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Abstract

Classical persistent homology is not tailored to study the action of transformation groups different from
the group Homeo(X) of all self-homeomorphisms of a topological space X. In order to obtain better
lower bounds for the natural pseudo-distance dG associated with a group G ⊂ Homeo(X), we need to
adapt persistent homology and consider G-invariant persistent homology. Roughly speaking, the main idea
consists in defining persistent homology by means of a set of chains that is invariant under the action of G.
In this paper we formalize this idea, and prove the stability of G-invariant persistent homology with respect
to the natural pseudo-distance dG. We also show how G-invariant persistent homology could be used in
applications concerning shape comparison.
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1. Introduction

In many applicative problems we are interested in comparing two Rk-valued functions defined on a
topological space, up to a certain group of tranformations. As an example, we can think of the case of
taking pictures of two objects A and B from every possible direction and comparing the sets of images we
get. In such a case each image can be seen as a point in Rk, and our global measurement as a function
ϕ : S2 → Rk, taking each direction (represented by a point in S2 ⊂ R3) to the picture we get from that
direction. In this case the position of the examined objects cannot be predetermined but we can control the
direction of the camera that takes the pictures. As a consequence, two different sets of pictures (described by
two different functions ϕ,ψ : S2 → Rk) can be considered similar if an orientation-preserving rigid motion
g of S2 exists, such that the picture of A taken from the direction of the unit vector v is similar to the
picture of B taken from the direction of the unit vector g(v), for every v ∈ S2. Formally speaking, the two
different sets of pictures can be considered similar if infg∈R(S2) maxv∈S2 ‖ϕ(v)− ψ(g(v))‖∞ is small, where
R(S2) denotes the group of orientation-preserving isometries of S2.

The previous example illustrates the use of the following definition, where C0(X,Rk) represents the set
of all continuous functions from X to Rk.

Definition 1.1. Let X be a triangulable space. Let G be a subgroup of the group Homeo(X) of all
homeomorphisms f : X → X. The pseudo-distance dG : C0(X,Rk)× C0(X,Rk)→ R defined by setting

dG(ϕ,ψ) = inf
g∈G

max
x∈X
‖ϕ(x)− ψ(g(x))‖∞

is called the natural pseudo-distance associated with the group G.
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The previous definition generalizes the concept of natural pseudo-distance studied in [13, 6, 7, 8, 10] to
the case G 6= Homeo(X), and is a particular case of the general setting described in [11]. The case that
G is a proper subgroup of Homeo(X) is also examined in [2, 3], and in [12] for the case of the group of
diffeomorphisms (in an infinite dimensional setting).

The pseudo-distance dG is difficult to compute. Fortunately, if G = Homeo(X), Persistent Homology
can be used to obtain lower bounds for dG. For example, if we denote by Dmatch the matching distance
between the n-th persistent Betti numbers functions ρϕn and ρψn of the functions ϕ and ψ, we have that
Dmatch(ρϕn, ρ

ψ
n) ≤ dHomeo(X)(ϕ,ψ) (cf. [1, 5]). For more details about Persistent Homology we refer the

reader to [9, 4].
A natural question arises: How could we obtain a lower bound for dG in the general case G 6= Homeo(X)?

Does an analogue of the concept of persistent Betti numbers function exist, suitable for getting a lower bound
for dG? Since dHomeo(X)(ϕ,ψ) ≤ dG(ϕ,ψ), one could think of using the classical lower bounds for the natural
pseudo-distance dHomeo(X) in order to get lower bounds for the pseudo-distance dG. Before proceeding we
illustrate an example, showing that in many cases this choice is not useful.

