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Abstract

The theory of multidimensional persistent homology was initially devel-
oped in the discrete setting, and involved the study of simplicial complexes
filtered through an ordering of the simplices. Later, stability properties of
multidimensional persistence have been proved to hold when topological
spaces are filtered by continuous functions, i.e. for continuous data. Th
paper aims to provide a bridge between the continuous setting, where sta-
bility properties hold, and the discrete setting, where actual computations
are carried out. More precisely, a stability preserving method is developed
to compare rank invariants of vector functions obtained from discrete data
These advances confirm that multidimensional persistent homology is an ap-
propriate tool for shape comparison in computer vision and computer-graph
ics applications. The results are supported by numerical tests.
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1 Introduction

In this paper we present a discrete counterpart of the thefgpgrsistent homol-
ogy of vector functions that still guarantees stabilitygedies as the continuous
framework. The theory of multidimensional persistence dasloped in the dis-
crete setting in [8], and involved the study of simpliciahgalexes filtered through
an ordering of the simplices. On the other hand stabilitypproes of multidi-
mensional persistence are proved to hold when triangutgizlees are filtered by
continuous functions, i.e. for continuous data [20, 9]. sThaper aims to be a
bridge between the continuous setting, where stability@riies hold, and the
discrete setting, where actual computations are carriéd iore precisely, we



develop a method to compare persistent homologies of vaatotions obtained
from discrete data. We show that in the passage from thereanis to the discrete
framework stability is preserved. These advances supperappropriateness of
multidimensional persistent homology for shape comparispfunctions.

The problem of comparing shapes is well-studied in compusgsn and com-
puter graphics and many algorithms have been developedi®ipurpose. A
widely used scheme is to associate a shape with a shapepdesoor a signa-
ture, and comparing shapes by measuring dissimilarity é&etwdescriptors. An
important class of shape descriptors, which may be calleghe-from-functions
methods, is based on the common idea of performing a topabgkploration
of the shape according to some quantitative geometric ptiepeprovided by a
(measuring) function defined on the shape and chosen tocestiape features
[4].

The simplest topological attribute of a space is the numbésaonnected
components. A well-known mathematical tool to count the hanof connected
components is the homology groufy. More complex topological features are
revealed by higher homology groups.

Persistent homology is a shape-from-functions methodHape description
involving homology groups of any degree. The idea is to fdtepace by the sub-
level sets of the function and to analyze the homologicahgka of the sublevel
sets across this filtration, due to the appearance or disagpee of topological
attributes, such as connected components. Features witirtgpgrsistence along
the filtration can be regarded as negligible information ttuaoise or very fine
details. For application purposes, it is often sufficierdisyegard the group struc-
ture of persistent homology and retain only the rank infdroma This gives rise
to the notions ofank invariant[8], persistent Betti numbers [19], size functions
[25].

The topic has been widely studied in the case of filtratiodsiaed by scalar
continuous functions (i.e. one-dimensional persisteres)ecially in connection
with the stability problem [13, 12, 14, 15].

This theory has been generalized to a multidimensionaastn in which a
vector-valued function characterizes the data as sughesf{é7, 18]. Results in
this area are given in [3, 8, 5, 9]. This generalization ideniatural in view of
the analogous generalization of Morse Theory [24]. Moreavés motivated by
applications where data are more completely described lvg than one function
(e.g., curvature and torsion for space curves).

The passage from scalar to vector-valued functions present challenges.
To begin with, critical points are no longer isolated evemam-degenerate situ-
ations [17]. Although the relevant points for persistentiotogy of vector func-
tions are a subset of the critical points, precisely the tBargtical points, these
are still non-isolated [11]. For example, in the case of fhteeser? + 2 + 22 = 1
with the functionf = (y, z), the Pareto critical points are those in theset 0,
P+ 22 =1,y2 > 0.

Another delicate issue is passing from the comparison ofimeous models
to that of discrete models. This is an essential passagethancbre of this pa-
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per. Indeed, for two given real-world objecks andY’, modeled as triangulable
topological spaces (e.g., manifolds), we usually only kresmplicial descrip-
tions C and £ of them, affected by approximation errors. For exampleyaouy
3D models of real-world objects for computer graphics aggtions needs to ac-
count for errors due to sensor resolution, noise in the mieagnts, inaccuracy
of sensor calibration [1]. Moreover, different techniqdes reconstructing the
geometry and topology of the scanned object yield diffepaiyhedral approxi-
mations. Analogous considerations hold for any continunaasuring functions
f: X — RFandg : Y — R¥, because we could only consider approximations
¢: K — R¥ ¢ : L — R* of f andg defined on finite polyhedra. Depending on
the context of a specific application, these functions mayay not be given by
explicit formulas. In either case, itis legitimate to asguimat we are able to com-
pute their values on vertices &f and£. Hence, we only know the discrete maps
¢ : V(K) = R*, ¢ : V(L) — R* which are the restrictions ¢f andy to vertices.
Therefore a natural question is whether shape comparispeisystent homology
of vector functions is numerically stable, i.e. whether tenputation of a dis-
tance between rank invariants of discrete models gives d gpproximation of
the ideal distance between rank invariants of continuousaiso

Our main result, Theorem 4.5, gives an affirmative answehnitoguestion. It
states that, in the passage from continuous to discrete ttiataistance between
rank invariants does not increase, provided that stalhiitgs for the continuous
model. We underline that at least one stable distance batvagdk invariants of
continuous vector functions exists as proved in [9]. In ordeprofit from the
stability theory in the continuous case, we give a new coostn of axis-wise
linear interpolationy ' which is generic in the sense that its persistent homology
is exactly equal to that of the map defined on vertices

