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Abstract. Collateralized Funds of Hedge Fund Obligations (CFOs) are rel-
atively recent structured finance products linked to the performance of un-

derlying funds of hedge funds. The capital structure of a CFO is similar to

traditional Collateralized Debt Obligations (CDOs), meaning that investors
are offered different rated notes and equity interest. CFOs are structured as

arbitrage market value CDOs. The fund of funds manager actively manages

the fund to maximize total return while limiting price volatility within the
guidelines of the structure.

The aim of this paper is to provide a useful framework to evaluate Collateral-

ized Funds of Hedge Fund Obligations, that is pricing the equity and the debt
tranches of a CFO.

The basic idea is to evaluate each CFO liability as an option written on the

underlying pool of hedge funds. The value of every tranche depends on the
evolution of the collateral portfolio during the life of the contract. Care is

taken to distinguish between the fund of hedge funds and its underlying hedge

funds, each of which is itself a portfolio of various securities, debt instruments
and financial contracts.

The proposed model incorporates skewness, excess-kurtosis and is able to cap-
ture more complex dependence structures among hedge fund log-returns than

the mere correlation matrix. With this model it is possible to describe the

impact of an equivalent change of probability measure not only on the mar-
ginal processes but also on the underlying dependence structure among hedge

funds.

1. Introduction

The problem
Consider a portfolio of financial products (in our case hedge funds) whose log-
returns have distributions very far from the Normal. Assume that the value of this
portfolio is regularly checked during the time with a fixed frequency, for example at
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the end of every month. Assume also that only historical data are available. Our
task is to compute the fair price of an asset whose payoff is linked to the value
of this portfolio at each date. To reach this purpose we can apply the martingale
method: we have to compute the expected discounted payoff of the asset under a
risk neutral probability measure.
The general problem is to define the joint distribution of the value of all the assets
in the portfolio at each date of control under a suitable risk neutral probability
measure.
To face this problem we consider separately two issues:

• the definition of the dependence structure under the physical probability
measure;
• the choice of an appropriate equivalent martingale measure allowing to

study the impact of the change of measure on the dependence structure.

Finally, since no traded options are available for calibration purpose, we use an
approach to change measure that allows to capture the impact of the change of
measure on the marginal and joint parameters.

Methodological contribution
The physical dependence among hedge fund log-returns is introduced through a
Gamma stochastic time change of a Multivariate Brownian motion with drift, with
independent components. The idea is that the economy is driven by only one com-
mon factor, whose dynamics is given by a Gamma subordinator [14]. A jump in
the time-change leads to a jump in the price processes and so all jumps occur si-
multaneously. However the size of individual jumps is caused by the independent
Brownian Motions.
In the current setting, the market is incomplete. The risk due to jumps cannot
be hedged and there is no more a unique risk neutral measure. Among the mea-
sures equivalent to the historical one, we choose the Esscher measure for which the
discounted Net Asset Value process of each hedge fund is a martingale. In partic-
ular, we change the probability measure using the Multivariate Esscher Transform
and we show that under this new measure the log-return evolution of hedge funds
can be expressed again as Multivariate Brownian motion with drift, time changed
with a Gamma stochastic clock identical to the physical one and with independent
Brownian motions. We find also functional relations between real world and risk
neutral parameters. The use of the Multivariate Esscher Transform in our model
represents a powerful tool to study the impact of the change of measure not only
on the marginal price processes but also on the underlying dependence structure.

The Application
The model is applied to evaluate the equity and the debt tranches of a CFO. The
analysis is done starting from a simple CFO structure, which is then progressively
complicated with the introduction of the structural features we encounter in typ-
ical CFOs. In this way, at each step of the evolution of the structure, the reader
can understand the impact on the value, measured with respect to the first four
moments of the distribution, and how this value is divided among the different
tranches. The result is a useful schema that can provide some help in designing a
CFO transaction. The analysis is also helpful for the CFO manager who usually
invests in the equity tranche.
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The work is organized as follows. In section 2 an introduction to Collateralized
Funds of Hedge Funds Obligations is provided. In section 3 statistical properties
of Hedge Fund monthly log-returns are analysed. In particular, it is shown that
the evolution of hedge funds Net Asset Value cannot be described by a Geometric
Brownian motion. Hedge funds monthly log-returns exhibit leptokurtic and usu-
ally negatively skewed distributions. In section 4 we present the model applied
to describe the physical evolution of hedge fund log-returns. Then we discuss the
change of measure and its impact on marginal and joint processes. In section 5 the
estimation methodology and the simulation procedure are illustrated. In section 6
we discuss the pricing applications and the results. Finally, in section 7 we report
our conclusions and indicate a future line of research.

2. Collateralized Funds of Hedge Fund Obligations

Collateralized Debt Obligations are structured finance products that redistribute
credit risk to investors providing them a wide range of rated securities with sched-
uled interest and principal payments and different risk levels. CDOs are securitized
by diversified pools of debt instruments. Collateralized Funds of Hedge Fund Obli-
gations (CFOs) are structured finance products similar to CDOs. A CFO is created
by using a standard securitization approach. Often a special purpose vehicle (SPV)
issues multiple tranches of senior and subordinated notes that pay interest at fixed
or floating rates and an equity tranche, and invests the proceeds in a portfolio of
hedge funds. Picture 1 shows a schematic example of a possible CFO structure. The
SPV, a new structure with no operating history, is set up as a bankruptcy-remote
entity. This allows CFO investors to take only the risk of ownership of the assets
but not the bankruptcy risk of the CFO’s sponsor. The capital structure of a CFO
is similar to that of a CDO. It consists of the collateral pool held in the SPV on the
asset side and a group of notes having different priorities and payment obligations
on the liability side. The asset-backed notes are expected to be redeemed at the
scheduled maturity date with the liquidation proceeds of the collateral portfolio.
The priority of payments among the different classes is sequential such that the
Class A investors will be redeemed first. Following the full redemption of the Class
A notes, the Class B notes will be redeemed. The Class C notes will repaid after
the full redemption of the Class B notes. The Equity holders will receive all the
residuals after the full redemption of the Class C notes1. The most senior tranche
is usually rated AAA and is protected by the subordination of the lower tranches.
In case of loss the lowest tranche, that is the equity tranche, pays for economic
losses first. When the equity tranche is exhausted, the next lowest tranche begins
absorbing losses. A CFO may have a AAA rated tranche, an AA rated tranche,
a single A rated tranche and an unrated equity tranche. The assets of the special
purpose vehicle secure the notes issued under an indenture or deed of trust under
which a trustee is appointed. CFOs tend to be structured as arbitrage market-
value CDOs that invest in hedge funds. CFO assets are actively managed by an
investment adviser or manager with fund of funds expertise in order to maximize
total return while limitinng price volatility within the guidelines of the structure,

1In the picture I, P, D, G indicate respectively interests, principal, dividends and capital gains.
Notice that capital gains can be negative. In the worst case scenario G+P=0, i.e. equity holders

lose all their invested capital.
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in return for management fees and incentive compensation. The leverage (the ratio
of debt to equity issued) in a CFO typically ranges from two-to-one to five-to-one
while a CDO may have leverage as high as twenty-five-to-one for investment grade
assets. A CFO can also be seen as a financial firm with equity holders and lenders
in which all liabilities are invested in a diversified portfolio of hedge funds. The
bond holders should earn a spread over interest rates and the equity investors earn
the total return of the fund of hedge funds minus the financing fees.
CFOs typically have a stated term of three to seven years at the end of which all
of the securities must be redeemed. Investors have limited redemption rights prior
to maturity. Typically, redemptions before maturity are only possible if some pre-
determined events happen.
Detailed descriptions of real CFO structures can be found in [28] and in some
Moody’s pre-sale reports [21, 22, 23, 24] for example. The interested reader can
also see [31] which illustrates Moody’s approach to rating CFOs and CFOs struc-
tural features designed to address the risk due to illiquidity and lack of trasparency
typical of the hedge fund investment.2

3. Statistical Properties of Hedge Fund Returns

3.1. The Data. We got hedge fund index data from Credit Suisse/Tremont Hedge
Index.3 Credit Suisse/Tremont maintains monthly NAV and simple return data for
a Global hedge fund index and for the following 13 indices corresponding to different
styles: convertible arbitrage, dedicated short bias, emerging markets, equity market
neutral, event driven, ED distressed, ED multi-strategy, ED risk arbitrage, fixed
income arbitrage, global macro, long/short equity, managed futures and multi-
strategy. Contrary to other hedge fund indices, the Credit Suisse/Tremont indices
reflect the monthly net of fee NAV on an asset-weighted basket of funds. Large funds
therefore have a larger influence on the index than smaller funds. Most indices are
affected by some form of survivorship bias. In order to minimize this effect, Credit
Suisse/Tremont does not remove hedge funds in the process of liquidation from an
index, and therefore captures all of the potential negative performance before a
fund ceases to operate.
Our sample covers the period from January 1994 through May 2008, a total of 173
monthly log-return data for each hedge fund index.