Example 1.2. Let us consider an experimental setting where a robot is in the middle of a room, measuring
its distance from the surrounding walls by a sensor, for each direction. This measurement can be formalized
by a function ξ : S1 → R, where ξ(v) equals minus the distance from the wall in the direction and verse
represented by the unit vector v, for each v ∈ S1. Figure 1 represents two instances ϕ and ψ of the function
ξ for two different shapes of the room. Let R(S1) denote the group of orientation-preserving rigid motions
of S1 ⊂ R2. We observe that a homeomorphism f : S1 → S1 exists, such that ϕ = ψ ◦ f and f /∈ R(S1). It
follows that dHomeo(S1)(ϕ,ψ) = 0, so that classical Persistent Homology cannot give positive lower bounds
for dR(S1)(ϕ,ψ), while we will see that dR(S1)(ϕ,ψ) > 0.

Figure 1: Two rooms and the respective functions ϕ,ψ, representing minus the distance between the center and the walls. S1

is identified with the interval [0, 2π].

Fortunately, we can adapt Persistent Homology in order to obtain a theory that can give a positive lower
bound for dG, in the previous example (and in many similar cases). We are going to describe this idea in
the next section.

2. Adapting Persistent Homology to the group G

Shape comparison is based on comparing properties (usually described by Rk-valued functions) with
respect to the action of a transformation group. Let us interpret these concepts in a homological setting.
Before proceeding, let us fix a chain complex (C, ∂) over a field K (so that each group of n-chains Cn is a
vector space). We consider the partial order � on Rk defined by setting (u1, . . . , uk) � (v1, . . . , vk) if and
only if uj ≤ vj for every j ∈ {1, . . . , k}.

Definition 2.1. Assume a function ϕ̄ = (ϕ̄1, . . . , ϕ̄k) :
⋃
n Cn → Rk ∪ (−∞, . . . ,−∞) is given, such that

i) ϕ̄ takes each null chain 0 to the k-tuple (−∞, . . . ,−∞);

ii) ϕ̄(∂c) � ϕ̄(c) for every c ∈
⋃
n Cn;

iii) ϕ̄(λc) = ϕ̄(c) for every c ∈
⋃
n Cn, λ ∈ K, λ 6= 0;
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iv) ϕ̄j(c1 + c2) ≤ max (ϕ̄j(c1), ϕ̄j(c2)) for every c1, c2 ∈ Cn with n ∈ Z, and every j ∈ {1, . . . , k}.
We shall say that ϕ̄ is a filtering function on the chain complex (C, ∂).

Definition 2.2. Let us assume that a group G is given, such that G acts linearly on each Cn and its action
commutes with ∂, i.e., ∂ ◦ g = g ◦ ∂ for every g ∈ G (in particular, every g ∈ G is a chain isomorphism
from C to C). The chain complex (C, ∂) will be said a G-chain complex. We shall call the group Hn(C) :=
ker ∂n/im ∂n+1 the n-th homology group associated with the G-chain complex (C, ∂).

Now, let us assume that (C, ∂) is a G-chain complex, endowed with a filtering function ϕ̄. For every
u ∈ Rk we can consider the chain subcomplex Cϕ̄�u of C defined by setting Cϕ̄�un := {c ∈ Cn : ϕ̄(c) � u} and
restricting ∂ to Cϕ̄�u. Cϕ̄�u is a subcomplex of C because of the properties in Definition 2.1 (in particular,
∂(Cϕ̄�un+1 ) ⊆ Cϕ̄�un ). We observe that Cϕ̄�u will not be a G-chain complex, since g(Cϕ̄�un ) 6⊆ Cϕ̄�un , in
general. For the sake of simplicity, we will use the symbol ∂ in place of ∂|Cϕ̄�u .

Definition 2.3. The chain complex
(
Cϕ̄�u, ∂

)
will be called the chain subcomplex of (C, ∂) associated with

the value u ∈ Rk, with respect to the filtering function ϕ̄.

We refer to [15] for the definition of chain subcomplex.
Now we can define the concept of the n-th persistent homology group of (C, ∂), with respect to ϕ̄.

