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Abstract

Classical persistent homology is a powerful mathematical tool for shape comparison. Unfortunately, it is
not tailored to study the action of transformation groups that are different from the group Homeo(X) of all
self-homeomorphisms of a topological space X. This fact greatly restricts its use in applications. In order
to obtain better lower bounds for the natural pseudo-distance dG associated with a group G ⊂ Homeo(X),
we need to adapt persistent homology and consider G-invariant persistent homology. Roughly speaking, the
main idea consists in defining persistent homology by means of a set of chains that is invariant under the
action of G. In this paper we formalize this idea, and prove the stability of the persistent Betti number
functions in G-invariant persistent homology with respect to the natural pseudo-distance dG. We also show
how G-invariant persistent homology could be used in applications concerning shape comparison, when the
invariance group is a proper subgroup of the group of all self-homeomorphisms of a topological space.
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1. Introduction

In many applicative problems we are interested in comparing two Rk-valued functions defined on a
topological space, up to a certain group of tranformations. As an example, we can think of the case of
taking pictures of two objects A and B from every possible oriented direction (at a constant distance) and
comparing the sets of images we get. In such a case each image can be seen as a point in Rk, and our global
measurement as a function ϕ : S2 → Rk, taking each oriented direction (represented by a point in S2 ⊂ R3)
to the picture we get from that oriented direction. In this case the position of the examined objects cannot
be predetermined but we can control the direction of the camera that takes the pictures. As a consequence,
two different sets of pictures (described by two different functions ϕ,ψ : S2 → Rk) can be considered similar
if an orientation-preserving rigid motion g of S2 exists, such that the picture of A taken from the oriented
direction of the unit vector v is similar to the picture of B taken from the oriented direction of the unit
vector g(v), for every v ∈ S2. Formally speaking, the two different sets of pictures can be considered similar
if infg∈R(S2) maxv∈S2 ‖ϕ(v)− ψ(g(v))‖∞ is small, where R(S2) denotes the group of orientation-preserving
isometries of S2 and ‖ · ‖∞ is the max norm.

The previous example illustrates the use of the following definition, where C0(X,Rk) represents the set
of all continuous functions from X to Rk. These functions are called k-dimensional filtering functions on
the topological space X.

Definition 1.1. Let X be a triangulable space. Let G be a subgroup of the group Homeo(X) of all
homeomorphisms f : X → X. The pseudo-distance dG : C0(X,Rk)× C0(X,Rk)→ R defined by setting

dG(ϕ,ψ) = inf
g∈G

max
x∈X
‖ϕ(x)− ψ(g(x))‖∞
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is called the natural pseudo-distance associated with the group G.

The previous definition generalizes the concept of natural pseudo-distance studied in [17, 9, 10, 11, 14]
to the case G 6= Homeo(X), and is a particular case of the general setting described in [15]. The case that
G is a proper subgroup of Homeo(X) is also examined in [2, 3], and in [16] for the case of the group of
diffeomorphisms (in an infinite dimensional setting).

The pseudo-distance dG is difficult to compute. Fortunately, if G = Homeo(X), Persistent Homology
can be used to obtain lower bounds for dG. For example, if we denote by Dmatch the matching distance
between the n-th persistent Betti number functions ρϕn and ρψn of the functions ϕ and ψ, we have that
Dmatch(ρϕn, ρ

ψ
n) ≤ dHomeo(X)(ϕ,ψ) (cf. [1, 7]).

For more details about Persistent Homology and its applications we refer the reader to [5, 6, 8, 13, 18].
A natural question arises: How could we obtain a lower bound for dG in the general case G 6= Homeo(X)?

Does an analogue of the concept of persistent Betti number function exist, suitable for getting a lower bound
for dG? Since dHomeo(X)(ϕ,ψ) ≤ dG(ϕ,ψ), one could think of using the classical lower bounds for the natural
pseudo-distance dHomeo(X) in order to get lower bounds for the pseudo-distance dG. Before proceeding we
illustrate two examples, showing that in many cases this choice is not useful.