3.2. Summary Statistics. Descriptive statistics are reported in Table 1. A brief
examination of the last two columns of this table indicates that hedge fund returns
are not Gaussian. Twelve hedge fund indices out of fourteen exhibit a negative
skewness. All index display excess kurtosis. However, the degree of asymmetry and
fat tails is quite different among hedge funds. These results are similar to those
reported in [1, 2, 13] obtained using different hedge fund indices and in [26] obtained
employing CS/T indices on a shorter time period. Negative skewness and excess
kurtosis are due to hedge funds’ use of derivatives, leverage and short selling.

3.3. Serial Correlation. The first three columns of Table 2 report hedge fund
autocorrelations up to order three. In particular, we note that all first order auto-
correlations are positive and nine of them are significantly different from zero. The

2Other useful references on CFOs are [3, 18, 20, 30].
3http://hedgeindex.com
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Figure 1. A CFO structure

last column reports P-values of Ljung-Box statistic test for the joint relevance of
autocorrelations up to order twelve. As already noted in [5, 13], also in our sam-
ple, Convertible Arbitrage and ED Distressed indices seem to be among the most
affected by first order and general serial correlation.

3.4. Unsmoothed Data. The positive first order autocorrelation is a typical char-
acteristic of empirical hedge fund returns and appears incoherent with the market
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efficiency hypothesis. According to [5, 13] an explanation consists in the difficulty
for hedge fund managers to get updated valuations of their positions in illiquid over-
the-counter securities. To face this problem, hedge fund managers usually employ
the last reported transaction value to estimate the current market price. However,
this estimation procedure may easily create lags in the evolution of the net asset
value. This would explain why the different convertible arbitrage and distressed
indices, employed in their work, show the most significant serial correlation.
According to [5, 13] a possible approach to mitigate the effect of this autocorrela-
tion can be taken from the real estate finance literature. The returns of property
investment indices are autocorrelated and this is caused by infrequent valuations
and smoothing in appraisal. The approach employed in the real estate literature by
Geltner et al. [7, 8, 9, 10] has been to unsmooth the observed returns to build a new
series of returns which are more volatile and whose characteristics are believed to
more accurately describe the evolution of the underlying property value. Following
this literature and [5, 13], the observed value of a hedge fund index each month can
be expressed as a weighted average of the underlying true value and the observed
value of the hedge fund in the previous month.
Given these assumptions, it is possible to get the unsmoothed series with approxi-
mately zero first order autocorrelation:

(3.1) yt =
y∗t − αy∗t−1

1− α
where yt and y∗t are the true unobservable underlying return and the observed
return at time t. The parameter α is set equal to the first order autocorrelation
coefficient of the time series.
We apply this procedure to get unsmoothed log-return series for each hedge fund
index and repeat the previous statistical analyses with these new data to evaluate
the impact of the unsmoothing procedure.

3.5. Summary Statistics. Descriptive statistics are reported in Table 3. The
most interesting result is shown in the fifth column. All the unsmoothed time
series exhibit a greater standard deviation, with a mean increment of 23%. The
biggest increment (70%) is reached by Convertible Arbitrage. As evidenced by [13],
the unsmoothing procedure has also a relatively small impact on the skewness and
kurtosis of each hedge fund, but the direction of these changes is not clear. The
last two columns of table 3 clearly evidence that the normality hypothesis for the
distribution of hedge fund log-returns is still unlikely.

3.6. Serial Correlation. Table 4 shows that these unsmoothed time series are not
affected by first order autocorrelation. Notice, however some problems of general
serial correlation for two indices. Ljung-Box Statistics LB-Q(12) for ED Risk Arbi-
trage and Global Macro do not allow to reject the hypothesis that autocorrelations
up to order 12 are different from zero at significance level of 5%.
To conclude this section we summarize the main results on statistical properties of
hedge funds’ log-returns:

• the distributions of monthly hedge funds’ log-returns are usually not sym-
metric and negatively skewed;
• these distributions have fatter tails than the Normal;
• often hedge fund log-returns exhibit first order serial correlation. However,

this is very likely a result of the appraisal procedure, and so observed data
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do not reflect exactly the true values that are unobserved. In other words,
the true generating hedge fund log-returns process can be considered as a
process with uncorrelated increments;4

• the evolution of hedge funds’ Net Asset Value in general cannot be described
by a Geometric Brownian motion.

To model the temporal behaviour of hedge funds’ log-returns more flexible stochas-
tic processes than Brownian motion are therefore necessary. More general Lévy
processes can yield possible solution.

Table 1.
Summary Statistics of Monthly Log-returns for CS/Tremont In-
dices
Period January 1994-May 2008 (Smoothed Data)

Index Mean Median Max Min Std.Dev. Skew. Kurt.
% % % % %

CS/T Global Index 0,78 0,76 7,94 -7,98 2,12 -0,04 5,73
Convertible Arbitrage 0,58 0,86 3,45 -5,80 1,38 -1,64 7,64
Dedicated Short Bias -0,21 -0,36 20,2 -9,36 4,75 0,56 4,11

Emerging Markets 0,70 1,38 15,3 -26,2 4,50 -1,18 10,4
Equity Market Neutral 0,71 0,67 3,19 -1,27 0,76 0,36 3,90

Event Driven 0,83 1,02 3,84 -12,6 1,61 -3,58 30,1
ED Distressed 0,93 1,11 4,08 -13,4 1,78 -3,15 26,1

ED Multi-Strategy 0,78 0,86 4,29 -12,3 1,74 -2,65 20,9
ED Risk Arbitrage 0,55 0,55 3,58 -6,48 1,16 -1,29 10,4

Fixed Income Arbitrage 0,40 0,59 2,18 -7,25 1,16 -3,19 19,2
Global Macro 1,02 1,04 10,5 -12,2 2,97 -0,14 6,69

Long/Short Equity 0,86 0,94 12,0 -12,2 2,79 -0,13 7,31
Managed Futures 0,47 0,32 9,30 -9,71 3,39 -0,12 3,15

Multi-Strategy 0,65 0,75 3,57 -4,93 1,22 -1,11 5,89

4. The Model

4.1. Building Multivariate Lévy Processes through Subordination of Mul-
tivariate Brownian motion with drift. One method to introduce jumps into
a multidimensional model is to take a Multivariate Brownian motion with drift
and time change it with an independent one-dimensional subordinator [6, 14].
This approach allows constructing multidimensional versions of many popular one-
dimensional Lévy processes, including Variance Gamma, Normal Inverse Gauss-
ian, Generalized Hyperbolic, Meixner and Carr-Geman-Madan-Yor process. The
principal advantage of this method is its simplicity and analytic tractability. In
particular:

• the computation of the Characteristic Function of the process is simple;
• the knowledge of the Characteristic Function allows to find expressions for

joint and marginal moments;
• conditional Normality of log-returns simplifies the simulation procedure;

4See the previous discussion about smoothed and unsmoothed data.
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Table 2.
Autocorrelations up to order 3
Ljung-Box Autocorrelation Tests with lags up to order 12
Period January 1994-May 2008 (Smoothed Data)

Index AC(1) AC(2) AC(3) Ljung-Box-Q(12)
P-Value

CS/T Global Index 0,099 0,014 -0.026 0,661
Convertible Arbitrage 0,484*** 0,284 0,113 0,000
Dedicated Short Bias 0,099 -0,037 -0,072 0,248

Emerging Markets 0,275*** 0,020 0,002 0,033
Equity Market Neutral 0,227** 0,095 0,031 0,081

Event Driven 0,282*** 0,135 -0,001 0,038
ED Distressed 0,282*** 0,137 0,019 0,025

ED Multi-Strategy 0,251** 0,142 0,009 0,098
ED Risk Arbitrage 0,220** -0,090 -0,158 0,002

Fixed Income Arbitrage 0,280*** 0,006 0,016 0,048
Global Macro 0,057 0,018 0,088 0,029

Long/Short Equity 0,145* 0,024 -0,083 0,036
Managed Futures 0,057 -0,154 -0,076 0,071

Multi-Strategy 0,041 0,050 0,077 0,958

Table 3.
Summary Statistics of Monthly Log-returns for CS/Tremont In-
dices
Period January 1994-May 2008 (Unsmoothed Data)