Definition 2.4. If u = (u1, . . . , uk), v = (v1, . . . , vk) ∈ Rk and u ≺ v (i.e., uj < vj for every index j), we can
consider the inclusion i of the chain complex Cϕ̄�u into the chain complex Cϕ̄�v. Such an inclusion induces
a homomorphism i∗ : Hn

(
Cϕ̄�u

)
→ Hn

(
Cϕ̄�v

)
. We shall call the group PH ϕ̄

n (u, v) := i∗
(
Hn

(
Cϕ̄�u

))
the

n-th persistent homology group of the G-chain complex C, computed at the point (u, v) with respect to the
filtering function ϕ̄. The rank ρϕ̄n(u, v) of this group will be said the n-th persistent Betti numbers function
(PBNF) of the G-chain complex C, computed at the point (u, v) with respect to the filtering function ϕ̄.

The key property of PH ϕ̄
n is the invariance expressed by the following result.

Theorem 2.5. If g ∈ G and u, v ∈ Rk with u ≺ v, the groups PH ϕ̄◦g
n (u, v) and PH ϕ̄

n (u, v) are isomorphic.

Proof. We define a map F : PH ϕ̄◦g
n (u, v) → PH ϕ̄

n (u, v) in the following way. Let us consider an element
z ∈ PH ϕ̄◦g

n (u, v) := i∗
(
Hn

(
Cϕ̄◦g�u

))
. By definition, a cycle c ∈ Cϕ̄◦g�un exists, such that z is the equivalence

class [c]v of c in Hn

(
Cϕ̄◦g�v

)
. We observe that g(c) ∈ Cϕ̄�un and the equivalence class [g(c)]v of g(c) in

Hn

(
Cϕ̄�v

)
belongs to PH ϕ̄

n (u, v) := i∗
(
Hn

(
Cϕ̄�u

))
. We set F (z) = [g(c)]v.

If c′ ∈ Cϕ̄◦g�un is another cycle such that z = [c′]v ∈ Hn

(
Cϕ̄◦g�v

)
, then a chain γ ∈ Cϕ̄◦g�vn+1 exists, such

that c′ − c = ∂γ. We observe that g(γ) ∈ Cϕ̄�vn+1 . The inequality ϕ̄(∂(g(γ))) � ϕ̄(g(γ)) (see Definition 2.1)
implies that ∂(g(γ)) ∈ Cϕ̄�vn . As a consequence, [g(c′)]v = [g(c+∂γ)]v = [g(c)+g(∂γ)]v = [g(c)+∂(g(γ))]v =
[g(c)]v + [∂(g(γ))]v = [g(c)]v. These equalities follow from the linearity of g and the equality ∂ ◦ g = g ◦ ∂
in Definition 2.2. This proves that F is well defined.

Let z1 = [c1]v, z2 = [c2]v ∈ PH ϕ̄◦g
n (u, v), with c1, c2 ∈ Cϕ̄◦g�un . We observe that g(c1), g(c2) ∈ Cϕ̄�un .

From the linearity of g, it follows that g(λ1c1 + λ2c2) = λ1g(c1) + λ2g(c2) ∈ Cϕ̄�un , for every λ1, λ2 ∈ K.
Hence, we have that F (λ1z1 + λ2z2) = F (λ1[c1]v + λ2[c2]v) = F ([λ1c1 + λ2c2]v) = [g(λ1c1 + λ2c2)]v =
λ1[g(c1)]v + λ2[g(c2)]v = λ1F ([c1]v) + λ2F ([c2]v) = λ1F (z1) + λ2F (z2). Therefore, F is linear.