The paper is organized as follows. In Section 2 the necedsariground
notions concerning persistence are reviewed and put indhtext of our aims.
Section 3 starts with the description of the simplicial feamork and with Exam-
ple 3.1 which is a simplicial analogue of the sphere exampietpd above. The
same example shows that, in the vector case, the linearssateof a map defined
on vertices does not satisfy the genericity property dbedrabove. Topological
artifacts of an interpolation method have been observeareeThis phenomenon
can be referred to depological aliasing Our example motivates the construction
of our axis-wise linear interpolation. We next prove Theoi&3 on the deforma-
tion retraction of continuous sublevel setsofonto the simplicial sublevel sets
of . We introduce the notion of homological critical value factor functions.
As in the sphere example, the set of critical values need aeatiscrete, but we
prove in Theorem 3.5 that in the casewfit has to be contained in a finite union
of hyperplanes, thus it is a nowhere dense set and-dsnensional Lebesgue
measure is zero (Corollary 3.6).

Section 4 starts with Lemma 4.1 that provides an approxonaif a distance
between the rank invariants of continuous functions by déf#he rank invariants
of the corresponding axis-wise linear approximations. géwericity ofy ' allows
us to introduce the rank invariant fgr. Although this rank invariant is defined
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for a discrete functiop and computed using only simplicial sublevel sets, it takes
pairs of real vectors as variables, as it is in the case of dh& mvariant for
continuous functions. We show that this new rank invariantfis equal to that
of ¢ . This allows us to derive the main result of the paper (Theoteb).

Section 5 describes an algorithm which computes an appsigimatching
distance. Our algorithm is a modification of the algorithraatébed in [2], adapted
to the rank invariants. The correctness of the algorithmusrgnteed by the re-
sults of Section 4. We next present tests of the algorithrfopeed on simplicial
models in the cask = 2. Our tests revealed the same discrepancy as observed in
Example 3.1, thus providing numerical confirmation of t@gital aliasing.

2 Basic notions and working assumptions

Let us consider a triangulable topological spacdi.e., a space homeomorphic

to the carrier of a finite simplicial complex). Altration of X is a family 7 =

{ X4 }acrr Of subsets o that are nested with respect to inclusions, thakis:C

X, for everya < 3, wherea < gifandonly ifa; < g forallj =1,2,... k.
Persistence is based on analyzing the homological charagpesrimg along

the filtration asx varies. This analysis is carried out by considering,doK S,

the homomorphism

H, (i) . H,(X,) — H.(X3).

induced by the inclusion mair® : X, — Xz. We work with Cech homology
with coefficients in a given field. When eachX,, a € R*, is triangulable,
it reduces to simplicial homology. For simplicity of notati we write H,.(X,)
for the graded homology spacé.(X,;F) = {H,(X.;F)},cz. The choice of a
field is only made in experimentations, the most convenienbimputations being
F = Z,, with p a prime number. Thus, for anye Z, H,(X,) is a vector space
of dimension equal to thgth Betti number ofX,,.

The image of the mag/, (‘")) is a vector space known as tiith persistent
homology groupof the filtration at(«, 3). It contains the homology classes of
orderq born not later tharv and still alive at5. The dimension of this vector
space is called ath persistent Betti number

A rank invariant is a function that encodes the changes ipénsistent Betti
numbers as and/ vary. Setting

Al = {(a,8) e RF x R* [ < 3},

wherea < gifandonly ifo; < g forall j =1,2,..., k, theq'th rank invariant
of the filtration 7 is the functionpZ : A* — N U {oco} defined on each pair
(o, B) € Ak as the rank of the mapl,(i?). In other words,p%(a, 3) =
dim im H,,(i(*?).

In this paper, we will use the notatign- to refer to rank invariants of arbitrary
order. Ultimately, the shapes of two triangulable spakeandY’, filtered by F
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andg, respectively, can be compared by using an (extendedndisia between
their rank invariantg » andpg.

The framework described so far for general filtrations carsgecialized in
various directions. We now review the two most relevant doaesur paper.

2.1 Persistence of sublevel set filtrations

Given a continuous functiofi : X — R*, it induces onX the so-calledsublevel
set filtration defined as follows:

Xo={r e X | f(z) < a}l.

We will call the functionf ameasuring functiomnd denote the rank invariant
associated with this filtration by;.

SinceX is assumed to be triangulable afids continuousy(a, 5) < 400
for everya < 3 € R* (cf. [6]).

Among all the (extended) distancBs between rank invariants of filtrations,
we confine our study to those ones that, when applied to selldex filtrations,
satisfy the followingstability property

(S) Foreveryf, f': X — R¥ continuous functions) (ps, ps) < ||f — [l e-

In [9] it has been shown that there is at least one distancgeeet rank in-
variants, thanatching distancethat has the stability property (S). An analogous
stability property for a distance defined between modulgsdsented in [22].

The matching distance will be used for computations in thgedarments de-
scribed in Section 5. Until then, we will not need to specityieh distance) we
are using, provided it satisfies (S).

2.2 Persistence of simplicial complex filtrations

We consider a simplicial complég consisting of closed geometric simplices and
its carrier defined by

K =|K| =K. (1)

The set of all vertices ok is denoted by (K) or by V, if K is clear from the
context. Foro, 7 € K, the relationr is a face ofo is denoted byr < o. For
proper faces, we write < o.

