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ABSTRACT. In order to estimate the Hurst parameter of Internet traffic data, it has been

recently proposed a log-regression estimator based on the so-called modified Allan vari-
ance (MAVAR). Simulations have shown that this estimator achieves higher accuracy and

better confidence when compared with other methods of common use. Here we link it

to the wavelets setting and provide an asymptotic analysis in the case the signal process
is a fractional Brownian motion. In particular we show that the MAVAR log-regression

estimator is consistent and asymptotically normal, providing the related confidence in-

tervals for a suitable choice on the regression weights. Finally, we show some numerical
examples.

1. INTRODUCTION

Internet traffic, as well as many different kinds of real data (Hydrology, Economics,
Biology), has been demonstrated to exhibit self-similarity and long-range dependence
(LRD) on various time scales [1, 2, 3]. In a self-similar random process, a dilated portion
of a realization, by the scaling Hurst parameter H, has the same statistical characteriza-
tion than the whole. On the other hand, the LRD is commonly equated to an asymptotic
power-law decrease of the spectral density of a related stationary random process, and
it is thus characterized by the exponent α of such a power-law.

Though a self-similar process can not be stationary (and thus nor LRD), these two
proprieties are often related in the following sense. Under the hypothesis that a self-
similar process has stationary (or weakly stationary) increments, the scaling parameter
H enters in the description of the spectral density of the increments, providing an as-
ymptotic power-law with exponent α = 2H − 1. The most paradigmatic example of this
connection is given by the fractional Brownian motion and by its increment process, the
fractional Gaussian noise [4].

Among the different techniques introduced in the literature in order to estimate the
Hurst parameter H, here we focus on a method based on the log-regression of the Mod-
ified Allan Variance (MAVAR). The MAVAR is a well known time-domain quantity gen-
eralizing the classic Allan variance [5, 6]. It has been proposed for the first time as a
traffic analysis tool in [7], and then its performance has been evaluated by simulation
[7, 8] and also on real IP traffic [9]. These works have pointed out the high accuracy

Date: February 8, 2012.
2000 Mathematics Subject Classification. 62M10,62M15,62G05.
Key words and phrases. Hurst parameter, long-range dependence, self-similarity, modified Allan vari-

ance, parameter estimation, wavelets, fractional Brownian motion.

Work partialy supported by the GDRE 224 GREFI-MEFI-CNRS-INdAM and by the GNAMPA 2011 Projects.

1



ANALYSIS OF A HURST PARAMETER ESTIMATOR BASED ON THE MODIFIED ALLAN VARIANCE 2

of the method in estimating the parameter H, and have shown that it achieves a high-
est confidence if compared with the well-established log-diagram based on Daubechies
wavelets. In [10], the authors substantiate these results from the theoretical point of
view, studying the limit properties of the MAVAR log-regression estimator. In particu-
lar, under the assumption that the signal process is a fractional Brownian motion, they
deduce its precise asymptotic normality.

In the present work we provide a wavelet representation of the MAVAR estimator that
can be seen as a generalization of the well known connection between Allan variance
and Haar-wavelets family [11]. Applying the asymptotic results of [10] to the internet
traffic data setting, we show that under the fractional Brownian motion hypothesis the
MAVAR log-regression estimator is asymptotically unbiased and consistent. We provide
explicit formulas for the related confidence intervals and numerical evaluations of such
formulas. We show that the variances decrease with the rate predicted by their analytical
asymptotes. Besides, we suggest different choices for the regression-weights.

2. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

According to [3], we consider a centered self-similar real-valued stochastic process
X = {X(t), t ∈ R}, with X(0) = 0, that can be interpreted as the signal process. By
self-similarity of X we refer to the existence of a parameter H ∈ (0, 1), called Hurst index
or Hurst parameter of the process, such that, for all a > 0, it holds

{X(t) , t ∈ R} d
= {a−HX(at), t ∈ R} . (1)

Assuming further that the process X has weakly stationary increments, we get the fol-
lowing expression for the autocovariance function

Cov(X(s), X(t)) =
σ2
H

2

(
|t|2H − |t− s|2H + |s|2H

)
, (2)

with σ2
H := E[X2(1)]. Denoting by Yτ the τ -increment process of X, defined as Yτ (t) =

X(t+τ)−X(t)
τ

, it also turns out that the autocovariance function of Yτ , given by RYτ
(t) =

Cov(Yτ (s), Yτ(s+ t)), satisfies asymptotically the following power law [1]

RYτ
(t) ∼ σ2

HH(2H − 1)|t|2H−2 as |t| → +∞ .