Example 1.2. Let us consider an experimental setting where a robot is in the middle of a room, measuring
its distance from the surrounding walls by a sensor, for each oriented direction. This measurement can be
formalized by a function ξ : S1 → R, where ξ(v) equals minus the distance from the wall in the oriented
direction represented by the unit vector v, for each v ∈ S1. Figure 1 represents two instances ϕ and ψ of
the function ξ for two different shapes of the room. Let R(S1) denote the group of orientation-preserving
rigid motions of S1 ⊂ R2. We observe that a homeomorphism f : S1 → S1 exists, such that ϕ = ψ ◦ f and
f /∈ R(S1). It follows that dHomeo(S1)(ϕ,ψ) = 0, so that classical Persistent Homology cannot give positive
lower bounds for dR(S1)(ϕ,ψ), while we will see that dR(S1)(ϕ,ψ) > 0.

Figure 1: Two rooms and the respective functions ϕ,ψ, representing minus the distance between the center and the walls. S1

is identified with the interval [0, 2π].

Example 1.3. Let us consider the functions ϕA, ϕD, ϕO, ϕP , ϕQ, ϕR from the unit disk D2 ⊂ R2 to the real
numbers, representing images of the letters A,D,O, P,Q,R. For each letter Y ∈ {A,D,O, P,Q,R}, the
function ϕY : D2 → R describes the grey level at each point of the topological space D2, with reference
to the considered instance of the letter Y (see Figure 2). Black and white correspond to the values 0 and
1, respectively (so that light grey corresponds to a value close to 1). It is easy to recognize that for each
pair (Y, Y ′) with Y, Y ′ ∈ {A,D,O, P,Q,R} a homeomorphism h : D2 → D2 exists such that the max
distance between the functions ϕY , ϕY ′ vanishes. This is due to the fact that the letters A,D,O, P,Q,R are
homeomorphic to each other. It follows that dHomeo(D2)(ϕY , ϕY ′) vanishes. As a consequence, the distance
between the classical persistent diagrams of ϕY and ϕY ′ vanishes, too. This proves that classical Persistent
homology is not of much use in this example.

One could think of solving the problem described in the two previous examples by using other filtering
functions. Unfortunately this is not acceptable in many applications. To make this point clear, think of
acquiring data by Magnetic Resonance Imaging (MRI). Asking for further filtering functions means asking
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Figure 2: Examples of letters A,D,O, P,Q,R represented by functions ϕA, ϕD, ϕO, ϕP , ϕQ, ϕR from the unit disk D2 ⊂ R2 to
the real numbers. Each function ϕY : D2 → R describes the grey level at each point of the topological space D2, with reference
to the considered instance of the letter Y . Black and white correspond to the values 0 and 1, respectively (so that light grey
corresponds to a value close to 1).

for new measurements, of similar or different kind. This approach could be expensive or impractical.
Furthermore, choosing the data we have to manage is not allowed, in many applications.

Moreover, in the fortunate case that we can choose the filtering function, another difficulty arises. It
consists in the fact that shape comparison is usually based on judgements of experts, expressed by invariance
properties. As an example, the expert can say that rotation and scaling are not important in the considered
field of research. On one hand, we observe that it is not easy to translate the invariance properties expressed
by the expert into the choice of a filtering function. On the other hand, it is quite natural to try to directly
insert the information given by the expert into our theoretical setting. In this paper we will show that
we can do that. Indeed, we can adapt Persistent Homology in order to obtain the invariance with respect
to the action of a given group G of homeomorphisms. This allows us to obtain a theory that can give a
positive lower bound for dG, in the previous examples (and in many similar cases, where classical Persistent
homology is not of much use).

We are going to describe this idea in the next section.

2. Adapting Persistent Homology to the group G

This section is devoted to the introduction of some abstract definitions and the statement of a general
result. In the next sections we will show how these concepts can be put into effect.

Shape comparison is commonly based on comparing properties (usually described by Rk-valued functions)
with respect to the action of a transformation group. Let us interpret these concepts in a homological setting.
Before proceeding, let us fix a chain complex (C, ∂) over a field K (so that each group of n-chains Cn is a
vector space). We consider the partial order � on Rk defined by setting (u1, . . . , uk) � (v1, . . . , vk) if and
only if uj ≤ vj for every j ∈ {1, . . . , k}.