Index Mean Median Max Min Std.Dev. Skew. Kurt.
% % % % %

CS/T Global Index 0,78 0,72 8,28 -8,94 2,35 -0,08 5,52
Convertible Arbitrage 0,58 0,80 8,39 -10,1 2,34 -1,13 8,38
Dedicated Short Bias -0,20 -0,44 22,2 -10,8 5,25 0,55 4,05

Emerging Markets 0,63 1,59 18,9 -36,2 5,89 -1,47 11,5
Equity Market Neutral 0,72 0,64 3,83 -2,29 0,96 0,27 4,34

Event Driven 0,81 1,05 4,29 -17,6 2,14 -3,86 33,5
ED Distressed 0,91 1,04 5,69 -18,7 2,37 -3,40 29,7

ED Multi-Strategy 0,77 0,99 5,32 -16,38 2,24 -2,68 21,7
ED Risk Arbitrage 0,55 0,66 4,79 -8,17 1,45 -1,17 10,4

Fixed Income Arbitrage 0,40 0,63 5,49 -8,61 1,55 -2,30 15,7
Global Macro 1,03 1,02 11,0 -12,7 3,15 -0,14 6,50

Long/Short Equity 0,86 0,82 12,6 -14,4 3,23 -0,18 6,89
Managed Futures 0,47 0,37 9,94 -10,3 3,59 -0,17 3,18

Multi-Strategy 0,65 0,81 3,87 -5,17 1,28 -1,12 5,98

• the GMM estimator based on the Moment Generating Function or other ad
hoc technique based on Method of Moments can be used to estimate model
parameters;
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Table 4.
Autocorrelations up to order 3
Ljung-Box Autocorrelation Tests with lags up to order 12
Period January 1994-May 2008 (Unsmoothed Data)

Index AC(1) AC(2) AC(3) Ljung-Box
Q(12)/P-Value

CS/T Global Index 0,003 0,010 -0,017 0.725
Convertible Arbitrage -0,032 0,085 -0,085 0,810
Dedicated Short Bias 0,005 -0,038 -0,057 0,575

Emerging Markets 0,025 -0,045 0,035 0,634
Equity Market Neutral -0,012 0,036 0,018 0,718

Event Driven -0,008 0,085 -0,036 0,978
ED Distressed -0,008 0,083 -0,023 0,910

ED Multi-Strategy -0,017 0,100 -0,019 0,880
ED Risk Arbitrage 0,033 -0,116 -0,128 0,023

Fixed Income Arbitrage 0,034 -0,077 -0,007 0,889
Global Macro -0,003 0,008 0,090 0,013

Long/Short Equity 0,000 0,018 -0,072 0,192
Managed Futures 0,009 -0,154 -0,068 0,115

Multi-Strategy -0,004 0,044 0,083 0,966

• a parsimonious description of dependence is very important because one
typically does not have enough information about the dependence structure
to estimate many parameters;
• since no traded option on hedge funds are available we cannot calibrate the

model parameters directly in the risk neutral measure chosen by the market.
The method we use to find an equivalent martingale measure requires the
knowledge of the Characteristic Function of the multivariate process.

This method presents also some drawbacks. The range of dependence patterns
that one can obtain using this approach is limited (for example, independence is
not included), and all components must follow the same parametric model. Finally,
building a Multivariate Lévy process time changing a Multivariate Brownian Motion
with a one-dimensional subordinator imposes some constraints in the parameters of
the marginal processes. Therefore, the greater the number of parameters describing
the distribution of the subordinator is, the more similar the moments of the margins
are. In the Multivariate Variance Gamma process with linear drift we have only
one constrained parameter for every margin.5

4.2. Multivariate Variance Gamma Process. The evolution of hedge funds’
log-returns is described through a Multivariate Variance Gamma process with lin-
ear drift. The Multivariate Variance Gamma process is obtained time changing
a Multivariate Brownian motion with drift, with independent components, with
an independent one-dimensional Gamma process. As mentioned in [14] modelling
dependence in this way is like starting from an independent Gaussian World in
which all assets are driven by independent Geometric Brownian motions. Then,
dependence is introduced time-changing all the asset price processes by a common

5For details on the Univariate Variance Gamma process see [15, 16, 17].
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Gamma subordinator. A jump in the time-change produces a jump in the price
processes and all jumps happen simultaneously. However, the jump sizes are caused
by the individual Brownian motions. In this way a new business time in which the
general market operates is introduced [11, 14].
The NAV at time t of each hedge fund is given by the product of the initial NAV
times the exponential of a Variance Gamma process with linear drift:

(4.1) F jt = F j0 exp(Y jt )

where F jt and F j0 is the NAV of the hedge fund j at times t and 0, while Y jt is the
log-return of the j-th hedge fund over the period [0; t] for every j = 1, . . . , n. The
log-return of the j-th hedge fund is

(4.2) Y jt = µjt+Xj
t = µjt+ θjGt + σjW

j
Gt

where G = {Gt, t ≥ 0} is the common Gamma stochastic time change process such

that Gt ∼ Gamma(t/ν, 1/ν) and ν > 0, W j = {W j
t , t ≥ 0} and W k = {W k

t , t ≥ 0}
are independent Wiener processes for all j 6= k, W j

t and W k
t are Gaussian(0, t),

W j
G = {W j

Gt
, t ≥ 0} are n independent Wiener processes subordinated by the

common Gamma process G = {Gt, t ≥ 0}, θj , µj and σj > 0 are constants.
If we set t = 1, we get the yearly log-return for asset j, that is

(4.3) Y j1 = µj +Xj
1 = µj + θjG1 + σjW

j
G1

The above assumptions lead to the following simple expression for hedge funds’ j
and k yearly log-returns covariance:

(4.4) σ
(
Y j1 ;Y k1

)
= θjθkν

and for correlation:

(4.5) ρ
(
Y j1 ;Y k1

)
=

θjθkν√
σ2
j + νθ2j

√
σ2
k + νθ2k

Since ν is strictly positive, the j-th and k-th hedge funds are positively correlated
if and only if θj and θk have the same sign. In other words, this model implies a
positive correlation for all the assets having the same sign of skewness. Pairs of
negatively skewed or pairs of positively skewed hedge funds have a positive cor-
relation coefficient. If a hedge fund has a symmetric VG distribution then it will
be uncorrelated with all other hedge funds. However, by construction, it is clear
that this hedge fund cannot be independent of the others. Negative correlation
between pairs of hedge funds is only possible if their distributions exhibit skewness
of opposite sign.
The Characteristic Function of Y j1 for j = 1, . . . , n is

(4.6) ΨY j
1

(u) = exp (iuµj)

(
1− iuθjν +

1

2
u2σ2

j ν

)−1/ν
Conditional normality allows to compute the joint Characteristic Function of the
Multivariate Variance Gamma distribution (with t = 1). The computations re-
quired are easy but tedious. Yet, we can compute this function in a more efficient
way by using Theorem 4.2 [6]. In order to apply this theorem we need to know:

• the Laplace Exponent l(u) of the Gamma subordinator;
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• the Charactheristic Exponent c(u) of a Multivariate Brownian motion, with
independent components.

The Laplace Exponent of a generic subordinator is defined in the following way:

(4.7) E [exp (uGt)] = exp [tl (u)] ∀u ≤ 0

(4.8) l (u) = ln
E [exp (uGt)]

t

The Moment Generating Function of Gt ∼ Gamma(t/ν, 1/ν) is

(4.9) E [exp (uGt)] = (1− uν)
−t/ν

u <
1

ν

and consequently its Laplace Exponent is simply

(4.10) l (u) = − ln (1− uν)

ν

The joint Characteristic Function of the Multivariate Brownian motion with inde-
pendent components with t = 1 is

Ψ(W)1(u) = E

exp

i n∑
j=1

(ujθj + ujσjW
j
1 )


= exp

 n∑
j=1

(
iujθj −

1

2
u2jσ

2
j

)(4.11)

and therefore its Characteristic Exponent is

(4.12) c (u) =

n∑
j=1

(
iujθj −

1

2
u2jσ

2
j

)
for every u ∈ Rn.
Now we have all the elements necessary to compute the Characteristic Function of
the Multivariate Variance Gamma distribution. Using Theorem 4.2 [6] we get

Ψ(Y)1 (u) = exp

i n∑
j=1

ujµj

×
 1− ν

n∑
j=1

(iujθj −
1

2
u2jσ

2
j )

(−1/ν)(4.13)

From this function it is immediate to derive the joint Moment Generating Function6

of Y1, whose existence requires that the argument between the square brackets is

6Contrary to the Characteristic Function, which is always well-defined (as the Fourier transform
of a probability measure), the Moment Generating Function is not always defined: the integral
(4.14) may not converge for some values of u. When it is well-defined, it can be formally related

to the Characteristic Function (4.13) by: M(Y)1 (u) = Ψ(Y)1 (−iu) . However, we can use this
relation to find the formal expression for the Moment Generating Function for the set of values of
u such that the expectation (4.14) is finite. See [6] Paragraph 2.2.4.
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positive:

M(Y)1 (u) = exp

 n∑
j=1

ujµj

×
 1− ν

n∑
j=1

(ujθj +
1

2
u2jσ

2
j )

(−1/ν)(4.14)

This function will play a crucial role in the section devoted to the change of measure.