In particular, if H ∈ (1
2
, 1), the process Yτ displays long-range dependence, in the sense

that there exists α = 2H − 1 ∈ (0, 1) such that the spectral density of the process Yτ ,
fYτ

(λ), satisfies the condition

fYτ
(λ) ∼ c|λ|−α as λ→ 0 ,

for some finite constant c 6= 0. The parameter α is often referred as memory parameter of
the process Yτ [12, 13, 14]. Thus, under the assumption that X is a self-similar process
with weakly stationary increments, we embrace the two main empirical properties of a
wide collection of real data.

A basic example of the connection between these two properties is provided by the
fractional Brownian motion BH = {BH(t), t ∈ R}, that is a centered Gaussian process
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with autocovariance function given by (2) with

σ2
H =

1

Γ(2H + 1) sin(πH)
. (3)

It can be shown that BH is a self-similar process with Hurst index H ∈ (0, 1), which
corresponds, for H = 1/2, to the standard Brownian motion. Moreover, its increment
process

Gτ,H(t) =
BH(t + τ)− BH(t)

τ
,

called fractional Gaussian noise, turns out to be a weakly stationary Gaussian process
[4, 15], displaying long memory for H > 1

2
.

3. THE MODIFIED ALLAN VARIANCE

In this section we introduce and recall the main properties of the Modified Allan vari-
ance (MAVAR) [5, 16], and of the log-regression estimator of the Hurst parameter based
on it [7, 8, 9].

3.1. Definition of MAVAR and related estimator. Let τ0 > 0 be the “sampling period”
and define the sequence of times {tk}k≥1 taking t1 ∈ R and setting ti − ti−1 = τ0, i.e.
ti = t1 + τ0(i − 1). For any integer p ≥ 1, we set τ = τ0p and define the modified Allan
variance (MAVAR) as

σ2
p,τ0 :=

1

2τ 2
E



(
1

p

p∑

i=1

(Xti+2τ − 2Xti+τ +Xti)

)2

 (4)

where E[ · ] is the mean value operator over the signal process X [5]. For p = 1 we
recover the well-known Allan variance.

Let us assume that a finite sample X1, . . . , Xn of the process X is given, and that the
observations are taken at times t1, . . . , tn, with constant sampling period τ0. In other
words we set Xi = Xti for i = 1, . . . , n. For k ∈ Z, let us define

dp,τ0,k :=
1√
2 τp

p∑

i=1

(Xk+i+2p − 2Xk+i+p +Xk+i) , (5)

and notice that, from the hypotheses on X of Sec. 2, {dp,τ0,k}k is weakly stationary.

Moreover, by definitions (4) and (5), σ2
p,τ0

= E
[
d2p,τ0,k

]
.

A standard estimator for the modified Allan variance (MAVAR estimator) is given by

σ̂2
p,τ0(n) :=

1

np

np−1∑

k=0

d2p,τ0,k , (6)

for p ∈ {1, . . . , ⌊n/3⌋} and np := n− 3p + 1, where the space-average E[·] is replaced by
the empirical average over the observations sample.
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3.2. MAVAR and wavelet estimators. Consider the generalized process Y = {Y (t), t ∈
R} defined through the set of identities

∫ t2

t1

Y (t)dt = Xt2 −Xt1 , ∀t1, t2 ∈ R . (7)

In short, we write Y = Ẋ. With this definition we can rewrite the MAVAR and its related
estimator as functions of the process Y . In particular we can write

dp,τ0,k =
1√
2p2τ0

p∑

i=1

(∫ ti+k+2p

ti+k+p

Y (t)dt−
∫ ti+k+p

ti+k

Y (t)dt

)
. (8)