In this discrete setting, we take a fam{liC,, } ,cr+ Of simplicial subcomplexes
of K, such thatlC, is a subcomplex ok s, for everya < 3. As a consequence,
their carriers are nested with respect to inclusions, #1aki, C K3, yielding a
filtration of K.

In the next section we address the following problem: is ampkcial com-
plex filtration induced by a suitable continuous function?

A positive answer to this question will allow us later to tséer the stability
property ofD from the continuous to the discrete setting.
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3 From continuous to discrete vector functions

We lety : V(K) — R* be a vector-valued function defined on vertices. We
suppose thap is a discretizationof some continuous functiopp : K — RF,
Reciprocally,p is aninterpolationof ¢. In this section we will simply assume
that ¢ is equal top on vertices ofKC but, of course, when it comes to comput-
ing, one has to set bounds for the rounding error. Althoughome practical
applications of persistent homology to the analysis ofréiscmultidimensional
datap : K — R¥ may be explicitly known, in some other cases we do not even
have an explicit formula fop: we assume that such a function exists, that we
can estimate its modulus of uniform continuity (for the sakesimplicity, say,
its Lipschitz constant), and that we can compute the val@iesai grid points of
arbitrary fine finite grids.

In a discrete model, we are interested in simplicial sublesmplexes

Ko :={0 € K| ¢(v) = aforall verticesv < o}.

In Section 5, we compute the rank invariants for the discvetsor-valued
functiony and we use this information for computing the distance betwank
invariants for their continuous interpolations. In ordedb this, we need to know
that there exists a continuous function which geaeric interpolatiorof ¢, in the
sense that its rank invariant is exactly equal to thap.of

In the casé: = 1, that is, whenp has values iR, it can be shown that such an
interpolation can be obtained by extendingo each simplex € K by linearity.
We shall denote this interpolation k§. In that case, one can show that, is
a deformation retract of(;<,, so the inclusion of one set into another induces
an isomorphism in homology. This result belongs to “math@gahfolklore”: it
is often implicitly used in computations without being peov The arguments
for that case are outlined in [23, Section 2.5] and Theoreé3n& prove in this
section contains this result as a special case. Unfortiyndté > 1, this result is
no longer true as the following example shows:

Example 3.1 Let K be the boundary of the tetrahedron shown in Figure 1, home-
omorphic to the 2D sphere. The corresponding simplicial glem/C is made of
all proper faces of the 3D simpléx,, v, v2, v3] in R?, with verticesu, = (0,0, 0),
vy = (1,0,0), v = (0,1,0), v3 = (1/2,0,1). HenceK = |K| is homeomorphic
to a 2D sphere. Lep : K — R? be the restriction of the linear functiangiven
by o(z,y,z) = (z, 2) to the four vertices. Letr € R? be any value chosen so
thatl/2 < a; < 1 andas = 2 — 2a4. Itis easy to see that, = [vg, v5]. Its ho-
mology is trivial. Note that the sét<, contains one point on the edgéuv,, vs],
namelyz = (o, 0, az), which closes a non-contractible path/ii<,. We have
Hy(Kg<a) =2 F #0.

The discrepancy between the discrete and linear integmblaiodels seen in
Example 3.1 has been observed in applications to compwph@s and imaging,
and has been recently referred to as topological aliasing.
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Figure 1: The tetrahedron boundary and sketches of twogilldets of the linear
interpolationy discussed in Example 3.1. The values taken at the displajgel e
are critical.

Several interesting conclusions can be derived from thist, K, is not a de-
formation retract of<;<,. This remains true if we slightly increase the value.of
Secondly, if we slightly decreaseg the setk, does not change but the S€t,<,,
becomes contractible. Hence, in the sense of Definition R2demted further in
this section, any value assumed at a point of the ddges| is a homological
critical value. In particular, the set of such values may beauntable. This is
in contrast with the one-dimensional case, where a pieeelivisar function on a
simplicial complex must have a discrete set of critical eslu

We shall now construct a continuous functipn: K — R* calledaxis-wise
linear interpolationof ¢ which will correct the problem encountered with the
linear interpolationys in the multidimensional case. First, given anye K, let
u(o) € R* be defined by

pi(o) = max{p;(v) |visavertexob},j =1,2,... k. (2)

Note that ifr < o, thenu(7) < u(o).
We will use induction on the dimension of o to definey' : K — R* ono
and a pointw, € o with the following properties:

(@) Forallz € o, ¢ '(7) < ¢ (wy) = u(o);
(b) ¢ is linear on any line segment,, y] with y on the boundary of.

If m = 0, so thate = {v} is a vertex '(v) = ¢(v) and we putwg,, = v. Let
m > 0 and suppose ' is constructed on simplices of lower dimensions. L &e
a minimal face ot such thaj(7) = u(o). Consider two cases.

(i) If 7 # o, thenw, andy '(w,) are defined by the induction step. We put
w, = w,. SiNCeo IS convex, anyr in the interior ofo is on a line segment
joining w, to a uniquely defineg(z) on the boundary of. Sincep '(y(z))
is defined by the induction step, we extepdto [w,, y(z)] by linearity.



Figure 2: The linear (dashed line) and axis-wise linear fjoous line) interpo-
lations of a functiony defined on the vertices of the simplex= [v,, v;1] with
values inR2.

(i) If 7 = o, then letw, be the barycenter of and puty '(w,) = u(o). Again,
anyzx # w, in the interior ofs is on a line segment joining,, to a uniquely
definedy(x) on the boundary of and we proceed as before.