Furthermore, if F (z1) = F (z2) then [g(c1)]v = [g(c2)]v, so that a chain γ̂ ∈ Cϕ̄�vn+1 exists, such that
g(c1 − c2) = g(c1) − g(c2) = ∂γ̂. Moreover, g−1(γ̂) ∈ Cϕ̄◦g�vn+1 . It follows that c1 − c2 = g−1(∂γ̂) =
∂
(
g−1(γ̂)

)
∈ Cϕ̄◦g�vn , because of Definitions 2.1 and 2.2. As a consequence, [c1]v = [c2]v. This proves that

F is injective.
Finally, F is surjective. In order to prove this, we observe that if w ∈ PH ϕ̄

n (u, v) := i∗
(
Hn

(
Cϕ̄�u

))
with the homomorphism i∗ : Hn

(
Cϕ̄�u

)
→ Hn

(
Cϕ̄�v

)
induced by the inclusion i : Cϕ̄�u ↪→ Cϕ̄�v,

then a chain ĉ ∈ Cϕ̄�un exists such that w = [ĉ]v ∈ Hn

(
Cϕ̄�v

)
. We have that g−1(ĉ) ∈ Cϕ̄◦g�un and

F
(
[g−1(ĉ)]v

)
= [ĉ]v = w.

Therefore F : PH ϕ̄◦g
n (u, v)→ PH ϕ̄

n (u, v) is an isomorphism.

The previous theorem justifies the name G-invariant Persistent Homology, showing that the PBNFs of
a G-chain complex do not change if we substitute the filtering function ϕ̄ with the function ϕ̄ ◦ g, for g ∈ G.
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3. Stability of the PBNFs with respect to dG

Let X and (S(X), ∂) be a triangulable space and its singular chain complex over a field K, respectively.
Assume that a subgroup G of the group Homeo(X) of all homeomorphisms f : X → X and a continuous
function ϕ = (ϕ1, . . . , ϕk) : X → Rk are given. For every u ∈ Rk, let us set Xϕ�u := {x ∈ X : ϕ(x) � u}.
Let us consider the action of G on S(X) defined by setting g(σ) := g ◦ σ for every g ∈ G and every singular
simplex σ in X, and extending this action linearly on S(X). (We recall that, by definition, every singular
n-simplex in X is a continuous function from the standard n-simplex into X.) Assume also that a G-chain
subcomplex (C̄, ∂) of the singular chain complex (S(X), ∂) is chosen. We observe that, for every topological
subspace X̄ of X, (C̄ ∩ S(X̄), ∂) is a chain complex over the field K. The symbol C̄ ∩ S(X̄) denotes the
chain complex C ′ where C ′n is the vector space of the singular n-chains in X̄ that belong to C̄n.

In order to avoid “wild” chain complexes, we also make this assumption:

(∗) If X ′ and X ′′ are two closed subsets of X with X ′ ⊆ int(X ′′), then a topological subspace X̂ of X exists
such that X ′ ⊆ X̂ ⊆ X ′′ and the homology group Hn(C̄ ∩ S(X̂)) is finitely generated.1

Let us consider the set {σnj } of all singular n-simplexes in X. Then we can endow the chain complex C̄
with a filtering function ϕ̄ in the following way. We set ϕ̄(0) := (−∞, . . . ,−∞). If c is a non-null singular
n-chain, we can write c =

∑m
r=1 a

rσnjr ∈ C̄n with ar ∈ K, ar 6= 0 for every index r, and jr′ 6= jr′′ for r′ 6= r′′.
We set ϕ̄(c) = (u1, . . . , uk) ∈ Rk, with each ui equal to the maximum of ϕi on the union of the images of the
singular simplexes σnj1 , . . . , σ

n
jm

. In other words, ϕ̄(c) is the smallest vector u such that the corresponding
sublevel set Xϕ�u contains the image of each singular simplex σnjr involved in the representation of c. We
observe that this representation is unique up to permutations of its summands, so that ϕ̄ is well defined.
Furthermore, the properties in Definition 2.1 are fulfilled.

An elementary introduction to singular homology can be found in [14].
The next result has a key role in the rest of this paper.