Now we claim that, for p fixed, this function can be put in correspondence with a family
of discrete wavelet transforms of the process Y , indexed by τ0 and k. To see that, let us
fix j ∈ N and set τ0 = 2j and t1 = 2j , so that ti = 2ji, for all i ∈ N. With this choice on
the sequence of times, it is not difficult to construct a mother wavelet ψ(s) such that

dk,j := d(2j, p, k) = 〈Y ;ψk,j〉
with ψk,j(s) := 2−jψ(2−js− k) .

(9)

An easy check shows that the function ψ(s) :=
∑p

i=1 ψ
i(s), where

ψi(s) :=
1√
2p2

(
I[i+p,i+2p](s)− I[i,i+p](s)

)
, (10)

is a proper mother wavelet satisfying Eq. (9). Notice also that the components ψi,
i = 1, . . . p, of ψ are suitably translated and re-normalized Haar functions. In the case
p = 1, corresponding to the classical Allan variance, the mother wavelet is exactly given
by the Haar function, as was already pointed out in [11].

Although the MAVAR can be related to the above Haar-type wavelets family, we will
show that the MAVAR and wavelets log-regression estimators do not match as the re-
gression runs on different parameters. For the wavelet-based estimators p is fixed and
the regression parameter is j (related to τ0), while for the MAVAR estimator (see Eq.
(14)) the regression is on p with τ0 fixed. Because of this difference, it not possible to
apply the results available in the wavelets framework [12, 13, 14]. Hence we developed
new arguments, which in turns allow us to avoid some technical troubles due to the poor
regularity of the Haar-type functions.

3.3. The MAVAR log-regression estimator. As proven in [10], applying the covariance
formula (2) we get, for H ∈ (1/2, 1),

∣∣σ2
p,τ0

− σ2
Hτ

2H−2K(H)
∣∣ ≤ σ2

Hτ
2H−2OH(p

−1) , (11)

where

K(H) :=
22H+4 + 22H+3 − 32H+2 − 15

2(2H + 1)(2H + 2)
. (12)

This asymptotic relation suggests the following estimation method for the parameter H.
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Let n be the sample size, i.e. the number of the observations, choose p̄, ℓ̄ ∈ N and an
increasing sequence {aℓ}ℓ∈N such that 1 ≤ p̄aℓ̄ ≤ pmax(n) = ⌊n/3⌋. Let w = (w0, . . . , wℓ̄)
be a vector of weights satisfying the conditions

ℓ̄∑

ℓ=0

wℓ = 0 and

ℓ̄∑

ℓ=0

wℓ log(aℓ) = 1 . (13)

The MAVAR log-regression estimator associated to the weights w is defined as

µ̂n(τ0, p̄, w) :=

ℓ̄∑

ℓ=0

wℓ log
(
σ̂2
aℓp̄,τ0

(n)
)
. (14)

Roughly speaking, the idea behind this definition is to use the approximation σ̂2
aℓp̄,τ0

(n)
∼
=

σ2
aℓp̄,τ0

(n) in order to get, by (11) and (13),

µ̂n(τ0, p̄, w)
∼
=

ℓ̄∑

ℓ=0

wℓ log(σ
2
aℓp̄

)

∼
=

ℓ̄∑

ℓ=0

wℓ log
(
σ2
H

(
τ0aℓp̄

)µ
K(H)

)
= µ,

where µ := 2H − 2. Thus, given the data X1, . . . , Xn the following procedure is used to
estimate H:

• compute the modified Allan variance by (6) for integer values aℓp̄, with 1 ≤ aℓp̄ ≤
pmax(n) = ⌊n/3⌋;

• compute the weighted MAVAR log-regression estimator by (14) in order to get
an estimate µ̂ of µ;

• estimate H by Ĥ = (µ̂+ 2)/2.