The property (a) follows from the fact thatr) < p(o) whent < o, and from
the linearity on joining segments. The property (b) is ckeam the construction.
By routine arguments from convex analysis, the pgiat) on the boundary of is

a continuous function of € ¢\ {w, }, and the constructed function is continuous
ono. Since we proceeded by induction on the dimension,dhe definitions on
any two simplices coincide on their common faceysaextends continuously to
K. The property (b) implies that # = 1, and in certain cases of vector valued
functions,p ' is equal tap, namely:

(c) ¢ is piecewise linear on each simplex In addition, ifw, is a vertex ofr
for eachr < o, thenitis linear on.

The difference between the piecewise linear and the axgs-liviear interpola-
tionsp andy ' is illustrated in Figure 2 for a 1-simplex= [vy, v;] and a function
© defined on vertices.

Lemma 3.2 The following statements hold:
() Foranya € R¥, K, C K ,.

(i) Leto € Kanda € R*. If o N K<, # 0, theno has at least one vertex in
K,.

PROOFE (i) Leto € K,. Itis clear from (2) thaj:(c) = a. It follows from the
property (a) in the definition of " thato C K, <,.

(i) We follow the induction steps in the constructionif. If dim(c) = 0, o
is a vertex and there is nothing to prove. ldét (o) = m > 0 and suppose the
statement is proved for lower dimensions. ket o N K, <,. If 2 = w,, then
w, € K,<,. By the property (a) ob', allgisin K,. If x # w,, thenz ison a
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line segment joining the point, of o with a pointy(x) of an (m — 1)—simplex
T < o, wherey (y(x)) is defined by the induction hypothesis. We know that
is extended linearly to the line segment,, y(z)]. Also, ¢ (y(z)) < ¢ (w,) by
the property (a). Hence (y(x)) < ¢ '(z) < a. It remains to use the induction
hypothesis fol(x) andr to deduce that has a vertex in,. 0O

Theorem 3.3 For any a € R*, K, is a strong deformation retract ok .
Consequently, the inclusidid, — K<, induces an isomorphism in homology.

PROOF. Note thatK -, is contained in a union of simplicesc K such that
Op'<aq ‘= 0 N Kgo—'joz 7£ @ (3)

Given any suclwr, consider the simplex,, defined as the convex hull of the set of
verticesv of o such thatp(v) < «. By the hypothesis oa and by Lemma 3 @),

oo # 0. Given anyo € K for which o, -, # 0, we shall define a strong
deformation retraction

Ho- : O-gpjjoc X [O, 1] — U«pjja

with » = H(-, 1) being a retraction of -, ontoo,.

The construction goes by induction on the dimensiomf o following the
induction steps in the construction of the function If dim(o) = 0, o is a vertex
and there is nothing to prove. Now let > 0. Suppose that the deformation
retractionH, : 7,<, x [0,1] = 7,74, is defined for simplices of dimension
m' < m with 7.2, # 0 in such a way that/ (z,t) = z for any (z,t) €
T,z % [0,1/2™], and the values op ' on H,(z,t) are decreasing with By
“decreasing” we mean the weak inequality™ This hypothesis guarantees that
the deformation has values in the sgt-,,.

Letx € 0,4, If zis on a boundary ofr, we defineH,(z,t) = H.(x,t),
wherer is the smallest face af containingz and H., is defined by the induction
hypothesis. Suppose is in the interior ofo. Let w, andy(x) be the points
identified in the definition ofp". Note that, ify (w,) < «, theno,<, = o,
hence the deformation must be defined as the identity ma@tdrte

H,(z,t) :=xforall (z,t) € o x [0,1].

Therefore, we may suppose that ¢ o,,. Consider the smallest fageof o
containingy(z). Sincey(z) is on the boundary of, 7 is a proper face of of
dimension, sayy;’ < m. By the construction of

¢ (y(x) 2 ¢'(x) 2 @ (w,). (4)

Sincey (z) < o, we gety (y(z)) < a soy(z) € 7,7, # 0. By the induction
hypothesis, a deformation retraction

H: 7y % [0,1] = 7,24 C0yiza
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is defined so that the values @f on H.(x,t) decrease with, andH . (x,t) = x
fort € [0,1/2™].
For anyt € [0, 1] and forz in the interior ofc we define

T if 0<t<1/2™
H,(z,t) =< (2™t —Dy(x) — (2™t —2)z if 1/2m <t < 1/2m!
H,(y(x),t) if 1/2m1<t<1

It is easily checked thall, (z,1/2™) = x, H,(x,1/2™ 1) = y(x). Sincep’
is linear on[w,, y(z)], the inequality (4) implies that the valuesf on H,(x,t)
decrease with.

Thus we have define#l, both whenz is on the boundary of and when it
is in the interior ofs. By construction, for every < o,<,, H,(z,0) = z,
and H,(z, 1) belongs tas,, and moreover, for every € o,, H,(xz,1) = z. In
order to conclude that/, is a deformation retraction ef, -, ontoo, we must
prove thatH,, is continuous. The continuity at a given point, ¢,) with z, in the
interior of o follows from the continuity ofy(z) in . The continuity at(z, ¢,)
with z, on the boundary of follows from the condition that/.(z, t) = x for any
t € [0,1/2™] and from the induction hypothesis.

In order to continuously extend, to a deformation

H : K@’ja X [07 1] — K%O—lﬁo“

it is enough to prove that, given two simplicesando, intersectingk’,- -, and
T = 01 N oy, the maps,, andH,, agree at any < 7,7,. Itis clear from the
definition thatH,, (z,t) = H,,(x,t) = H.(z,t) for x € 7 and for all¢, provided
that /7, is defined. But this is true, becausec 7, -,, So this is a nonempty set.