Definition 2.1. Assume a function ϕ̄ = (ϕ̄1, . . . , ϕ̄k) :
⋃
n Cn → Rk ∪ (−∞, . . . ,−∞) is given, such that

i) ϕ̄ takes the null chain 0 ∈ Cn to the k-tuple (−∞, . . . ,−∞), for every n ∈ Z;
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ii) ϕ̄(∂c) � ϕ̄(c) for every c ∈
⋃
n Cn;

iii) ϕ̄(λc) = ϕ̄(c) for every c ∈
⋃
n Cn, λ ∈ K, λ 6= 0;

iv) ϕ̄j(c1 + c2) ≤ max (ϕ̄j(c1), ϕ̄j(c2)) for every c1, c2 ∈ Cn with n ∈ Z, and every j ∈ {1, . . . , k}.

We shall say that ϕ̄ is a filtering function on the chain complex (C, ∂).

Definition 2.2. Let us assume that a group G is given, such that G acts linearly on each Cn and its action
commutes with ∂, i.e., ∂ ◦ g = g ◦ ∂ for every g ∈ G (in particular, every g ∈ G is a chain isomorphism
from C to C). The chain complex (C, ∂) will be said a G-chain complex. We shall call the group Hn(C) :=
ker ∂n/im ∂n+1 the n-th homology group associated with the G-chain complex (C, ∂).

Now, let us assume that (C, ∂) is a G-chain complex, endowed with a filtering function ϕ̄. For every
u ∈ Rk we can consider the chain subcomplex Cϕ̄�u of C defined by setting Cϕ̄�un := {c ∈ Cn : ϕ̄(c) � u} and
restricting ∂ to Cϕ̄�u. Cϕ̄�u is a subcomplex of C because of the properties in Definition 2.1 (in particular,
∂(Cϕ̄�un+1 ) ⊆ Cϕ̄�un ). We observe that Cϕ̄�u will not be a G-chain complex, since g(Cϕ̄�un ) 6⊆ Cϕ̄�un , in
general. For the sake of simplicity, we will use the symbol ∂ in place of ∂|Cϕ̄�u .

Definition 2.3. The chain complex
(
Cϕ̄�u, ∂

)
will be called the chain subcomplex of (C, ∂) associated with

the value u ∈ Rk, with respect to the filtering function ϕ̄.

We refer to [20] for the definition of chain subcomplex.
Now we can define the concept of the n-th persistent homology group of (C, ∂), with respect to ϕ̄.

Definition 2.4. If u = (u1, . . . , uk), v = (v1, . . . , vk) ∈ Rk and u ≺ v (i.e., uj < vj for every index j), we can
consider the inclusion i of the chain complex Cϕ̄�u into the chain complex Cϕ̄�v. Such an inclusion induces
a homomorphism i∗ : Hn

(
Cϕ̄�u

)
→ Hn

(
Cϕ̄�v

)
. We shall call the group PH ϕ̄

n (u, v) := i∗
(
Hn

(
Cϕ̄�u

))
the

n-th persistent homology group of the G-chain complex C, computed at the point (u, v) with respect to the
filtering function ϕ̄. The rank ρϕ̄n(u, v) of this group will be said the n-th persistent Betti number function
(PBNF) of the G-chain complex C, computed at the point (u, v) with respect to the filtering function ϕ̄.

The key property of PH ϕ̄
n is the invariance expressed by the following result.

Theorem 2.5. If g ∈ G and u, v ∈ Rk with u ≺ v, the groups PH ϕ̄◦g
n (u, v) and PH ϕ̄

n (u, v) are isomorphic.

Proof. We define a map F : PH ϕ̄◦g
n (u, v) → PH ϕ̄

n (u, v) in the following way. Let us consider an element
z ∈ PH ϕ̄◦g

n (u, v) := i∗
(
Hn

(
Cϕ̄◦g�u

))
. By definition, a cycle c ∈ Cϕ̄◦g�un exists, such that z is the equivalence

class [c]v of c in Hn

(
Cϕ̄◦g�v

)
. We observe that g(c) ∈ Cϕ̄�un and the equivalence class [g(c)]v of g(c) in

Hn

(
Cϕ̄�v

)
belongs to PH ϕ̄

n (u, v) := i∗
(
Hn

(
Cϕ̄�u

))
. We set F (z) = [g(c)]v.

If c′ ∈ Cϕ̄◦g�un is another cycle such that z = [c′]v ∈ Hn

(
Cϕ̄◦g�v

)
, then a chain γ ∈ Cϕ̄◦g�vn+1 exists, such

that c′ − c = ∂γ. We observe that g(γ) ∈ Cϕ̄�vn+1 . The inequality ϕ̄(∂(g(γ))) � ϕ̄(g(γ)) (see Definition 2.1)
implies that ∂(g(γ)) ∈ Cϕ̄�vn . As a consequence, [g(c′)]v = [g(c+∂γ)]v = [g(c)+g(∂γ)]v = [g(c)+∂(g(γ))]v =
[g(c)]v + [∂(g(γ))]v = [g(c)]v. These equalities follow from the linearity of g and the equality ∂ ◦ g = g ◦ ∂
in Definition 2.2. This proves that F is well defined.

