always possible to write \( T \) as an element of \( \tau(X_{1,\ldots,1}) \), then its representative polynomial will be a multilinear form in \( K[l_{1,0},l_{1,1}; \ldots; l_{q,0},l_{q,1}] \) with \( l_{1,0},l_{1,1} \) linear forms in \( K[x_{i,0}, \ldots, x_{i,n_i}] \) for \( i = 1, \ldots, q \).

Algorithm 2 (Decomposition of a border rank 2 tensor).

Input: A tensor \( T \in V_1 \otimes \cdots \otimes V_d \), with \( V_1, \ldots, V_d \) vector spaces of dimension \( n_1 + 1, \ldots, n_d \) respectively.

Output: Either \( T \notin \sigma_2(X_{n_1, \ldots, n_d}) \), or a decomposition of \( T \).

(a) Write \( T \) as a multilinear polynomial \( t \) in the ring \( K[x_{1,0}, \ldots, x_{1,n_1}; \ldots; x_{d,0}, \ldots, x_{d,n_d}] \).
(b) Use [10] to write \( t \) in the minimum number of variables. Then, from the proof of Theorem 1, it is always possible to write \( t \) as a multilinear form in \( K[l_{1,0},l_{1,1}; \ldots; l_{d,0},l_{d,1}] \) with \( l_{1,0},l_{1,1} \) linear forms in \( K[x_{i,0}, \ldots, x_{i,n_i}] \) for \( i = 1, \ldots, d \).
(c) Run Algorithm 1. If Algorithm 1 stops at Step (2), go to Step (d). If Algorithm 1 stops at Step (3), then \( T \notin \sigma_2(X_{n_1,\ldots,n_d}) \). If Algorithm 1 stops at Step (5), go to Step (e). Otherwise go to Step (f).
(d) In this case the rank of \( T \) is 1, then it is sufficient to find \( m_i(l_{1,0},l_{1,1}) \) linear forms in \( K[l_{1,0},l_{1,1}] \), for \( i = 1, \ldots, d \) such that \( t = m_1(l_{1,0},l_{1,1}) \cdots m_d(l_{d,0},l_{d,1}) \).
(e) In this case the rank of \( T \) is 2, then it is sufficient to find \( m_{i,j}(l_{1,0},l_{1,1}) \) linear forms in \( K[l_{1,0},l_{1,1}] \), for \( i = 1, \ldots, d \) and \( j = 1, 2 \), such that \( t = m_{1,1}(l_{1,0},l_{1,1}) \cdots m_{d,1}(l_{d,0},l_{d,1}) + m_{1,2}(l_{1,0},l_{1,1}) \cdots m_{d,2}(l_{d,0},l_{d,1}) \).
(f) In this case the rank of \( T \) is \( q/2 \) and \( t \in K[l_{1,0},l_{1,1}; \ldots; l_{q,0},l_{q,1}] \) for certain \( q \leq d \) and there exist \( q \) 2-dimensional subspaces \( W_i \subset V_i \) such that \( T \) belongs to the Segre variety \( X_{1,\ldots,1} \subset \mathbb{P}(W_1 \otimes \cdots \otimes W_q) \). Let \( L_T \subset W_1 \otimes \cdots \otimes W_q \) be a generic space of dimension \( q \) passing through \( T \) and compute the unique point \( O \in X_{1,\ldots,1} \) such that \( [T] \in T_O(X_{1,\ldots,1}) \) (it is sufficient to impose that \( \mathbb{P}(L_T) \cap X_{1,\ldots,1} \) has a double solution). Let \( O = n_1(l_{1,0},l_{1,1}) \cdots n_q(l_{q,0},l_{q,1}) \) and go to Step (g).
(g) Now it is sufficient to find \( m_i(l_{1,0},l_{1,1}) \) linear forms in \( K[l_{1,0},l_{1,1}] \), for \( i = 1, \ldots, q \) such that \( t = m_1(l_{1,0},l_{1,1}) \cdots n_q(l_{q,0},l_{q,1}) + \cdots + n_1(l_{1,0},l_{1,1}) \cdots m_q(l_{q,0},l_{q,1}) \).
4. On Comon’s conjecture

In this section we want to relate the result obtained in Theorem 1 to the Comon’s conjecture stated in the Introduction.