O

In the next section, we use Theorem 3.3 to show that any disthatween
rank invariants of continuous functions that has propesiycan be approximated
by the distance between rank invariants of discrete funstidVe end this section
with another application of Theorem 3.3 of interest in fts@ theorem on the
structure of the set of critical values of the axis-wiseriptdationy . The follow-
ing definition generalizes the notion of homological catizalue given in [13]
to vector functions. In plain words we call homological ical any valuex for
which any sufficiently small neighborhood contains two eslwhose sublevel
sets are included one into the other but cannot be retractecnto the other.

.....

Definition 3.4 Let % : K — R* be a continuous vector function. A valuec R¥
is ahomological critical valueof ¢ if there exists an integer such that, for all
sufficiently small real values > 0, two valuese’, o” € R¥ can be found with
o 2a=xd||ld —al <e|o” — al <e such that the map

Hy(Kp=<ar) = Hy(Kp=ar)
induced by the inclusioi’ ;<. — K<, is notan isomorphism. If this condition
fails, v is called ahomological regular value
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Also note that, by the long exact sequence for the relativediogy (see e.qg.
[21, Chapter 9]) the critical value definition is equivalemtiie following condi-
tion on the graded relative homology

Ho(Kgzar, Kg=ar) # 0.

Foranyj = 1,2,...,k and a vertew € V(K), consider the hyperplane &"
given by the equation; = ¢ ;(v) and a positive closed cortg (v) contained in
it, given by the formula

Ci(v) =={a e R* |y = ¢ ,;(v) ande; > ¢ ;(v) foralli = 1,2,...,k}.

Theorem 3.5 The set of homological critical values @f is contained in the finite
union of the described cones, namely, in the set

C = J{Ci(v) lveV(K)andj =1,2,... k}.

PROOFR Consider anyr ¢ C. We need to show that is a homological regular
value. Since is a closed set, an > 0 exists such that the sé€(a,e) = {§ €
R¥ | |l — || < €} does not meet’. If o — 3| < e, then

Ks = K,. ()

Indeed, if this were not true, the segment joinmagnd 5 should contain a point
of C', against the choice ef

Now, let us assume that < ¢(v) = o/, [|a — /|| < eand|a — | <
e. It follows from equation (5) and from Theorem 3.3 that thelusionsi’ :
Ky = Ky — Ky andi’ : K, = Ko — K<, induce isomorphisms in
homology. The inclusion® ") : K .. < K, can be written ag®"*") =
1" o r’', wherer’ is the retraction homotopically inverse #o By the functoriality

/ 1"

of homology,H. (i *") = H,(i") o H.(r"), hence it is also an isomorphisny

For the sake of visualization, in Figure 3 the &eis shown in a simple case.
From the formula foiC, we instantly get an analogy of a well-known result
from differential geometry [24].

Corollary 3.6 The set of homological critical values of is a nowhere dense set
in R*. Moreover itsk-dimensional Lebesgue measure is zero.

4 Approximation of distances between rank invari-

ants
The goal of this section is to show that shape comparison sigent homology
of vector functions is numerically stable. In this passagenfreal (continuous)

objects to their discretizations, the approximation edwss not grow to be much
larger when we compute the distanioebetween the rank invariants gfand
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Figure 3: The seC defined in Theorem 3.5 is the union of closed cones with
vertices at the values taken ky The setA introduced in Proposition 4.6 is a
finite set whose elements are the highlighted points.

instead of the distande between the rank invariants gfandg (Theorem 4.5).
To this end, the stability property (S) bf defined in Section 2.1 in the continuous
setting is crucial.

A description of this approximation procedure in concretaneples together
with experiments exploiting the numerical stability of tb@mparison by persis-
tent homology will be given in Section 5.

We end the section by showing that the set of homologicatativalues, al-
though uncountable, admits a finite representative set.

We start from the following approximation lemma. It may happhatD (o, p,;)
andD (p,, p,) are equal ter-co. In the case of the matching distance, this occurs
whenH,(K) # H,(L). In such a case, we adopt the convention- co = 0.

Lemma4.l Letp : K — R¥ ¢ : L — R* be two continuous measuring func-
tions on the carrier of complexdS and £. For anye > 0, there exist$ > 0 such
that if

max{diamo |c € Koro e L} <§ (6)

then

|D (p<,57 pi}) -D (pcpjvaj) <€ (7)

PROOF. SinceK andL are compactp, ¢, ¢, andyy" are uniformly continuous.
Hence for any > 0, there exist® > 0 such that if (6) is satisfied then

max{diamg (o) | 0 € K} < ¢/4 (8)

and the same inequality holds for ¢, andy)". The diameters op(c) ando are
measured with respect to the maximum norm in the respectident spaces.
Sincey is the restriction of? to the vertices, ang ' interpolatesy on the vertices,
given anyz € ¢ € K, and any vertex of o, from (8) we get

16(z) = ¢ (@)l < 6(2) = )] + llo(v) — ¢ (@)]| < €/2. (9)
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Hence, by the choice of the maximum normBf, || — ¢ |l < €/2. By the
same arguments) — ¥ || < ¢/2. By the stability property (S) ob,

IN

D (pg, pp) + D (py, py) + D (py, p)
”(15 - QO—IHOO + D (pgajvpi,/)j) + ||77b—l - 77Z)||<>O
< D(pwﬂ,pwﬂ)—i-e.