Let z1 = [c1]v, z2 = [c2]v ∈ PH ϕ̄◦g
n (u, v), with c1, c2 ∈ Cϕ̄◦g�un . We observe that g(c1), g(c2) ∈ Cϕ̄�un .

From the linearity of g, it follows that g(λ1c1 + λ2c2) = λ1g(c1) + λ2g(c2) ∈ Cϕ̄�un , for every λ1, λ2 ∈ K.
Hence, we have that F (λ1z1 + λ2z2) = F (λ1[c1]v + λ2[c2]v) = F ([λ1c1 + λ2c2]v) = [g(λ1c1 + λ2c2)]v =
λ1[g(c1)]v + λ2[g(c2)]v = λ1F ([c1]v) + λ2F ([c2]v) = λ1F (z1) + λ2F (z2). Therefore, F is linear.

Furthermore, if F (z1) = F (z2) then [g(c1)]v = [g(c2)]v, so that a chain γ̂ ∈ Cϕ̄�vn+1 exists, such that
g(c1 − c2) = g(c1) − g(c2) = ∂γ̂. Moreover, g−1(γ̂) ∈ Cϕ̄◦g�vn+1 . It follows that c1 − c2 = g−1(∂γ̂) =
∂
(
g−1(γ̂)

)
∈ Cϕ̄◦g�vn , because of Definitions 2.1 and 2.2. As a consequence, [c1]v = [c2]v. This proves that

F is injective.
Finally, F is surjective. In order to prove this, we observe that if w ∈ PH ϕ̄

n (u, v) := i∗
(
Hn

(
Cϕ̄�u

))
with the homomorphism i∗ : Hn

(
Cϕ̄�u

)
→ Hn

(
Cϕ̄�v

)
induced by the inclusion i : Cϕ̄�u ↪→ Cϕ̄�v,
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then a chain ĉ ∈ Cϕ̄�un exists such that w = [ĉ]v ∈ Hn

(
Cϕ̄�v

)
. We have that g−1(ĉ) ∈ Cϕ̄◦g�un and

F
(
[g−1(ĉ)]v

)
= [ĉ]v = w.

Therefore F : PH ϕ̄◦g
n (u, v)→ PH ϕ̄

n (u, v) is an isomorphism.

The previous theorem justifies the name G-invariant Persistent Homology, showing that the PBNFs of
a G-chain complex do not change if we substitute the filtering function ϕ̄ with the function ϕ̄ ◦ g, for g ∈ G.

3. Stability of the PBNFs with respect to dG

In the previous section we have introduced some abstract definitions and a theorem. In this section we
will show how we can obtain structures conforming to the previously described properties.

Let X and (S(X), ∂) be a triangulable space and its singular chain complex over a field K, respectively.
Assume that a subgroup G of the group Homeo(X) of all homeomorphisms f : X → X and a continuous

function ϕ = (ϕ1, . . . , ϕk) : X → Rk are chosen. For every u ∈ Rk, let us set Xϕ�u := {x ∈ X : ϕ(x) � u}.
Let us consider the action of G on S(X) defined by setting g(σ) := g ◦ σ for every g ∈ G and every singular
simplex σ in X, and extending this action linearly on S(X). We recall that, by definition, every singular
n-simplex in X is a continuous function from the standard n-simplex ∆n into X.

Now, assume that a G-chain subcomplex (C̄, ∂) of the singular chain complex (S(X), ∂) is given. We
observe that, for every topological subspace X̄ of X, (C̄ ∩S(X̄), ∂) is a chain complex over the field K. The
symbol C̄ ∩ S(X̄) denotes the chain complex C ′ where C ′n is the vector space of the singular n-chains in X̄
that belong to C̄n.

In order to avoid “wild” chain complexes, we also make this assumption:

(∗) If X ′ and X ′′ are two closed subsets of X with X ′ ⊆ int(X ′′), then a topological subspace X̂ of X exists
such that X ′ ⊆ X̂ ⊆ X ′′ and the homology group Hn(C̄ ∩ S(X̂)) is finitely generated.