4. THE ASYMPTOTIC NORMALITY OF THE ESTIMATOR

In [10], under the assumption that X is a fractional Brownian motion with Hurst index
H ∈ (1/2, 1), two convergence results are proven in order to justify the above approxi-
mations and to get the rate of convergence of µ̂n(τ0, p̄, w) toward µ = 2H − 2.

In particular, it is shown that if p̄ = p̄(n) is a sequence of integers such that p̄(n) → +∞,
np̄(n)−1 → +∞ and np̄(n)−3 → 0 as n→ +∞, then (for a fixed ℓ̄)

ρn(w,H)−1 (µ̂n(p̄, w)− µ)
d−→

n→+∞
N (0, 1) (15)

with

ρn(w,H) ∼ c(w,H)

√
p̄

n
−→

n→+∞
0 ,

where c(w,H) is a suitable constant depending on w and H. Two important conse-
quences of (15) are the following:

1) The MAVAR log-regression estimator is consistent, i.e. the bias (µ̂n−µ) converges
in probability to zero.
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2) Given an estimate of H, say Ĥ, and the corresponding estimate of the normal-

izing coefficients ρn(w, Ĥ), we get the asymptotic confidence interval for the pa-
rameter H:

Ĥ − q1−β/2
ρn(w, Ĥ)

2
≤ H ≤ Ĥ + q1−β/2

ρn(w, Ĥ)

2
(16)

where q1−β/2 is the (1 − β/2)-quantile of the standard normal distribution. The

length of the confidence interval is q1−β/2ρn(w, Ĥ).

The coefficient ρ2n(w,H) can be approximated by the following quantity (see [10])

1
K(H)2

ℓ̄∑

ℓ=0

ℓ̄∑

ℓ′=0

(
aℓ∨ℓ′

aℓ∧ℓ′

)2H+2
wℓwℓ′

nℓnℓ′

nℓ∨ℓ′−1∑

k=0

nℓ∧ℓ′−1∑

k′=0

ΦH

(
k−k′

p̄ aℓ∨ℓ′
,
|aℓ−aℓ′ |

aℓ∨ℓ′

)
, (17)

with K(H) given in (12), ℓ ∨ ℓ′ = max{ℓ, ℓ′}, ℓ ∧ ℓ′ = min{ℓ, ℓ′}, nℓ := n− 3aℓp̄+ 1 and

ΦH(x, y) :=

∫

R

[
γH(x, 0, r)γH(0, y, r)

∫ r

−∞

γH(x, 0, v)γH(0, y, v)dv

]
dr.

with

γH(x, y, v) := [(H + 1/2)Γ(H + 1/2)σH]
−1
{[

(x+ 3(1− y)− v)+
]H+1/2

+

−3
[
(x+ 2(1− y)− v)+

]H+1/2
+3
[
(x+ (1− y)− v)+

]H+1/2 −
[
(x− v)+

]H+1/2
}

5. WEIGHTS

The explicit expression of the weights clearly depends on the sequence {aℓ}. In our
investigation we considered the linear progression, aℓ = 1 + ℓ, and the geometrical pro-
gression, aℓ = rℓ with r > 1 . The latter has provided the better numerical results which
are then presented in the next section. Here we focus on the geometrical progression
sequence and we give explicit formulas for three particular weights proposed in the lit-
erature for the log-regression procedure.

• The simple linear regression weights are defined as

wSLR
ℓ :=

(
ℓ−m(ℓ̄)

)

log(r)
∑ℓ̄

ℓ=0

(
ℓ−m(ℓ̄)

)2

with

m(ℓ̄) := (ℓ̄+ 1)−1
ℓ̄∑

ℓ=0

ℓ =
ℓ̄

2

• Following Abry and Veitch [11], we can take

wAV
ℓ :=

(
ℓ−m(ℓ̄)

)
r−ℓ

log(r)
∑ℓ̄

ℓ=0

(
ℓ−m(ℓ̄)

)2
r−ℓ
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where

m(ℓ̄) :=

∑ℓ̄
ℓ=0 ℓ r

−ℓ

∑ℓ̄
ℓ=0 r

−ℓ
.