4.3. The Change of Measure. The evolution of the Net Asset Value of each
hedge fund is described as an Exponential Variance Gamma process under the real
world probability measure. This model is arbitrage free since the price process of
every asset has both positive and negative jumps [6]. Consequently, there exists an
equivalent martingale measure. However, the model belongs to the class of incom-
plete market models: the equivalent martingale measure is not unique. Among the
possible candidates we select the Esscher Equivalent Martingale Measure [6, 12, 27].

4.4. Multivariate Esscher Transform. In this section we explain how to use the
Esscher Transform in a multivariate context in order to find the Esscher Equivalent
Martingale Measure.
Consider a market with n risky assets and a bank account which provides a risk free
interest rate r constant over the time period [0, T ]. The value of the bank account
at time t is At = A0 exp (rt). Suppose that the price of every risky asset at time

t ∈ [0, T ] can be described by a Geometric Lévy model, say F jt = F j0 exp(Y jt ) for
j = 1, . . . , n.
Let Y = {Yt, t ≥ 0} be the n-dimensional Lévy process describing the multivariate
log-returns process, then the Qh Esscher measure associated with the risk process
Y is defined by the following Radon-Nikodym derivative

(4.15)
dQh

dP
|=t =

exp(
∑n
j=1 hjY

j
t )

E
[
exp(

∑n
j=1 hjY

j
t )
]

In order to find the Esscher risk neutral dynamic of Y = {Yt, t ≥ 0} two steps are
necessary:

• find a vector ĥ such that the discounted price process of every asset is a
martingale under the new probability measure Qh;
• find the joint Characteristic Function of the multivariate process Y =
{Yt, t ≥ 0} under Qh.

Any transformation of the Lévy measure satisfying some integrability constraints
(see [6] Section 4.2.3) leads to a new Lévy process. In particular, the Esscher
Transform corresponds to an exponential tilting of the P Lévy measure. If there

exists a vector ĥ such that

(4.16)

∫
|y|≥1

υQh(dy) =

∫
|y|≥1

exp(hTy)υ(dy) <∞

then the process is a Lévy process under this new probability measure. However, if

it is possible to find a vector ĥ such that the discounted price process of each asset
is a martingale under the measure Qh, then the existence of the Esscher Martingale
Measure is ensured.
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In the following sections we apply these steps to our multivariate model. Actually,
we cannot be sure that such an equivalent martingale measure exists.
Notice that in our case the choice of this risk neutral measure (if it exists) seems
to be the best for at least two reasons:

• Each step requires the knowledge of the joint P Characteristic Function.
Usually, it is not easy to find this function explicitly. However, building
a multidimensional Lévy process by a stochastic time change of a multi-
variate Brownian motion makes easy the computation of the Characteristic
Function of the process.
• If this equivalent martingale measure exists usually it is possible to find

the link between the physical and the risk neutral parameters. This is very
useful when no option prices are available to calibrate the model. Since no
traded options on hedge funds are available we cannot apply the improperly
called Mean Correcting Martingale method, a change of measure which is
the easiest and most frequently encountered in financial applications.

Finally, it should be emphasized that even if the ESMM exists, we cannot be sure
that marginal and joint processes remain of the same type.

4.5. MVG and ESMM. The first step of the procedure described in the previous
section requires the solution of the following system of n equations

(4.17)


E
[
exp(

∑n
j=1 hjY

j
t + Y 1

t )
]
/E
[
exp(

∑n
j=1 hjY

j
t )
]

= exp(rt)

...

E
[
exp(

∑n
j=1 hjY

j
t + Y nt )

]
/E
[
exp(

∑n
j=1 hjY

j
t )
]

= exp(rt)

To solve this system we need the P Moment Generating function of the model
introduced in section 4.2:

M(Y)t (u) = exp

 n∑
j=1

ujµjt

 1− ν
n∑
j=1

(ujθj +
1

2
u2jσ

2
j )

(−t/ν)

Thanks to the infinitely divisibility property of hedge funds’ log-returns distribu-
tions, the solution of the Esscher system does not depend on t. The previous system
after some computation leads to the next one:
(4.18)

ln
[
1− (ν(θ1 + h1σ

2
1 + 0.5σ2

1))/(1− ν
∑n
j (hjθj + 0.5h2jσ

2
j ))
]

= (µ1 − r)ν
...

ln
[
1− (ν(θn + hnσ

2
n + 0.5σ2

n))/(1− ν
∑n
j (hjθj + 0.5h2jσ

2
j ))
]

= (µn − r)ν

with the following constraints

(4.19) [1− ν
n∑
j

(hjθj + 0.5h2jσ
2
j )] > 0

and

(4.20) [1−ν(

n∑
j 6=k

(hjθj+0.5h2jσ
2
j )+((hk+1)θk+0.5(hk+1)2σ2

k))] > 0, k = 1, . . . , n.
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From (4.18) we readily obtain:

(4.21)


(a1 + b1h1)/A1 = 1−

∑n
j (cjhj + djh

2
j )

...

(an + bnhn)/An = 1−
∑n
j (cjhj + djh

2
j )

where
aj = ν(θj + 0.5σ2

j ), bj = νσ2
j , cj = νθj , dj = 0.5νσ2

j , Aj = 1 − exp [ν(µj − r)],
j = 1, ...., n.
The term on the right hand side is the same in all equations so we can express for
example h2, h3, . . . , hn as linear functions of h1:

(4.22)


h2 = A2

A1

b1
b2
h1 + 1

b2
(A2

A1
a1 − a2)

...

hn = An

A1

b1
bn
h1 + 1

bn
(An

A1
a1 − an)

To make the notation easier we define

(4.23) Dj =
Aj
A1

b1
bj

(4.24) Ej =
1

bj
(
Aj
A1

a1 − aj)

for j = 2, 3, . . . , n, so that (4.22) becomes

(4.25)


h2 = D2h1 + E2

...

hn = Dnh1 + En

Substituting (4.25) in the first equation of the system (4.21), after tedious compu-
tations, we get a quadratic equation in only one unknown h1:

(4.26) ph21 + qh1 + s = 0

where

(4.27) p = A1(d1 +

n∑
j=2

djD
2
j )

(4.28) q = A1

c1 +

n∑
j=2

(cjDj + 2djDjEj)

+ b1

(4.29) s = A1

 n∑
j=2

(cjEj + djE
2
j )− 1

+ a1

The analysis of the existence of solutions of equation (4.26), although simple in
principle, is a very hard task in practice. However, in all our experiments we found
that equation (4.26) possesses a unique solution and therefore a unique vector

(4.30) ĥ =
[
ĥ1;D2ĥ1 + E2; . . . ;Dnĥ1 + En

]
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exists satisfying the constraints (4.19) and (4.20), where

(4.31) ĥ1 =
−q +

√
q2 − 4ps

2p

This ensures the existence and the uniqueness of the EEMM. For this reason in the

sequel we indicate the Esscher Vector as ĥ.
The joint Moment Generating Function for t = 1 under the ESMM can be computed
as follows:

(4.32) MQh(Y)1 (u) = EQh

exp

n∑
j=1

ujY
j
1

 =
E
[
exp

∑n
j=1(ĥj + uj)Y

j
1

]
E
[
exp

∑n
j=1 ĥjY

j
1

]
where ĥj is the j-th component of the vector ĥ. The computation of the Esscher risk
neutral joint Moment Generating Function requires the knowledge of the Moment
Generating Function of the Multivariate Variance Gamma process for t = 1 under
the statistical measure (see (4.14)). We substitute the following expressions

E

exp

n∑
j=1

(ĥj + uj)Y
j
1

 = exp

 n∑
j=1

(ĥj + uj)µj

×
 1− ν

n∑
j=1

((ĥj + uj)θj +
1

2
(ĥj + uj)

2σ2
j )

(−1/ν)

(4.33)

E

exp

n∑
j=1

ĥjY
j
1

 = exp

 n∑
j=1

ĥjµj

×
 1− ν

n∑
j=1

(ĥjθj +
1

2
ĥ2jσ

2
j )