D (pz, 05)

IN

Reversing the roles af, ¢ andy ', v, we getD (p,, p,r) < D (pg, p;) +eand
the conclusion follows. 0

Knowing Lemma 4.1, we now turn our attention to computingo,,, p,).

The following definition sets the notation for the rank ingat of the simpli-
cial complex filtration obtained from a discrete map Next, we show that this
definition gives a rank invariant coinciding with the rankaniant of the contin-
uous functiony . Thus it is a first step in the passage from the stability okran
invariants for continuous functions to that of discretesoridoreover, this defini-
tion is the one which we use to implement the reduction aligoriof [5] in our
computations in Section 5.

Definition 4.2 Consider the discrete map: V(K) — R* defined on vertices of
a simplicial complexC. Theq'th real space variable rank invariandr, shortly,
¢'th real rank invariantof ¢ is the functionp?, : Ak — N defined on each pair
(o, B) € A% as the rank of the map

Hq(j(aﬁ)) P Hy(Ko) — Hy(Kp)

induced by the inclusion map*? : K, — K on simplicial sublevel sets.

Theorem 4.3 Given any discrete function : V(K) — R* on the set of vertices
of a simplicial complexXC and its axis-wise interpolation ', we have the equality
of ¢'th real rank invariants

_ 4
P = Py

PROOF. Consider anya, 3) € A%, theinclusion mapg®? : K ., < K, g,
andj@# : K, — Kgz. Theorem 3.3 implies that for everyc Z we have the
following commutative diagram

Hq(i(u”e))
Hq(Kfjja) — Hq(fjcfjﬁ)
Hq(j(a‘ﬂ))
Hy(K.) — Hy(Kp)

where the vertical arrows are the isomorphisms induced byctirresponding
retractions. Thus rank, (i“#) = rank H,(j(*9).

O
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In the sequel, we will once again uggto refer to real rank invariants of arbi-
trary order. In conclusion we obtain that the distance betwbe rank invariants
of two measuring (or interpolation) functions can be apprated using only the
corresponding simplicial sublevel sets.

Corollary 4.4 Letp : K — R, ¢ : L — R* be two continuous measuring
functions on the carriers of complexé&sand £ and lety : V(K) — R, ¢ :
V(L) — R* be the discretizations af and+ on the sets of vertices #f and £,
respectively. For any > 0 there exist$ > 0 such that if

max{diamo |c € Koro e L} <§

then
’D (pspri;) -D (pwaplﬂ” <€ (10)

PrROOFE Immediate from Lemma 4.1 and Theorem 4.3. 0
We are now ready to give the main result of this section.

Theorem 4.5 Let X andY be homeomorphic triangulable topological spaces,
and letf : X — R¥, ¢ : Y — R* be continuous functions. LK, ) and (L, 1)),
with K and L carriers of complexe&’ and £/, and : K — RF, ¢ : L — RF
continuous measuring functions, approximédg, ) and (Y, g), respectively, in
the following sense: For a fixed> 0, there exist a homeomorphism K — X
with [|¢ — f o €]|oe < /4 and a homeomorphisth: L — Y with || — g o (||se <

¢/4. Then, for any sufficiently fine subdivisitiof X’ and £ of £/,

ID (s, pg) — D (pg, pu)| <€,

¢ : V(K) = R*, ¢ : V(L) — R* being restrictions of> and ¢ on the set of
vertices oflC and L, respectively.

PROOF. By the triangle inequality

D (pr,pg) <D (pg; proe) +D (prog, pz) +D (pz, 5) +D (pgs Pgoc) +D (pgocs pg)-

Sincep; = proe andp, = pyoc, We haveD (py, prog) = 0 andD (pgoc, pg) = 0.
Moreover, by the stability property (S), sing@ — f o {|| < ¢/4 and|y) — g o
(lloe < €/4, we haveD (proc, pg) < /4 andD (pg, pgoc) < €/4. Therefore,

D (pr.pg) < D (pg. py) + €/2.

By Corollary 4.4, there exists > 0 such that, iflC and £ are subdivisions ok’
and£’ with max{diamo | 0 € K oro € L} < §,thenD (p;z, p;) < D (py, py) +
€/2. In conclusion we have proved that(ps, p,) < D (p,, py) + €.

Reversing the roles of, g and g, ¢, we getD (p,, py) < D (py,py) + €,
yielding the claim. 0
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We turn now to the question of the structure of the criticalafe, . Recall
from the previous section that whén> 1, the set of homological critical values of
a function onk with values inR* may be an uncountable set, although contained
in a nowhere dense sétby Theorem 3.5. However, the fami{yi<,, } ,cr+ Of all
subcomplexes ok is finite. Thus there exists a finite representative/set R*
for C' as the following proposition states.

Proposition 4.6 For anya € C, there exists\ in
A:{AEC‘VJIL2,,]€, E'UEV(K:) )\j:gpj(v)}
such thatk,, = K.

PROOF. Sincea € C, V(K,) # 0 and there existg such thatv; = ¢;(v;)
for somev; € V(K), ando,; > ¢;(7;), for 1 < i < k. For eachi # j, let us
take a vertexy; € V(K,) such thatp;(v;) > ¢;(v) for everyv € V(a). Now
we seth = (A,...,\g), with \; = ¢;(7;). By construction\ belongs toA.
Furthermore, it holds thak’, = K. Indeed, obviouslyK, C K,. Moreover,
for everyv € K,, by definition ofy; it holds thaty;(v;) > ¢;(v) for 1 < i < k.
Equivalently,\; > ¢;(v) for 1 <i < k, implying thatv € K. 0O

The structure of sed is visualized in Figure 3. The previous proposition
prompts for the following definition.