• Following Fay, Moulines, Roueff and Taqqu [17], we can compute a preliminary

estimate, say Ĥ(1), of H (for instance, applying the first or the second method)
and then use it in order to compute the weights

wFMRT = wFMRT (n, Ĥ(1)) := 1
log(r)

D−1B(BTD−1B)−1b

where

b :=

(
0
1

)
B :=

(
1 1 . . . 1
0 1 . . . ℓ̄

)T

,

and D = D(n, Ĥ(1)) is the symmetric matrix with entries (for a generic H)

[D(n,H)]ℓ′,ℓ :=
r(ℓ∨ℓ′)4H

r(ℓ∧ℓ′)4
1

nℓnℓ′

nℓ∨ℓ′−1∑

k=0

nℓ∧ℓ′−1∑

k′=0

ΦH

(
k−k′

rℓ∨ℓ′ p̄
, |r

ℓ−rℓ
′

|

rℓ∨ℓ′

)
.

6. NUMERICAL RESULTS

In this section we present some numerical results that provide the approximated vari-
ance of the MAVAR estimator, ρ2n(w,H), and the relative confidence intervals for the
three different weights listed above. The numerical evaluations have been realized for
different choices on the parameters, and the most interesting results are presented, with
comments, in the next figures and tables.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.005

0.01

0.015

0.02

0.025

0.03

H

ρ2 n(w
,H

)

SLR

AV

FMRT

FIGURE 1. Trend of ρ2n(w,H) as a function of teh Hurst parameter H, with
SLR-, AV- and FMRT-weights and geometrical progression p = p̄rℓ, p̄ = ⌊nδ⌋
with δ = 0.35, r = 2 and n = 4096.
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The variance of the MAVAR estimator is almost unchanged with H as shown in Fig.
1, thus for our analysis we used a fixed H = 0.7 to reduce the parameters space. We
have first investigated the behavior of ρ2n(w,H) as a function of n with p following a
geometrical growth p̄rℓ, for 0 ≤ ℓ ≤ ℓ̄. In order to satisfy the hypotheses which are
behind convergence (15), the value of p̄ has been chosen as p̄ = p̄(n) = ⌊nδ⌋ with
δ = 0.35. (Formally, any value of δ ∈ (1/3, 1) is admissible, but the best results are
obtained for δ close to 1/3). We used two distinct values for the parameter r of the
geometrical progression, r = 1.1 and r = 2, and for each of them we fixed a value ℓ̄ with

the only restriction that p̄rℓ̄ ≤ ⌊n/3⌋.

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

n

ρ2 n(w
,H

)

SLR

AV

FMRT

FIGURE 2. Trend of ρ2n(w,H) as a function of n, with SLR-, AV- and FMRT-
weights and geometrical progression p = p̄rℓ, p̄ = ⌊nδ⌋ with δ = 0.35,
r = 1.1, ℓ̄ = 30 and H = 0.7.

In Fig. 2 we plot the results for r = 1.1 and ℓ̄ = 30: Each color and marker is
associated to one of the three weights (in short, SLR-, AV- and FMRT-weights) of the
previous section as listed in the legend; the lines with markers show the results obtained
by numerical evaluation of (17), while the dashed lines represent the corresponding
theoretical asymptotes nδ−1 = n−0.65 (see Eq. (15)).
Using the same notation, in Fig. 3 we plot the results for r = 2 and taking ℓ̄ = 4.
The two figures show that the approximation formula (17) for the variance ρ2n(w,H),
that we have used for the numerical evaluation, provides results which are in quite good
agreement with the theoretical behavior (dashed line), independently on the choice on
the weights and on the other parameters. In particular, for n sufficiently large, we get
very small values of ρ2n(w,H) and thus small confidence intervals.