Let us consider the set {σnj }j∈J of all (distinct) singular n-simplexes in X. Obviously, if X is not a finite
topological space, J will be an infinite (usually uncountable) set. Then we can endow the chain complex C̄
with a filtering function ϕ̄ in the following way. If c equals the null chain in C̄n, we set ϕ̄(c) := (−∞, . . . ,−∞).
If c is a non-null singular n-chain, we can write c =

∑m
r=1 a

rσnjr ∈ C̄n with ar ∈ K, ar 6= 0 for every index r,
and jr′ 6= jr′′ for r′ 6= r′′. In this case we set ϕ̄(c) = (u1, . . . , uk) ∈ Rk, with each ui equal to the maximum
of ϕi on the union of the images of the singular simplexes σnj1 , . . . , σ

n
jm

. In other words, ϕ̄(c) is the smallest
vector u such that the corresponding sublevel set Xϕ�u contains the image of each singular simplex σnjr
involved in the representation of c. We observe that this representation is unique up to permutations of its
summands, so that ϕ̄ is well defined. Furthermore, the properties in Definition 2.1 are fulfilled. We shall
say that the function ϕ̄ is induced by ϕ.

An elementary introduction to singular homology can be found in [19].
The next result has a key role in the rest of this paper and is analogous to the finiteness results proven

in [7] and [4] for classical Persistent Homology.

Proposition 3.1. For every n ∈ Z the n-th persistent Betti number function ρϕ̄n(u, v) of the G-chain complex
(C̄, ∂), endowed with the filtering function ϕ̄, is finite at each point (u, v) in its domain.

Proof. Since u ≺ v and ϕ is continuous, we have that the set Xϕ�u is closed and contained in the interior of
the closed set Xϕ�v. Property (∗) implies that a topological subspace X̂ of X exists such that Xϕ�u ⊆ X̂ ⊆
Xϕ�v and Hn(C̄ ∩ S(X̂)) is finitely generated. The inclusions C̄ ∩ S(Xϕ�u)

i
↪→ C̄ ∩ S(X̂)

j
↪→ C̄ ∩ S(Xϕ�v)

induce the homomorphismsHn(C̄∩S(Xϕ�u)) i∗→ Hn(C̄∩S(X̂))
j∗→ Hn(C̄∩S(Xϕ�v)). Since dim im (j∗◦i∗) ≤

dim im j∗ ≤ dimHn(C̄ ∩ S(X̂)) < +∞, we obtain that also PH ϕ̄
n (u, v) := j∗ ◦ i∗

(
Hn

(
C̄ ∩ S(Xϕ�u)

))
is

finitely generated.

Remark 3.2. We underline the importance of the assumption (∗). It allows to avoid chain complexes like the
one where the 0-chains are all the usual singular 0-chains and the only 1-chain is the trivial singular 1-chain.
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Obviously, this is a G-chain complex for any subgroup G of Homeo(X). In this case, for any pair (P1, P2)
of distinct points of the topological space X, there is no singular 1-chain whose boundary is the singular
0-chain P2−P1 (here, for the sake of simplicity, we are not distinguishing the singular 0-simplexes from their
images in X). Therefore the homology group H0(C̄) is not finitely generated, in general, and property (∗)
does not hold. For example, it does not hold for X ′ = X ′′ = X, also in the case that our triangulable space
X is a closed and smooth manifold. As a consequence, the proof that we gave for Proposition 3.1 does
not work, and it is easy to check that its statement is false for the chain complex we have just described.
This is the reason for which the finiteness results proven in [7] and [4] for classical Persistent Homology
cannot be directly applied to G-invariant Persistent Homology, without assuming property (∗). Finally, we
observe that (∗) is not as much an assumption about the regularity of the topological space X, but rather
an assumption about the regularity of the G-chain complex.

From now on, in order to avoid technicalities that are not relevant in this paper, we shall consider two
PBNFs equivalent if they differ in a subset of their domain that has a vanishing measure.

A standard way of comparing two classical persistent Betti number functions is the matching distance
Dmatch, a.k.a. bottleneck distance (cf. [13, 7]). It is important to observe that, in order to define it, we
need the finiteness of the persistent Betti number functions (cf. [12]). This distance can be applied without
any modification to the case of the persistent Betti number functions of the G-chain complex C̄, because of
the finiteness stated in Proposition 3.1.