Definition 4.7 Consider the discrete map: V(K) — R* defined on vertices of
K. Thediscrete rank invarianof ¢ is the restriction of the real rank invariant
to the finite domaim? := A% N (A x A).

Definition 4.7 gives a discrete rank invariant which is santb the one defined
in [8, 7], except for the fact that we are using a different lotwgical structure.

Defining a distanc® directly on the basis of-dimensional rank invariants
would be a task impossible to accomplish. Even when 2, a pair of complexes
KC and £ with an order of thousand vertices would result in computizgks of
millions of maps induced by inclusions. This motivates tihe-aimensional re-
duction method described in the next section to compute #itehimg distance.

5 Algorithm and experimentation

For experimentation purposes, we now fix the distance betwaek invariants
that we will use to be the matching distardgg defined in [5].

The one-dimensional reduction method presented in [5]taprde the match-
ing distance consists of applying the one-dimensional ramériant along the
linest — b+ tl parameterized by and determined by palrs of vecto(rlsb) in
a chosen grid ilR* x R¥, whereb is an initial point and directs the line. It is
assumed that all componentsf@fre positive, and thdt 1 =1,b-1 = 0, where
1=(1,1,...,1). Forall(a,8) € A%, there exists a unique such pair, which
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will be calledlinearly admissible paior simplyadmissible pairthe set of which
will be denotedLadmy. Also denote byy;; : K — R andh;p : L — R the

one-dimensional functions given lay () = [|(¢"(x) — b)/I]| andh gz (x) =
|(x " (x) — b)/1]|, where the division is coordinate-wise and the norm is tipgesu

mum norm. For ease of notation, the péﬂrg) may be left out ofy andh if it is
unambiguous. By [5, Lemma 1], it = b + sl, then

Kgojja == Kg§s~
This and Theorem 4.3 implies

Corollary 5.1 Consider(a, ) = (b+ sl,b + tl) € Ak, for some(s,t) € Al.
Then
polc, B) = pg(s,t).

The above theorem shows that it is legitimate to apply theiggon method of
[5] to simplicial sublevel sets. Following [5, Definition Llve define thanulti-
dimensional matching distant@tween the rank invariantg, andp,, to be

Dy (psm pw) = sup z:nlunk l; D (pg(f’g) ) ph@g))

In this section, the valugin;—, _;l; Dy, (pg(m , pg(m) will be denotedl,, (p,, py)

or du ;5 (e, py) and referred to as theescaled one-dimensional matching dis-
tance The computational problem is, given a threshold value- 0, com-
puting an approximate matching distarﬁg(,%, py) ON a suitable finite subset
A C Ladmy, such that

— —

D (pwpd)) < Dn, (pwapw> < Dn, (P@,P@b) + e (11)

5.1 Algorithm

Our algorithm’s inputs consist of lists of simplices kf and £ of highest di-
mension together with their adjacency relations and vestiand of the values of
normalized measuring functiogs: V(K) — R? andv : V(£) — R?, as well as
atolerance.! In our computations, we have confined ourselves to the caseawh
K and £ are triangular meshes. Its output is an approximate majatiistance
D (py, py). To compute the one-dimensional persistent homology onissiim
ble pairs, we use the persistent homology software JPlex By default, JPlex
computes the persistent Betti numbers d&grof a discretely indexed filtration of
simplicial complexes. We build this filtration by adding gilces in the following
recursive way. We first order the values attained by the ameasional measur-
ing functiong in increasing order g1, . .., gy }. A finite filtration {/Cy, ..., Ky}

Due to the finite precision of computer arithmetic, the codonof the functionsy; ands); is
in reality 10~? Z rather tharR. In our computations we tended to yse-= 6, that is, a precision
of up to six digits after the decimal point.
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is then built by inserting simplices € K. If o = {v}, wherev is a vertex, we put
{v}into IC; if g(v) < g;. Otherwiseg € K; if all its vertices are inC;. Similarly,
the functionk is used to build a finite filtratio L1, . . ., £, } using simplices of
L.

The set of admissible paifsadms is the set of quadruplgs, 1 — a,b, —b) €
R? x R? such thal) < a < 1. As described in [2, Remark 3.2], it is possible to
avoid computation of the one-dimensional matching distaower a large portion
of Ladm,. Since the functions andy are normalized' = max{||¢||, [[¢]} =
1. Let Ladm; be the set of admissible pairs such tftat< 1. Then, to compute
the maximal value oD, (p,, pr) Over Ladms\ Ladm}, it is sufficient to consider
the two admissible pair®:, 1—a, b, —b) = (1/2,1/2,2,—2)and(1/2,1/2, -2, 2).
The details can be found in [2].

It follows from a generalization of the Error Bound Theore ([heorem 3.4]
and [10]) to persistent homology of arbitrary order thatoif ¢ﬁ 5) and(l7, 5’) €
Ladmsy, ||(I,b) — (I',¥)|| < &, then for normalized functions andz)

| Az (Pgr ) = dmz ) (P, )| < 180.