Proposition 3.1. The n-th persistent Betti numbers function ρϕ̄n(u, v) of the G-chain complex (C̄, ∂), en-
dowed with the filtering function ϕ̄, is finite at each point (u, v) in its domain.

Proof. Since u ≺ v and ϕ is continuous, we have that the set Xϕ�u is closed and contained in the interior of
the closed set Xϕ�v. Property (∗) implies that a topological subspace X̂ of X exists such that Xϕ�u ⊆ X̂ ⊆
Xϕ�v and Hn(C̄ ∩ S(X̂)) is finitely generated. The inclusions C̄ ∩ S(Xϕ�u)

i
↪→ C̄ ∩ S(X̂)

j
↪→ C̄ ∩ S(Xϕ�v)

induce the homomorphismsHn(C̄∩S(Xϕ�u)) i∗→ Hn(C̄∩S(X̂))
j∗→ Hn(C̄∩S(Xϕ�v)). Since dim im (j∗◦i∗) ≤

dim im j∗ ≤ dimHn(C̄ ∩ S(X̂)) < +∞, we obtain that also PH ϕ̄
n (u, v) := j∗ ◦ i∗

(
Hn

(
C̄ ∩ S(Xϕ�u)

))
is

finitely generated.

From now on, in order to avoid technicalities that are not relevant in this paper, we shall consider two
PBNFs equivalent if they differ in a subset of their domain that has a vanishing measure.

A standard way of comparing two classical persistent Betti numbers functions is the matching distance
Dmatch, a.k.a. bottleneck distance (cf. [9, 5]). It can be applied without any modification to the case
of the persistent Betti numbers functions of the G-chain complex C̄. An important consequence of the
finiteness of these functions is the following theorem, showing that the matching distance between persistent
Betti numbers functions of the G-chain complex C̄ is a lower bound for the natural pseudo-distance dG.
In other words, a small change of the filtering function with respect to dG produces just a small change
of the corresponding persistent Betti numbers function. This property allows the use of PBNFs in real
applications, where the presence of noise is unavoidable.

Theorem 3.2. Let us consider the n-th persistent Betti numbers functions ρϕ̄n, ρψ̄n of the G-chain complex
(C̄, ∂), endowed with the filtering functions ϕ̄ and ψ̄, respectively. Then Dmatch(ρϕ̄n, ρ

ψ̄
n) ≤ dG(ϕ,ψ).

1We wish to avoid chain complexes like the one where the 0-chains are all the usual singular 0-chains and the only 1-chain is
the trivial one. In this case the homology group H0(C̄) would not be finitely generated, in general. This means that property
(∗) would not hold for X′ = X′′ = X.
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Proof. We can proceed by mimicking the proof of stability for ordinary persistent Betti numbers functions
(cf. [5]). This is possible because that proof depends only on properties of PBNFs that are shared by both
classical persistent Betti numbers functions and persistent Betti numbers functions of a G-chain complex
endowed with a filtering function, once we have proven that the PBNFs are finite (Proposition 3.1). It is
sufficient to substitute the group Homeo(X) with the group G ⊆ Homeo(X), and the homology groups of
each sublevel set Xϕ�u with the homology groups of the G-chain complex C̄ ∩ S(Xϕ�u).

4. An example

In this section we illustrate how G-invariant persistent homology can be used to discriminate between
the rooms described in Example 1.2, showing that no rotation of S1 changes the function ϕ into ψ.

In order to manage this problem we can consider the R(S1)-chain complex C̄ whose n-chains are the
singular n-chains c ∈ Sn(S1) for which the following property holds:

(P ) If a singular simplex σni appears in the representation of c with respect to the basis {σnj } of Sn(S1),
then the antipodal simplex s ◦ σni appears in that representation with the same multiplicity of σni ,
where s is the antipodal map s : S1 → S1.