The following theorem shows that the matching distance between persistent Betti number functions of
the G-chain complex C̄ is a lower bound for the natural pseudo-distance dG. In other words, a small change
of the filtering function with respect to dG produces just a small change of the corresponding persistent
Betti number function with respect to Dmatch. This property allows the use of PBNFs in real applications,
where the presence of noise is unavoidable.

Theorem 3.3. For every n ∈ Z, let us consider the n-th persistent Betti number functions ρϕ̄n, ρψ̄n of the G-
chain complex (C̄, ∂), endowed with the filtering functions ϕ̄ and ψ̄ induced by ϕ : X → Rk and ψ : X → Rk,
respectively. Then Dmatch(ρϕ̄n, ρ

ψ̄
n) ≤ dG(ϕ,ψ).

Proof. We can proceed by mimicking step by step the proof of stability for ordinary persistent Betti number
functions (cf. [7]). This is possible because that proof depends only on properties of PBNFs that are shared
by both classical persistent Betti number functions and persistent Betti number functions of a G-chain
complex endowed with a filtering function, once we have proven that the PBNFs are finite (Proposition 3.1).
It is sufficient to substitute the group Homeo(X) with the group G ⊆ Homeo(X), and the homology groups
of each sublevel set Xϕ�u with the homology groups of the G-chain complex C̄ ∩ S(Xϕ�u). Since the only
difference in the proof consists in the need for showing that G-invariant persistent Betti number functions
are finite in order to be allowed to use the matching distance Dmatch, we refer the reader interested in the
technical details to [7].

4. Applications

In this section we illustrate how G-invariant persistent homology can be used to discriminate between
the rooms described in Example 1.2, showing that no rotation of S1 changes the function ϕ into ψ.

In order to manage this problem we can consider the R(S1)-chain complex C̄ whose n-chains are the
singular n-chains c ∈ Sn(S1) for which the following property holds:

(P ) If a singular simplex σni appears in the representation of c with respect to the basis {σnj } of Sn(S1),
then the antipodal simplex s ◦ σni appears in that representation with the same multiplicity of σni ,
where s is the antipodal map s : S1 → S1.

In other words, we accept only chains that can be written in the form
∑m
r=1 a

r
(
σnjr + s ◦ σnjr

)
. Every rotation

ρ ∈ R(S1) commutes with the antipodal map s and is a chain isomorphism from C̄ to C̄. Moreover, it is
easy to verify that the properties in Definition 2.2 are fulfilled, for G = R(S1) and C = C̄. The chains in C̄
will be called symmetric chains.
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We can prove that property (∗) holds for the R(S1)-chain complex that we have defined. Let X ′ and X ′′

be two closed subsets of S1 with X ′ ⊆ int(X ′′). Let us set X̂ equal to the ε-dilation1 of X ′ in S1, choosing
ε > 0 so small that the X̂ ⊆ int(X ′′). We observe that the set X̂∩s(X̂) is open and s

(
X̂ ∩ s(X̂)

)
= X̂∩s(X̂).

Moreover, X̂∩s(X̂) is the union of a finite family F = {αi} of pairwise disjoint open arcs, having the property
that if αi ∈ F then also s(αi) ∈ F (possibly, F = {S1}). Now, let us consider the topological quotient space
Q obtained by taking all unordered pairs of antipodal points in X̂ ∩s(X̂). We have that Q is homeomorphic
to the union of a finite family F ′ of pairwise disjoint open arcs of S1 (possibly, F ′ = {S1}), and hence the
n-th homology group Hn(Q) is finitely generated. A chain isomorphism F from C̄ ∩ S

(
X̂ ∩ s(X̂)

)
to S(Q)

exists, taking each chain σ + s ◦ σ to the chain given by the singular simplex {σ, s ◦ σ} in Q. F induces an
isomorphism from Hn

(
C̄ ∩ S

(
X̂ ∩ s(X̂)

))
to Hn(Q). Therefore also Hn

(
C̄ ∩ S

(
X̂ ∩ s(X̂)

))
is finitely

generated. Property (∗) follows by observing that C̄ ∩ S
(
X̂ ∩ s(X̂)

)
= C̄ ∩ S(X̂).