This suggests that in order to satisfy Equation (11), it seffito choose admissible
pairs (I,b) € Ladm} at a distance within/9 of each other, guaranteeing that
every member of.admy is within ¢ /18 of a tested pair. In practice, our algorithm
is reminiscent of the grid algorithm shown in Section 3 of, [iB] the sense that
we take pairs at a distance of2" of each other withV sufficiently large. We
observe that the sdtadms is in bijective correspondence wifffa, b) € R* |a €
(0,1),b € R}, and so we will speak of computinl, (p,, py,) ata pointP = (a, b)

of the preceding set. The lattice of points on which we comphis rescaled
matching distance is chosen as follows: chodse N such thatl /2V < /18,
and choose?; = (a;,b;),i = 0,...,2Y — 1,57 = 0,...,2""" — 1 such that

= (20 +1)/2V b =1 — (25 +1)/2N+,

5.2 Examples of topological aliasing

Our experimentations have been made on triangular meshasrgdact 2D sur-
faces. In doing so, the influence on experimental resulte@tbncept of topo-
logical aliasing discussed in Section 3 became apparenmeNawe used our
algorithm to compare in a pairwise manner 10 cat models,ecteh of which

is found in Figure 4. We used fas; and;, i = 1,2, the following functions.
Assume that the mode( is such that its vertex sét(K) = {vy,...,v,} and

compute the following principal vector:

- ZL(U@' —c)|lv; — cf|2

w = s

iz llvi = ll3

wherec is the centre of mass ak defined by taking the weighted average of
the centres of each triangle. Létbe the line passing throughhaving as its
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direction vector, and let be the plane passing througthaving as its normal
vector. We defined

dist(v;, d)
i) =1 .
P1(v) max,;_ __, dist(v;, d)
and dist (15, )
ist(vy, m
pa(vi) =1 -

max;_1, _n dist(v;, 7)’
wheredist(v, d) anddist(v, ) are defined in the usual way, as the minimal Eu-
clidean distance betweerand the points od or 7. The functions); andy, were
defined similarly using the modél. We then repeated the same procedure on the
barycentric subdivisions of the models, with the value @f filnction at the new
vertices defined using the linear interpolant. We found bat tn this case the
computed matching distance did not always yield the samdtras when using
the original unsubdivided models. However, replacing thedr interpolant by
the axis-wise linear interpolant allowed us to retrievegame results.

We show in Table 1 a selected subset of our results, and inrd-jimages
of the five models for which results are shown. The first twog@& numbers
in each table represent the 1D matching distance compuieg each ofp; and
; fori = 1, 2 respectively, while the last three rows represent the aqmiated
2D matching distance computed for three different tolegalevelse. The col-
umn named “Nonsub” shows the distances computed on thenaligiodel, while
“Linear” and “Axis-wise” show those computed on the subdad models with re-
spectively the linear and axis-wise linear interpolaniBiff* and “% Diff” show
the difference and relative difference between the matctistance results for
the unsubdivided models and subdivided models with lina@rpolation.

We can see that while the matching distance computed usgraxib-wise lin-
ear interpolant s, for every tolerance level, equal to tlagaming distance between
the original models, the matching distance computed usiadinear interpolant
can be quite different, and this both using Oth- and 1stigodesistent homology.
However, this phenomenon is only seen when computing the aiazhimg dis-
tance: the 1D matching distances (the numbers in the firstdawe of each table)
are always the same. Given that in our context topologicasialg can only be
observed when using multi-measuring functions, this fei@ur expectations.
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catO vs. catO-tran1-1

Nonsub | Linear | Axis-wise |

Diff

|

% Diff

H,

0.031129

0.031129

0.031129

0.000000

0.000000

0.039497

0.039497

0.039497

0.000000

0.000000

0.039497

0.039497

0.039497

0.000000

0.000000

0.046150

0.039497

0.046150

-0.006653

-16.844317

0.046150

0.040576

0.046150

-0.005574

-13.737185

Hy

0.118165

0.118165

0.118165

0.000000

0.000000

0.032043

0.032043

0.032043

0.000000

0.000000

0.194217

0.177001

0.194217

-0.017216

-0.726499

0.224227

0.203102

0.224227

-0.021125

-10.401178

0.225394

0.207266

0.225394

-0.018128

-8.746249

catO-tranl-2 vs. catO-tran2-1

Nonsub | Linear | Axis-wise |

Diff

|

% Diff

0.017272

0.017272

0.017272

0.000000

0.000000

0.026101

0.026101

0.026101

0.000000

0.000000

0.026101

0.028686

0.026101

0.002585

9.903835

0.034314

0.028686

0.034314

-0.005628

-19.619327

0.034314

0.029188

0.034314

-0.005126

-17.562012

Hy

0.182985

0.182985

0.182985

0.000000

0.000000

0.018951

0.018951

0.018951

0.000000

0.000000

0.192872

0.188365

0.192872

-0.004507

-2.392695

0.207480

0.202844

0.207480

-0.004636

-2.285500

0.208451

0.204511

0.208451

-0.003940

-1.926547

catO-tran2-1 vs. catO-tran2-2

Nonsub | Linear | Axis-wise |

Diff

|

% Diff

0.022001

0.022001

0.022001

0.000000

0.000000

0.034288

0.034288

0.034288

0.000000

0.000000

0.034288

0.034288

0.034288

0.000000

0.000000

0.045545

0.035702

0.045545

-0.009843

-27.569884

0.045545

0.037061

0.045545

-0.008484

-22.891989

Hy

0.095677

0.095677

0.095677

0.000000

0.000000

0.032966

0.032966

0.032966

0.000000

0.000000

0.178776

0.182322

0.178776

0.003546

1.983488

0.202770

0.196977

0.202770

-0.005793

-2.940952

0.212733

0.208097

0.212733

-0.004636

-2.227807

Table 1: The approximated matching distance computed byalgarithm for
three decreasing tolerance values=(9/8,9/16 and9/32) is shown for a few test
cases (unsubdivided, subdivided withand subdivided withy "), with Oth- and
1st-order rank invariants.
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