(−1/ν)(4.34)

into equation (4.32) and after tedious computations and rearrangements we get

MQh(Y)1 (u) = exp

 n∑
j=1

ujµj

×
 1− ν

n∑
j=1

(uj(θj + ĥjσ
2
j ) + 1

2u
2
jσ

2
j )

1− ν
∑n
j=1(ĥjθj + 1

2 ĥ
2
jσ

2
j )

−1/ν
(4.35)

The joint Qh Moment Generating Function can be written in the following more
compact form:
(4.36)

MQh(Y)1 (u) = exp

 n∑
j=1

ujµ
Qh

j

 1− νQh

n∑
j=1

(ujθ
Qh

j +
1

2
u2jσ

Qh

j
2)

(−1/νQh)

where relations among physical and Esscher risk neutral parameters are

(4.37) µQh

j = µj
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(4.38) νQh

j = ν

(4.39) θQh

j =
θj + ĥjσ

2
j

1− ν
∑n
j=1(ĥjθj + 1

2 ĥ
2
jσ

2
j )

(4.40) σQh

j
2 =

σ2
j

1− ν
∑n
j=1(ĥjθj + 1

2 ĥ
2
jσ

2
j )

(4.41) ρQh

jk = ρjk = 0

From (4.36) it is easy to get the joint Qh Characteristic Function

(4.42) ΨQh(Y)1 (u) = exp

i n∑
j=1

ujµj

 1− ν
n∑
j=1

(iujθ
Qh

j − 1

2
u2jσ

Qh

j
2)

(−1/ν)

The j-th Qh marginal Characteristic Function (for j = 1, . . . , n) is given by:

(4.43) ΨQh

Y1
j (uj) = exp (iujµj)

[
1− ν(iujθ

Qh

j − 1

2
u2jσ

Qh

j
2)

](−1/ν)
Comparing (4.42) and (4.43) with (4.13) and (4.6) it is readily seen that the joint
and marginal Characteristic Functions under the P and Qh measures are of the
same type. For each marginal process, only two parameters change. Under the
ESMM the multivariate log-returns process can be expressed again as a Multivariate
Brownian motion with independent components, time-changed by an independent
Gamma process, identical to the physical one (plus a linear drift). In other words,
the underlying dependence structure remains unchanged. However, covariances,
correlations, and marginal moments change. In particular, the log-return of the
j-th hedge fund over the period [0; t] under Qh is

(4.44) Y jt = µjt+ θQh

j Gt + σQh

j W j
Gt

where G = {Gt, t ≥ 0} is the common Gamma stochastic process with Gt ∼
Gamma(t/ν, 1/ν), ν > 0, W j = {W j

t , t ≥ 0} and W k = {W k
t , t ≥ 0} are

independent Wiener processes for all j 6= k, W j
G = {W j

Gt
, t ≥ 0} are n independent

Wiener processes subordinated by the common Gamma process G = {Gt, t ≥ 0},
θQh

j , µj and σQh

j > 0 are constants.

5. Estimation and Simulation

5.1. Real World and Risk Neutral parameters estimation. To estimate real
world parameters we use a constrained version of the method of moments.
First, we select a value for the common parameter ν. Then, we estimate mar-
ginal parameters requiring the equality among the first three empirical moments of
log-returns and their theoretical VG counterparts. By so doing, we get Variance
Gamma distributions able to replicate empirical means, variances and skewnesses.
Then, we compute the mean of the resulting kurtoses and we compare this value
with the empirical one of hedge funds in the collateral portfolio.7 Varying the value
of parameter ν we estimate again the model replicating the first three moments.
The resulting mean kurtosis depends of course on the value of ν. After several trials

7See next section for the composition of the fund of hedge funds.
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we choose ν = 0, 33333. This value leads to a mean fitted kurtosis similar to the
mean empirical one. Annual marginal parameter estimates are reported in Table 8
and Table 10.8

Then, using the vectors ĥ, the estimates of physical parameters and their relations
with the risk neutral ones, we get the following tables reporting the Esscher risk
neutral parameters:

• table 9 (smoothed data)
• table 11 (unsmoothed data)

As an example, with real world processes estimated with observed data, the solu-
tions of the system (4.18) is:

ĥ = [−3, 3385; 0, 3396;−0, 5281;−38, 3631;−2, 2028;−5, 2944;−3, 3096;−5, 5798] .
Finally, we have shown that our change of measure does not modify the underly-
ing dependence structure among Brownian motions. Consequently, the underlying
Brownian motions are still independent. Figure 2 exhibits a comparison between
real world and risk neutral Kernel density for the Convertible Arbitrage Index.

5.2. Simulation. To simulate the paths of n dependent hedge fund NAVs under
the Esscher Equivalent Martingale Measure we can proceed as follows.
Let F jt0 the NAV of hedge fund j at time 0 for j = 1, . . . , n.
Divide the time-interval [0, T ] into N equally spaced intervals ∆t = T/N and set
tk = k∆t, for k = 0, ..., N.
For every hedge fund repeat the following steps for k from 1 to N :

• sample a random number gk out of the Gamma(∆t/ν, 1/ν) distribution;
• sample for each j = 1, . . . , n an independent standard Normal random

number wjtk .
• compute

(5.1) F jtk = F jtk−1
exp

[
µj∆t+ θQh

j gk + σQh

j

√
gkw

j
tk

]
To simulate a simple trajectory of the NAV of the collateral fund of hedge funds it
is sufficient to compute for k from 1 to N

(5.2) Ftk =

n∑
j=1

F jtk .

In the applications, we will also take into account the impact of CFO structural
features such as coupon payments, equity distribution rules, Over Collateralization
tests, liquidity profile and management fees to describe the temporal evolution of
the NAV of the collateral portfolio.

6. Pricing CFOs equity and debt tranches

As we have already explained in the Introduction of this work, our aim is to
provide a useful framework to evaluate Collateralized Fund of Hedge Funds Obli-
gations, that is pricing the equity and the debt tranches of a CFO. The fair price
of each tranche is computed as its expected discounted payoff under a suitable risk
neutral probability measure.
The payoff of every tranche is linked to

8We used the above estimation procedure, although far from being rigorous, mainly for its
simplicity.
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Figure 2. Risk Neutral (red) and Real World (blue) Kernel Den-
sities for Convertible Arbitrage (Unsmoothed case)

• the risk neutral evolution of the CFO portfolio NAV, which depends on the
temporal behaviour of all its underlying hedge funds;
• the structural features of the CFO such as Over-Collateralization test, pri-

ority of payment waterfall (which includes all coupon payments), equity
distribution rules, liquidity profile and so on.

To compute the collateral portfolio NAV under the selected risk neutral probability
measure at each time of control t, it is necessary to model the joint risk neutral
evolution of the underlying hedge funds. At the same time we have to consider any
anticipated payments, Over-Collateralization test and the CFO liquidity profile. As
we have already mentioned, CFOs equity securities and notes are different types
of investment in the underlying pool of hedge funds. In this section we price debt
and equity securities of a CFO as options written on a basket of hedge funds. In
particular, we price equity and debt tranches for a theoretical CFO using a sort
of structural firm value approach. In fact, CFOs can be seen as firms with a fixed
maturity (if we do not consider default). We use a Merton-type model [19] and a
Black-Cox-type model [4], where we assume that the hedge fund NAV processes are
described by dependent Geometric Variance Gamma processes under the real world
probability measure. Default can be triggered either by the fact that the CFO Net
Asset Value at maturity is too low to cover the promised debt payment, as in the
traditional Merton’s model, or by the violation of an Over Collateralization Test,
which represents a barrier, as in the traditional Black-Cox’s model. In the second
case default before the scheduled maturity is possible.
While the CFO collateral is the same in all our applications, the covenants of the
CFO constitutive document change. First, we price a very simple CFO, in which
its liability side is represented only by zero coupon bonds with different priorities
and an equity tranche. Second, we consider a CFO structure in which liabilities
are represented by different coupon bonds and a paying dividend equity tranche.
In both cases, we assume that default can happen only at maturity. Then, we
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introduce the possibility of default before the CFO maturity and consider the CFO
liquidity profile.

6.1. Applications and Results. Consider the following theoretical Collateralized
Fund of Hedge Funds Obligations structure with a scheduled maturity T = 5 years.

• Asset Side: fund of hedge funds with a current price of 1000 monetary
units;
• Liability Side: debt and equity with total initial investment of 1000 mone-

tary units;
(1) Debt tranche A with nominal value of 570 monetary units;
(2) Debt tranche B with nominal value of 150 monetary units;
(3) Debt tranche C with nominal value of 100 monetary units;
(4) Equity tranche with nominal value of 180 monetary units.