Referring to Example 1.2, we observe that the matching distance between the 0-th persistent Betti
number functions of the R(S1)-chain complex C̄ with respect to the filtering functions ϕ̄ and ψ̄ is positive.
Hence, Theorem 3.3 gives a non-trivial lower bound for dR(S1)(ϕ,ψ), while the matching distance between
the corresponding classical persistent Betti number functions vanishes. The previous claim becomes clear
if we consider the birth of the first homology class in the homology groups H0

(
C̄ϕ̄≤t

)
and H0

(
C̄ψ̄≤t

)
,

respectively, when the parameter t increases. While the group H0

(
C̄ϕ̄≤t

)
becomes non-trivial when t

reaches the value t0 = minϕ = minψ, the group H0

(
C̄ψ̄≤t

)
becomes non-trivial when t reaches a value

t̄ > minϕ = minψ. This is due to the fact that the sublevel set {x ∈ S1 : ϕ(x) ≤ t0} contains two pairs
of antipodal points, while the sublevel set {x ∈ S1 : ψ(x) ≤ t0} contains no pair of antipodal points (see
Figure 3). By applying Theorem 3.3, it follows that dR(S1)(ϕ,ψ) ≥ t̄− t0.

The interested reader can find the 0-th persistent Betti number functions ρϕ̄n and ρψ̄n of the R(S1)-chain
complex C̄ in Figure 4.

Figure 3: The sublevel sets of the filtering functions ϕ,ψ cited in Example 1.2, respectively for the levels t0 and t̄.

Remark 4.1. As an alternative approach to the problem of comparing two filtering functions ϕ,ψ : X → R,
the reader could think of using the well known concept of Equivariant Homology (cf. [21]). In other words,
in the case that G acts freely on X, one could think of considering the topological quotient space X/G,
endowed with the filtering functions ϕ̂, ψ̂ that take each orbit ω of the group G to the maximum of ϕ and ψ
on ω, respectively. We observe that this approach would not be of help in the case illustrated in Example 1.2,
since the quotient of S1/R(S1) is just a singleton. As a consequence, if we considered two filtering functions
ϕ,ψ : S1 → R with maxϕ = maxψ, the persistent homology of the induced functions ϕ̂, ψ̂ : S1/R(S1)→ R
would be the same.

1The ε-dilation of a subset Y of a metric space M is the set of points of M that have a distance strictly less than ε from Y .
On S1 ⊂ R2 we consider the metric induced by the Euclidean metric in R2.
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Figure 4: The 0-th persistent Betti number functions ρϕ̄n and ρψ̄n of the R(S1)-chain complex C̄, corresponding to the filtering
functions ϕ,ψ cited in Example 1.2. In each part of the domain, the value taken by the PBNF is displayed. Observe that in
both figures a small triangle is present, at which the persistent Betti number function takes the value 2.

Remark 4.2. The approach that we have illustrated in this section can be generalized to triangulable spaces
different from S1 and invariance groups G that are different from the group of rotations. The main idea
consists in looking for another subgroup H of Homeo(X) such that

1. H is finite (i.e. H = {h1, . . . , hr});
2. H commutes with G (i.e. h ◦ g = g ◦ h for every h ∈ H and every g ∈ G).

The legitimate n-chains in our chain complex C̄ are defined to be the linear combinations of “elementary”
chains c that can be written as c =

∑r
i=1 hi ◦σ, where σ : ∆n → X is a singular n-simplex in X. Because of

property 2, g (
∑r
i=1 hi ◦ σ) =

∑r
i=1 hi ◦ g ◦ σ is another legitimate chain in our chain complex C̄, so that C̄

results to be a G-chain complex. In Example 1.2, H = {id, s}, where s is the antipodal simmetry. We recall
that the filtering function ϕ : X → Rk induces a filtering function ϕ̄ = (ϕ̄1, . . . , ϕ̄k) on the set of legitimate
chains, where ϕ̄j(c) = max1≤i≤r max∆n ϕj ◦ hi ◦ σ, for 1 ≤ j ≤ k. In both Examples 1.2 and 1.3, if G is the
group of all orientation preserving isometries of the considered topological space X (respectively, S1 and
D2), we could also choose H equal to the group generated by the counterclockwise rotation of 2π/m radians
(where m denotes a fixed natural number greater than 2). However, we observe that applying the general
method we have sketched here probably requires a great amount of further research, from the algebraic,
homological and computational point of view. Therefore we postpone the detailed study of this approach
to subsequent papers.
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