In other words, we accept only chains that can be written in the form
∑m
r=1 a

r
(
σnjr + s ◦ σnjr

)
. Every rotation

ρ ∈ R(S1) is a chain isomorphism from C̄ to C̄, and it is easy to verify that the properties in Definition 2.2
are fulfilled.

We can prove that property (∗) holds for the R(S1)-chain complex that we have defined. Let X ′ and X ′′

be two closed subsets of S1 with X ′ ⊆ int(X ′′). Let us set X̂ equal to the ε-dilation2 of X ′ in S1, choosing
ε > 0 so small that the X̂ ⊆ int(X ′′). We observe that the set X̂∩s(X̂) is open and s

(
X̂ ∩ s(X̂)

)
= X̂∩s(X̂).

Moreover, X̂∩s(X̂) is the union of a finite family F = {αi} of pairwise disjoint open arcs, having the property
that if αi ∈ F then also s(αi) ∈ F (possibly, F = {S1}). Now, let us consider the topological quotient space
Q obtained by taking all unordered pairs of antipodal points in X̂ ∩s(X̂). We have that Q is homeomorphic
to the union of a finite family F ′ of pairwise disjoint open arcs of S1 (possibly, F ′ = {S1}), and hence the
n-th homology group Hn(Q) is finitely generated. A chain isomorphism F from C̄ ∩ S

(
X̂ ∩ s(X̂)

)
to S(Q)

exists, taking each chain σ + s ◦ σ to the chain given by the singular simplex {σ, s ◦ σ} in Q. F induces an
isomorphism from Hn

(
C̄ ∩ S

(
X̂ ∩ s(X̂)

))
to Hn(Q). Therefore also Hn

(
C̄ ∩ S

(
X̂ ∩ s(X̂)

))
is finitely

generated. Property (∗) follows by observing that C̄ ∩ S
(
X̂ ∩ s(X̂)

)
= C̄ ∩ S(X̂).

Referring to Example 1.2, we observe that the matching distance between the 0-th persistent Betti
numbers functions of the R(S1)-chain complex C̄ with respect to the filtering functions ϕ and ψ is positive.
Hence, Theorem 3.2 gives a non-trivial lower bound for dR(S1)(ϕ,ψ), while the matching distance between
the corresponding classical persistent Betti numbers functions vanishes. The previous claim becomes clear
if we consider the birth of the first homology class in the homology groups H0

(
C̄ϕ̄≤t

)
and H0

(
C̄ψ̄≤t

)
,

respectively, when the parameter t increases. While the group H0

(
C̄ϕ̄≤t

)
becomes non-trivial when t

reaches the value t0 = minϕ = minψ, the group H0

(
C̄ψ̄≤t

)
becomes non-trivial when t reaches a value

t̄ > minϕ = minψ. This is due to the fact that the sublevel set {x ∈ S1 : ϕ(x) ≤ t0} contains two pairs
of antipodal points, while the sublevel set {x ∈ S1 : ψ(x) ≤ t0} contains no pair of antipodal points (see
Figure 2). By applying Theorem 3.2, it follows that dR(S1)(ϕ,ψ) ≥ t̄− t0.

The interested reader can find the 0-th persistent Betti numbers functions ρϕ̄n and ρψ̄n of the R(S1)-chain
complex C̄ in Figure 3.

2The ε-dilation of a subset Y of a metric space M is the set of points of M that have a distance strictly less than ε from Y .
On S1 ⊂ R2 we consider the metric induced by the Euclidean metric in R2.
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Figure 2: The sublevel sets of the filtering functions ϕ,ψ cited in Example 1.2, respectively for the levels t0 and t̄.

Figure 3: The 0-th persistent Betti numbers functions ρϕ̄n and ρψ̄n of the R(S1)-chain complex C̄, corresponding to the filtering
functions ϕ,ψ cited in Example 1.2. In each part of the domain, the value taken by the PBNF is displayed. Observe that in
both figures a small triangle is present, at which the persistent Betti numbers function takes the value 2.
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