The most senior tranche in this CFO is tranche A and is credit enhanced due to
the subordination of the lower tranches. This means that the lowest tranche, the
equity tranche, absorbs losses first. When this tranche is exhausted, the next lowest
tranche, i.e tranche C, begins absorbing losses. If tranche C is consumed, tranche
B starts absorbing losses. Finally, only if tranche B is completely dissipated then
tranche A is exposed to losses.
Now, we report the collateral portfolio composition and the amounts invested at
time 0 in each underlying hedge funds:

(1) Convertible Arbitrage: 175 monetary units;
(2) Dedicated Short Bias: 50 monetary units;
(3) Emerging Markets: 50 monetary units;
(4) Equity Market Neutral: 250 monetary units;
(5) Event Driven: 100 monetary units;
(6) ED Distressed: 50 monetary units
(7) ED Multi-Strategy: 100 monetary units;
(8) ED Risk Arbitrage: 225 monetary units.

Finally, assume the existence of a risk free asset with a constant annual log-return
r = 4%.
These features are common to all the CFOs we price.

6.2. First CFO: pricing and sensitivity analyses. The distinctive character-
istics of this CFO are the followings:

(1) Debt tranche A is a zero coupon bond with a promised maturity payment
DA
T = 696, 20, with an implicit promised annual log-return of r = 4%;

(2) Debt tranche B is a zero coupon bond with a promised final payment of
DB
T = 183, 67, with r = 4, 05%;

(3) Debt tranche C is a zero coupon bond with a promised payment DC
T =

125, 23, with r = 4, 5%;
(4) Equity tranche is a stock that pays no dividends.

Default is only possible at the CFO scheduled maturity date if the value of the
collateral pool of hedge funds is not sufficient to pay the liabilities. Note that it
is not very precise to talk of default at the maturity for a CFO. In fact, even if
CFOs have a capital structure similar to firms, at the fixed maturity date, they
always cease to exist. Instead, it makes sense to talk of CFOs default prior to their
scheduled maturity date.



20 GIAN LUCA TASSINARI AND CORRADO CORRADI

In this simple case, each tranche can be expressed as a European option on the
collateral portfolio. In particular, the equity tranche is a European call option on
the pool of hedge funds with strike price DT = DA

T + DB
T + DC

T and maturity T .
Its intrinsic value is given by:

(6.1) E0 = exp(−rT )EQh [max(FT −DT ; 0)]

where FT =
∑8
j=1 F

j
T is the value of the collateral portfolio at time T .

Current fair prices of tranches A, B, C are given by the following expressions:

(6.2) A0 = exp(−rT )EQh
[
DA
T −max(DA

T − FT ; 0)
]

(6.3) B0 = exp(−rT )EQh
[
max(FT −DA

T ; 0)−max(FT − (DA
T +DB

T ); 0)
]

(6.4) C0 = exp(−rT )EQh
[
max(FT − (DA

T +DB
T ); 0)−max(FT −DT ; 0)

]
To compute fair prices we perform the following steps:

• we simulate several times (50000) the Nav of the collateral portfolio at the
maturity T = 5, under the Esscher risk neutral probability measure;
• we compute the mean payoff of every tranche;
• we discount these values with the risk free rate.

Tables 12, 13 report CFOs notes and equity fair prices. These tables also show
some sensitivity analyses. All the results in Table 12 are based on a value of the
common parameter ν equal to 0,3333, while those in Table 13 on ν = 0, 5833. In the
Benchmark case of Table 12 prices are based on the risk neutral parameters reported
in Table 9. Half variances is the scenario under which, preserving the common
Gamma parameter value ν = 0, 3333 (or ν = 0, 5833), all other real parameters are
estimated using method of moments, with all the empirical variances divided by two.
In the case called Double Variances all empirical variances are multiplied by two,
other empirical moments and the common parameter ν are unchanged. Then real
world parameters are again estimated by constrained method of moments. Similar
considerations hold for the other cases reported on the tables. In each scenario,
risk neutral parameters are then computed as previously explained.
Finally, all tables report the minimum value of each thanche and the number of
losses based on a simulated sample of 50000 values. These details are not very
useful, but we report them only to show how the risk can change under different
hypotheses concerning empirical marginal moments.
We conclude that, ceteris paribus,

• if variance increases the equity tranche becomes a more attractive invest-
ment opportunity, while the debt becomes riskier and its valuation dimin-
ishes. On the contrary, a reduction of the variance results in a decline of
the equity fair price, while the debt tranches become more appreciated;
• if negative skewness increase in absolute value the equity tranche is more

valued while the price of the debt tranches decreases;
• building a collateral portfolio with a positive skewness is the best thing

a CFO manager can try to do for debt holders but the worst for equity
investors;
• if kurtosis increases the theoretical value of the equity tranche increases,

while the prices of the notes decrease;
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• tranche A is very protected by the structure and only in some extreme
and rare scenarios (trajectories) can suffer medium losses. Its fair price is
almost always equal by the amount invested. A triple AAA rating for this
tranche seems very plausible;
• tranche A has a fair price less than its initial invested amount if and only

if two risks are high at the same time. Examples are high kurtosis and
big variance, high variance and high negative skewness, or high negative
skewness and big kurtosis;
• tranche B has also a good protection, but not at the same level of tranche
A;
• tranche C is the most risky among debt tranches. Its fair price is often less

then the initial investment;
• notice that the model can be used to infer final promised payments, i.e. the

promised rates of return, to make the price of each debt tranche fair;
• to sum up: as risk increases equity holders take advantage over debt in-

vestors.

Our main results are summarized in Table 5.

6.3. Second CFO: pricing and sensitivity analysis. The distinctive features
of this CFO are the following:

(1) Debt tranche A is a coupon bond with an annual cash flow of 23, 26, i.e.
the coupon rate is c = 4%;

(2) Debt tranche B is a coupon bond with an annual cash flow of 6, 20, i.e. the
coupon rate is c = 4, 05%;

(3) Debt tranche C is a coupon bond with an annual cash flow of 4, 60, i.e. the
coupon rate is c = 4, 5%;

(4) Equity tranche is a stock that pays dividends computed as a given percent-
age of the annual net profit. Notice that the dividend payment at the end
of a year is not sure. Only if the NAV of the collateral portfolio at the end
of a year is greater than 1000 after the payment of coupons to bondholders,
a portion of the profits is distributed. In particular, we consider three dif-
ferent hypotheses concerning the equity distribution rule: 0%, 50%, 100%
of annual net profit.

These differences influence the simulation procedure. In the previous case, it was
sufficient to simulate directly the value of the collateral portfolio at the CFO ma-
turity. Now, we have to simulate the NAV at the end of every year until time T , to
take into account jumps due to coupon payments and possible dividend payments.
It is assumed that every payment is made through the liquidation of a part of the
collateral portfolio. In particular, we suppose that a part of each hedge fund, pro-
portional to its NAV at the payment date, is sold. Implicitly, we assume that the
CFO has enough liquidity to pay coupons and dividends.
Tables 14 and 15 show fair prices and some sensitivity analyses. All previous ob-
servations still hold. However, in this case we can analyse the impact on fair prices
of different equity distribution rules. In particular, the following observations can
be made:

• if the dividend increases then equity fair price increases of an amount ap-
proximately equal to the value lost by lower debt tranches. Especially, the
dividend policy has a direct impact on the price of equity and C tranches.
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Tranche A is unaffected by a change in the equity distribution rule. Tranche
B is only marginally influenced in extremely risky situations;
• dividend policy relevance is strictly linked to the degree of risk of the collat-

eral portfolio. Specifically, the greater the risk is more relevant the impact
of a change on the portion of net profits distributed on fair prices is. On the
contrary, when the collateral pool is made up by positively skewed hedge
funds, the dividend policy seems to be irrelevant.

The above results are summarized in Table 6.

6.4. Third CFO: pricing and sensitivity analysis. The third and the second
CFO have the same liability structure. However, now we take into account the
possibility of default prior to maturity and CFO liquidity profile. Tables 16 and 17
show the price of each CFO tranche computed under different equity distribution
rules and using two different models to describe the physical evolution of hedge
funds log-returns:

(1) Multivariate Brownian Motion;
(2) Multivariate Variance Gamma Process with independent underlying Brow-

nian Motions.

Tables 16 and 17 report prices based respectively on observed and unsmoothed
data.
In the simulation procedure we consider a barrier equal to 1,05 times the total
nominal value of the debt tranches. If the NAV of the fund of hedge funds falls
below this level, when its value is checked by the CFO manager, then the collateral
portfolio will be sold in order to redeem the rated notes. In the event of default,
we model the sale of the assets by assuming this simple liquidity profile:

• 30% after three months;
• 30% after six months;
• all the residual collateral portfolio value after nine months.