Let \( \nu_d(\mathbb{P}^n) \) be the classical Veronese embedding of \( \mathbb{P}^n \) into \( \mathbb{P}^{\binom{n+d}{d}-1} \) via the sections of the sheaf \( \mathcal{O}(d) \). As pointed out in the introduction if \( \mathbb{P}^n \cong \mathbb{P}(V) \) with \( V \) an \( (n+1) \)-dimensional vector space, then \( \nu_d(\mathbb{P}^n) \subset \mathbb{P}(S^dV) \) can be interpreted as the variety that parameterizes projective classes of completely decomposable symmetric tensors \( T \in S^dV \). Moreover

\[
\nu_d(\mathbb{P}^n) = X_{n,...,n} \cap \mathbb{P}(S^dV) \subset \mathbb{P}(V^{\otimes d}).
\]

**Definition 7.** Let \( P \in \mathbb{P}(S^dV) \) be a projective class of a symmetric tensor. We define the symmetric rank \( r_{\nu_d(\mathbb{P}^n)}(P) \) of \( P \) as the minimum number of \( r \) of points \( P_i \in \nu_d(\mathbb{P}^n) \) whose linear span contains \( P \).

With this definition, **Comon’s conjecture** (Conjecture 1) can be rephrased as follows:

if \( P \in \mathbb{P}(S^dV) \) then \( r_{\nu_d(\mathbb{P}^n)}(P) = r_{X_{n,...,n}}(P) \).

Obviously \( r_{X_{n,...,n}}(P) \leq r_{\nu_d(\mathbb{P}^n)}(P) \). In [12] the authors prove the reverse inequality for a general \( d \)-tensor \( (d \text{ even and large}) \) with rank at most \( n \) (Proposition 5.3) and for \( r_{X_{n,...,n}}(P) \leq 2 \).

With Theorem 1 we can prove that conjecture for all symmetric tensors of border rank 2.

**Corollary 2.** Let \( P \in \sigma_2(\nu_d(\mathbb{P}^n)) \). Then \( r_{\nu_d(\mathbb{P}^n)}(P) = r_{X_{n,...,n}}(P) \).

**Proof.** For any projective variety \( X \) we can observe that \( \sigma_2(X) = X \cup \tau(X) \cup \sigma_2^0(X) \).

If \( P \in \nu_d(\mathbb{P}^n) \subset X_{n,...,n} \) then there exist \( \nu \in V \) such that \( P = [\nu^{\otimes d}] \in \nu_d(\mathbb{P}^n) \subset X_{n,...,n} \), therefore obviously \( r_{X_{n,...,n}}(P) = r_{\nu_d(\mathbb{P}^n)}(P) = 1 \).

If \( P \in \sigma_2(\nu_d(\mathbb{P}^n)) \) then \( r_{\nu_d(\mathbb{P}^n)}(P) = 2 \), that implies that \( r_{X_{n,...,n}}(P) \leq 2 \) and therefore by [12], that we have that \( r_{X_{n,...,n}}(P) = r_{\nu_d(\mathbb{P}^n)}(P) = 2 \).

Now assume that \( P \in \tau(\nu_d(\mathbb{P}^n)) \setminus \nu_d(\mathbb{P}^n) \) and that \( \sigma_2(\nu_d(\mathbb{P}^n)) \neq \tau(\nu_d(\mathbb{P}^n)) \). For such a \( P \) we know that \( r_{\nu_d(\mathbb{P}^n)}(P) = d \) (see [24], [11], [6], [5]). Any point \( P \in \tau(\nu_d(\mathbb{P}^n)) \setminus \nu_d(\mathbb{P}^n) \) can be thought as the projective class of a homogeneous degree \( d \) polynomial in \( n + 1 \) variables for which there exist two linear forms \( L, M \in n + 1 \) variables such that \( P = [L^{d-1}]M \); hence \( d \) is the minimum integer \( k \) such that \( P \in \langle \nu_k(\mathbb{P}^n) \rangle \). Therefore \( \eta_{X_{n,...,n}}(P) = d \). Since obviously \( \tau(\nu_d(\mathbb{P}^n)) \subset \tau(X_{n,...,n}) \) we have that, by Theorem 1, \( r_{X_{n,...,n}}(P) = \eta_{X_{n,...,n}}(P) \).

**References**


DEPT. of MATHEMATICS, UNIVERSITY OF TRENTO, 38123 POVO (TN), ITALY
E-mail address: bALLENG@science.unitn.it

GALAAD, INRIA 2004 ROUTE DES LUCIOLES, BP 93, 06902 SOPHIA ANTIPOLIS, FRANCE.
E-mail address: alessandra.bernardi@inria.fr