In tables 1 and 2, we list the value of the confidence intervals related to Fig. 2, namely
for r = 1.1 and, respectively, ℓ̄ = 30 and ℓ̄ = 45. In Table 3 we list the value of the
confidence intervals related to Fig. 3, namely for r = 2 and ℓ̄ = 4.
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FIGURE 3. Trend of ρ2n(w,H) as a function of n, with SLR-, AV- and FMRT-
weights and geometrical progression p = p̄rℓ, p̄ = ⌊nδ⌋ with δ = 0.35,
r = 2, ℓ̄ = 4 and H = 0.7.

n 3200 4096 6400 12800 25600

p̄ 16 18 21 27 34
1.96ρn(wSLR, H) 0.3442 0.3197 0.2716 0.2141 0.1680

1.96ρn(wAV , H) 0.2796 0.2605 0.2227 0.1765 0.1391
1.96ρn(wFMRT , H) 0.2253 0.2101 0.1798 0.1427 0.1124

TABLE 1. Length of the confidence interval as a function of n, with SLR-,
AV- and FMRT-weights and geometrical progression p = p̄rℓ, p̄ = ⌊nδ⌋ with
δ = 0.35, r = 1.1, H = 0.7 and ℓ̄ = 30.

n 4096 8192 16384
p̄ 18 23 29

1.96ρn(wSLR, H) 0.4601 0.3263 0.2425
1.96ρn(wAV , H) 0.2562 0.1955 0.1509

1.96ρn(wFMRT , H) 0.2005 0.1564 0.1220

TABLE 2. Length of the confidence interval as a function of n, with SLR-,
AV- and FMRT-weights and geometrical progression p = p̄rℓ, p̄ = ⌊nδ⌋ with
δ = 0.35, r = 1.1, H = 0.7 and ℓ̄ = 45.

Comparing the results displayed in tables 1-3, as r and ℓ̄ vary, we can deduce that
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n 4096 8192 16384

p̄ 18 23 29
1.96ρn(wSLR, H) 0.2978 0.2315 0.1807

1.96ρn(wAV , H) 0.2312 0.1818 0.1429
1.96ρn(wFMRT , H) 0.2180 0.1718 0.1352

TABLE 3. Length of the confidence interval as a function of n, with SLR-,
AV- and FMRT-weights and geometrical progression p = p̄rℓ, p̄ = ⌊nδ⌋ with
δ = 0.35, r = 2, ℓ̄ = 4 and H = 0.7.

• the best (smaller) value of ρ2n(w,H) is obtained at r = 2 for the SLR- and AV-
weights, and at r = 1.1 for the FMRT-weight;

• the value of ρ2n(w,H) is also sensitive of ℓ̄ and in particular, for r = 1.1, the
value ℓ̄ = 45 provides better results for the AV- and FMRT-weights, while ℓ̄ = 30
provides better results for the SLR-weight.

This last point suggests us to investigate the effect of an increase of ℓ̄ over ρ2n(w,H). We
thus evaluate the variance as a function of ℓ̄, taking fixed n = 4096, H = 0.7, and r = 1.1.
The trend is shown in Fig. 4 and Table 4 lists the related confidence intervals. As one
can see, whereas with SLR-weight there exists an optimal choice of ℓ̄ (approximately 20
in this setting), with the AV- and FMRT-weights the total variance keeps decreasing with
increasing ℓ̄.

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

ρ2 n(w
,H

)

SLR

AV

FMRT

ℓ̄

FIGURE 4. Trend of ρ2n(w,H) as a function of ℓ̄, with SLR-, AV- and FMRT-
weights and geometrical progression p = p̄rℓ. Here n = 4096, p̄ = 18,
r = 1.1 and H = 0.7.
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ℓ 10 20 30 40 45
1.96ρn(wSLR, H) 0.3197 0.3068 0.3191 0.3826 0.4605

1.96ρn(wAV , H) 0.3136 0.2820 0.2600 0.2533 0.2568
1.96ρn(wFMRT , H) 0.2799 0.2302 0.2093 0.2018 0.2011

TABLE 4. Length of the confidence interval as a function of ℓ̄, with SLR- AV-
and FMRT-weights and geometrical progression p = p̄rℓ, p̄ = 18, n = 4096,
r = 1.1, and H = 0.7.
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