If default happens six months before CFO legal maturity the liquidity profile will
be the following:

• 30% after three months;
• all the residual collateral portfolio value at the maturity.

If default occurs three months before CFO legal maturity, the liquidity profile will
be 100% of the NAV at maturity. For simplicity, we assume that hedge funds are
liquidated proportionally to their NAV. In the default event, tranche A is redeemed
first. In particular, we assume that both capital and current coupon have to be paid.
Then, tranche B has to be repaid in the same way and so on. The CFO manager
usually makes the Over Collateralization test on a monthly basis. However, it can
happen that to do all the necessary operations, more time is needed. For pratical
reasons, we simulate portfolio NAV and make Over collateralization test every three
months. Finally, we assume the existence of an initial lock out period of two years.
This implies that redemptions before two years are not admitted.
Fair prices reported in these tables allow us to make the following observations:

• barriers destroy value for all tranches;
• the intrinsic value of the equity tranche is slightly influenced by CFO div-

idend policy. Notice that the introduction of a barrier modifies the sign
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of the relation between equity price and the percentage of net profits dis-
tributed;
• when the percentage of net profits distributed increases debt tranches values

decrease; this effect is especially relevant for tranche C;
• debt tranche prices are strongly affected by the type of data (smoothed or

unsmoothed) used to estimate the model and by the choice of the model.

Tables 18 and 19 report some sensitivity analyses. The main results can be sum-
marized as follows:

• the higher the barrier is the greater the value destroyed is in terms of fair
prices;
• the higher the risk is the bigger the negative impact on debt tranches the-

oretical prices is;
• as the barrier increases equity price tends to become independent with

respect to risk. Without barrier, the value of equity tranche increases when
risk increases;
• the introduction of a barrier can protect apparently the capital invested by

debt holders. Early redemptions force to sell the assets when the price is
low and bondholders loses one ore more promised coupon payments;
• as the level of the barrier decreases all tranches becomes more valued and

converge to the prices obtained in the case of the second CFO;
• the less risky the collateral portfolio is the faster the speed of convergence

of prices towards prices without barrier is. As an example, look at the case
opposite skewnesses in all these tables. The barrier seems to be irrelevant.

Finally, Tables 20 and 21 presents fair prices with an annual management fee of
0,5% of the total nominal amount of CFO tranches. The main results of this section
are summarized in Table 7.

7. Conclusion and Future Developments

The analysis was performed starting from a simple CFO structure, which was
then progressively complicated with the introduction of the structural features we
encounter in typical CFOs. In this way, at each step of the evolution of the struc-
ture, the reader can understand the impact on the value, measured with respect
to the first four moments of the distribution of log-returns, and how this value is
divided among the different tranches. The result is a useful scheme that can provide
some help in designing a CFO transaction. In particular, we believe the model can
be useful for rating agencies as well as for deal structurers, to efficiently evaluate
various capital structures, test levels, liquidity profiles, coupons and equity distri-
bution rules. The analysis is also helpful for the CFO manager who usually invests
in the equity tranche, because gives him some suggestions on how to increase the
value of his investment. In this paper we built a multivariate Lévy process by time
changing a Multivariate Brownian motion with independent components with a
Gamma subordinator. The main limitation of the model is the lack of flexibility.
In particular, we cannot replicate the correlation observed in the market and fit
perfectly all the first four moments of the marginal distributions but only three.
An investigation in this area is in progress and the results obtained will be docu-
mented in some future contributions.
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Table 5.
Results for CFO 1

Hedge EQUITY ZCB A ZCB B ZCB C
Funds TRANCHE TRANCHE TRANCHE TRANCHE

Variance ↑ ↑ ↓ ↓ ↓
Variance ↓ ↓ ↑ ↑ ↑
Skewness ↑ ↓ ↑ ↑ ↑
Skewness ↓ ↑ ↓ ↓ ↓
Kurtosis ↑ ↑ ↓ ↓ ↓
Kurtosis ↓ ↓ ↑ ↑ ↑

Table 6.
Results for CFO 2

Hedge EQUITY CB A CB B CB C
Funds TRANCHE TRANCHE TRANCHE TRANCHE

Variance ↑ ↑ ↓ ↓ ↓
Variance ↓ ↓ ↑ ↑ ↑
Skewness ↑ ↓ ↑ ↑ ↑
Skewness ↓ ↑ ↓ ↓ ↓
Kurtosis ↑ ↑ ↓ ↓ ↓
Kurtosis ↓ ↓ ↑ ↑ ↑
Dividend ↑ ↑ ↓ or⊥ ↓ ↓
Dividend ↓ ↓ ↑ or⊥ ↑ ↑

Table 7.
Results for CFO 3

Hedge EQUITY CB A CB B CB C
Funds TRANCHE TRANCHE TRANCHE TRANCHE

Variance ↑ ↑ ↓ ↓ ↓
Variance ↓ ↓ ↑ ↑ ↑
Skewness ↑ ↑ ↑ ↑ ↑
Skewness ↓ ↓ ↓ ↓ ↓
Kurtosis ↑ ↑ ↓ ↓ ↓
Kurtosis ↓ ↓ ↑ ↑ ↑
Barrier ↑ ↓ ↓ ↓ ↓
Barrier ↓ ↑ ↑ ↑ ↑

Dividend ↑ ↓ ↓ ↓ ↓
Dividend ↓ ↑ ↑ ↑ ↑

Fees ↑ ↓ ↓ ↓ ↓
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Table 8.
(Smoothed) Real World Parameters

Index µj θj σj ν
Convertible Arbitrage 0,09318 -0,02330 0,04590 0,33333
Dedicated Short Bias -0,05208 0,02691 0,16397 0,33333

Emerging Markets 0,13886 -0,05419 0,15268 0,33333
Equity Market Neutral 0,08316 0,00281 0,02647 0,33333

Event Driven 0,17030 -0,07013 0,03866 0,33333
ED Distressed 0,17588 -0,06401 0,04969 0,33333

ED Multi-Strategy 0,14482 -0,05025 0,05321 0,33333
ED Risk Arbitrage 0,08215 -0,01534 0,03925 0,33333

Table 9.
(Smoothed) Risk Neutral Parameters

Index µj θQh

j σQh

j ν

Convertible Arbitrage 0,09318 -0,05559 0,06214 0,33333
Dedicated Short Bias -0,05208 0,06605 0,22197 0,33333

Emerging Markets 0,13886 -0,12187 0,20668 0,33333
Equity Market Neutral 0,08316 -0,04412 0,03584 0,33333

Event Driven 0,17030 -0,13454 0,05233 0,33333
ED Distressed 0,17588 -0,14126 0,06726 0,33333

ED Multi-Strategy 0,14482 -0,10927 0,07204 0,33333
ED Risk Arbitrage 0,08215 -0,04386 0,05313 0,33333

Table 10.
(Unsmoothed) Real World Parameters

Index µj θj σj ν
Convertible Arbitrage 0,09668 -0,02685 0,07974 0,33333
Dedicated Short Bias -0,05341 0,02913 0,18126 0,33333

Emerging Markets 0,16393 -0,08836 0,19764 0,33333
Equity Market Neutral 0,08424 0,00257 0,03326 0,33333

Event Driven 0,20534 -0,10811 0,03994 0,33333
ED Distressed 0,20328 -0,09448 0,06129 0,33333

ED Multi-Strategy 0,15701 -0,06522 0,06800 0,33333
ED Risk Arbitrage 0,08382 -0,01723 0,04935 0,33333



28 GIAN LUCA TASSINARI AND CORRADO CORRADI

Table 11.
(Unsmoothed) Risk Neutral Parameters

Index µj θQh

j σQh

j ν

Convertible Arbitrage 0,09668 -0,06227 0,10046 0,33333
Dedicated Short Bias -0,05341 0,06589 0,22837 0,33333

Emerging Markets 0,16393 -0,15753 0,24900 0,33333
Equity Market Neutral 0,08424 -0,04544 0,04190 0,33333

Event Driven 0,20534 -0,17125 0,05032 0,33333
ED Distressed 0,20328 -0,17079 0,07722 0,33333

ED Multi-Strategy 0,15701 -0,12300 0,08567 0,33333
ED Risk Arbitrage 0,08382 -0,04608 0,06218 0,33333

Table 12.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Equity and Three Zero Coupon Bonds
(Smoothed Data)

Fund of EQUITY ZCB A ZCB B ZCB C
Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333
Prices 178,641 570 150,281 101,078

Minimum 0 551,879 0 0
Num. Losses 25106 1 138 1749

Half Variances
Prices 177,754 570 150,353 101,894

Minimum 0 570 33,488 0
Num. Losses 25044 0 43 905

Double Variances
Prices 180,778 569,995 149,973 99,254

Minimum 0 478,205 0 0
Num. Losses 25427 7 509 3348

Double Skewnesses
Prices 179,373 569,999 150,196 100,433

Minimum 0 532,191 0 0
Num. Losses 25206 3 240 2361

Opposite Skewnesses
Prices 177,093 570 150,375 102,531

Minimum 0 570 150,375 68,888
Num. Losses 25958 0 0 2
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Table 13.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Equity and Three Zero Coupon Bonds
(Smoothed Data)

Fund of EQUITY ZCB A ZCB B ZCB C
Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833
Prices 179,968 569,998 150,102 99,932

Minimum 0 507,777 0 0
Num. Losses 24659 6 356 2734

Half Variances
Prices 178,668 570 150,273 101,059

Minimum 0 570 30,955 0
Num. Losses 24544 0 157 1709

Double Variances
Prices 182,514 569,984 149,556 97,945

Minimum 0 496,739 0 0
Num. Losses 24930 32 854 4237

Double Skewnesses
Prices 181,261 569,993 149,851 98,895

Minimum 0 527,943 0 0
Num. Losses 24737 15 600 3545

Opposite Skewnesses
Prices 177,336 570 150,374 102,29

Minimum 0 570 106,936 0
Num. Losses 24830 0 4 386
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Table 14.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Paying Dividend Equity and Three Coupon
Bonds
(Smoothed Data)

Fund of EQUITY CB A CB B CB C
Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333
Prices (0% Div.) 178,339 570 150,284 101,304
Prices (50% Div.) 178,439 570 150,276 101,165
Prices (100% Div.) 178,623 570 150,264 100,978

Half Variances
Prices (0% Div.) 177,685 570 150,336 101,914
Prices (50% Div.) 177,707 570 150,334 101,86
Prices (100% Div.) 177,773 570 150,332 101,785
Double Variances
Prices (0% Div.) 180,058 569,997 150,008 99,852
Prices (50% Div.) 180,395 569,997 149,969 99,491
Prices (100% Div.) 180,914 569,997 149,915 99,004
Double Skewnesses
Prices (0% Div.) 178,906 570 150,212 100,799
Prices (50% Div.) 179,078 570 150,196 100,587
Prices (100% Div.) 179,386 570 150,173 100,285

Opposite Skewnesses
Prices (0% Div.) 177,308 570 150,347 102,317
Prices (50% Div.) 177,298 570 150,347 102,317
Prices (100% Div.) 177,295 570 150,347 102,317
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Table 15.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Paying Dividend Equity and Three Coupon
Bonds
(Smoothed Data)

Fund of EQUITY CB A CB B CB C
Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833
Prices (0% Div.) 179,249 569,998 150,117 100,537
Prices (50% Div.) 179,545 569,998 150,095 100,239
Prices (100% Div.) 179,927 569,998 150,061 99,881

Half Variances
Prices (0% Div.) 178,296 570 150,265 101,352
Prices (50% Div.) 178,439 570 150,259 101,196
Prices (100% Div.) 178,644 570 150,250 100,993
Double Variances
Prices (0% Div.) 181,294 569,980 149,691 98,921
Prices (50% Div.) 181,924 569,978 149,609 98,345
Prices (100% Div.) 182,729 569,977 149,498 97,637
Double Skewnesses
Prices (0% Div.) 180,328 569,994 149,907 99,655
Prices (50% Div.) 180,821 569,994 149,856 99,187
Prices (100% Div.) 181,433 569,994 149,786 98,634

Opposite Skewnesses
Prices (0% Div.) 177,413 570 150,345 102,188
Prices (50% Div.) 177,415 570 150,345 102,174
Prices (100% Div.) 177,432 570 150,345 102,153

Table 16.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Paying Dividend Equity and Three Coupon
Bonds
Models with barrier 105% (Smoothed Data)

Fund of EQUITY CB A CB B CB C
Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE
M.G.B.M.

Prices (0% Div.) 177,265 569,974 150,229 102,022
Prices (50% Div.) 177,282 569,974 150,226 102,014
Prices (100% Div.) 177,274 569,972 150,212 101,979

Model 1
Prices (0% Div.) 176,547 568,242 148,111 96,218
Prices (50% Div.) 176,443 568,073 147,725 95,291
Prices (100% Div.) 176,309 567,800 147,131 93,927
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Table 17.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Paying Dividend Equity and Three Coupon
Bonds
Models with barrier 105% (Unsmoothed Data)

Fund of EQUITY CB A CB B CB C
Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE
M.G.B.M.

Prices (0% Div.) 176,700 569,529 149,266 99,487
Prices (50% Div.) 176,576 569,475 148,910 98,769
Prices (100% Div.) 176,504 569,069 148,877 98,459

Model 1
Prices (0% Div.) 176,673 566,882 146,735 92,738
Prices (50% Div.) 176,557 565,982 146,010 91,083
Prices (100% Div.) 176,395 565,982 145,053 88,835

Table 18.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Paying (50%) Dividend Equity and Three
Coupon Bonds
CFO tranche prices with barriers and liquidity profile
(Smoothed Data)

Collateral NAV EQUITY CB A CB B CB C
and Debt Ratio TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333
(105%) 176,443 568,073 147,725 95,291
(100%) 178,141 569,357 148,410 99,280
(95%) 178,338 569,806 149,351 100,854

Half Variances
(105%) 176,564 569,054 148,952 98,461
(100%) 177,581 569,769 149,523 101,052
(95%) 177,654 569,943 149,996 101,774

Double Variances
(105%) 176,637 566,035 145,380 89,697
(100%) 179,654 568,250 145,899 95,418
(95%) 180,201 569,318 147,379 98,400

Double Skewnesses
(105%) 176,364 567,251 146,836 93,037
(100%) 178,572 568,967 147,479 97,770
(95%) 178,920 569,650 148,690 100,004

Opposite Skewnesses
(105%) 177,289 569,996 150,330 102,279
(100%) 177,296 570,000 150,347 102,317
(95%) 177,296 570,000 150,347 102,317
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Table 19.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Paying (50%) Dividend Equity and Three
Coupon Bonds
CFO tranche prices with barriers and liquidity profile
(Smoothed Data)

Collateral NAV EQUITY CB A CB B CB C
and Debt Ratio TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833
(105%) 177,099 567,153 146,950 93,704
(100%) 179,021 568,746 147,292 97,667
(95%) 179,352 569,481 148,270 99,699

Half Variances
(105%) 176,785 568,004 147,641 95,388
(100%) 178,376 569,270 148,302 99,175
(95%) 178,557 569,747 149,153 100,676

Double Variances
(105%) 178,000 564,900 143,755 87,171
(100%) 181,243 567,363 144,095 93,077
(95%) 182,021 568,679 145,582 96,579

Double Skewnesses
(105%) 177,462 565,697 144,801 89,175
(100%) 180,335 567,921 145,285 94,742
(95%) 180,905 569,035 146,700 97,787

Opposite Skewnesses
(105%) 177,007 569,584 149,671 100,506
(100%) 177,442 569,920 149,987 101,792
(95%) 177,460 569,984 150,220 102,104

Table 20.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Paying (50%) Dividend Equity and Three
Coupon Bonds
CFO tranche prices with barrier (105%) and management fees
(Smoothed Data)

MODEL EQUITY CB A CB B CB C
TRANCHE TRANCHE TRANCHE TRANCHE

M.G.B.Motion
Prices with fees 154,977 569,912 149,994 101,439

(Prices with no fees) (177,282) (569,974) (150,226) (102,014)
Model 1 ν = 0, 333

Prices with fees 154,894 567,517 146,788 92,873
(Prices with no fees) (176,443) (568,073) (147,725) (95,291)
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Table 21.
Asset Side 1000: Fund of Hedge Funds
Liability Side 1000: Paying (50%) Dividend Equity and Three
Coupon Bonds
CFO tranche prices with barrier (105%) and management fees
(Unsmoothed Data)

MODEL EQUITY CB A CB B CB C
TRANCHE TRANCHE TRANCHE TRANCHE

M.G.B.Motion
Prices with fees 154,317 569,185 148,217 97,010

(Prices with no fees) (176,700) (569,529) (149,266) (99,487)
Model 1 ν = 0, 333

Prices with fees 155,638 565,833 144,838 88,181
(Prices with no fees) (176,557) (566,552) (146,010) (91,083)


