Roberto Rimondini-Giorgini
Luigi Barbieri

Lezioni di Farmacologia generale

I EDIZIONE
2013
Dedicato a
Andreas e Lukas
AVVERTENZE

La medicina è una scienza in continuo cambiamento. Gli autori hanno controllato il contenuto presso le fonti ritenute più attendibili con la massima cura, tuttavia, tenendo conto della possibilità sempre presente di errori od incomprensioni, e delle novità che in medicina si seguono ogni giorno, non possono affermare che quanto contenuto sia esente da affermazioni che possano risultare ora ad in futuro non corrette. Gli studenti che intendono utilizzare questo ausilio didattico sono pertanto invitati a controllare presso i loro docenti e presso le fonti autorevoli ufficialmente riconosciute ogni volta che insorga loro un dubbio.

Il materiale didattico contenuto in quest'opera va utilizzato in congiunzione con le lezioni e non rappresenta una esaustiva descrizione degli argomenti oggetto della trattazione, e non può essere considerato in alcun modo sostituto di un trattato.

I simboli indicano indicano a quali corsi i singoli capitoli primariamente appartengono:

CORSI DI FARMACOLOGIA	corso di laurea in Infermieristica
CORSI DI FARMACOLOGIA	corso di laurea in Ostetricia
CORSI DI FARMACOLOGIA	corso di laurea in Tecniche di Radiologia Medica per immagini e Radioterapia

OPZIONALE

La connotazione utilizzata per i numeri segue il modello internazionale: il punto per i decimali, la virgola per le migliaia.

La bibliografia riportata alla fine di ogni capitolo rispecchia unicamente le più importanti fonti utilizzate e non ha carattere di completezza.

I siti riportati sono quelli da cui è stato attinto materiale e non rappresentano i siti di riferimento dell'argomento trattato. Un controllo della utilizzabilità dei link è stato effettuato nelle date riportate: link non più funzionanti sono stati resi “non cliccabili”.
ROBERTO RIMONDINI GIORGINI
Nato a Bologna il 27 luglio 1961. Laureato in Scienze Biologiche. Ha conseguito il titolo di Dottore in Ricerca in Fisiopatologia presso l'Università degli Studi di Bologna e il titolo di PhD in Neuroscienze presso il Karolinska Institutet (Stoccolma, Svezia). Ha lavorato come Ricercatore, Docente e CapoGruppo dal 1993 al 2005 presso il Karolinska Institutet (Stoccolma, Svezia). Dal 2005 ricopre il ruolo di Ricercatore confermato presso la Scuola di Medicina e Chirurgia, nell'Alma Mater Università di Bologna. Le ricerche scientifiche a cui ha partecipato sono state svolte in collaborazioni con Istituti di Ricerca esteri ed italiani (65 pubblicazioni su riviste internazionali) nel campo della neurodegenerazione (moro di Parkinson e malattia di Alzheimer), disturbi dell'umore e della personalità, tossico-dipendenza (alcoolismo e dipendenza da nicotina)

Luigi Barbieri

Altri Collaboratori
Si ringrazia in modo particolare il Prof. Gianluigi Biagi, professore Alma Mater dell'Alma Mater Università di Bologna per la revisione generale dell'opera e per i preziosi suggerimenti
Si ringrazia la prof. Rossella dall'Olio per il materiale didattico da cui hanno preso ispirazione numerose figure
RICONOSCIMENTI

Gli autori si scusano per le eventuali mancate citazioni della provenienza di alcuni materiali utilizzati, della cui origine si è persa traccia.

Questo lavoro è stato preparato in massima parte con programmi open source ed in particolare con: fontforge®, gchempaint®, gimp®, inkscape®, libreoffice®, Jmol®, molscript®, PovRay®, raster3D®, ed inoltre Xcode® (Apple®), Acrobat® (Adobe®) su sistemi operativi kubuntu®, (Canonical®) Mac osX® (Apple®) e Virtualbox® (Oracle®). Sono stati utilizzati font della famiglia DejaVu®. Alcune figure provengono da precedenti versioni realizzate in Corel Draw®

Le strutture chimiche sono state per la maggior parte ottenute da chemspider.com, trasformate in Gchempaint® ed elaborate come figure in inkscape®.
Indice generale

1. Generalità farmacologica .. 1
 1.1. Infermiere come professionista (legge n. 43 del febbraio 2006) ... 3
 1.2. Il farmaco .. 5
 1.3. Storia del farmaco .. 9
 1.4. Approcci nelle intenzioni ... 11
 1.5. Farmacologia generale ... 13
 1.6. Meccanismo d’azione dei farmaci .. 16
 1.7. La cura di un farmaco ... 18
 1.8. Fasi della sperimentazione .. 19
 1.9. Farmaci biotecnologici ... 20
 1.10. Caratteristiche generali degli effetti di un farmaco ... 26
 1.11. Testi consigliati ... 28
 1.12. Principali fonti utilizzate ... 29

2. L’organismo e il farmaco ... 33
 2.1. Farmaco-cinetica: definizione .. 35
 2.2. Principali tipi di barriere ... 36
 2.3. Trasporto dei farmaci attraverso le membrane .. 40
 2.4. Principali fonti utilizzate ... 52

3. La somministrazione dei farmaci ... 53
 3.1. Le principali preparazioni dei farmaci .. 55
 3.2. Vie di somministrazione ... 63
 3.3. Somministrazione per via orale .. 64
 3.4. Somministrazione per via sub-linguale .. 69
 3.5. Somministrazione per via rettale .. 70
 3.6. Somministrazione per via endo-vaginale .. 72
 3.7. Somministrazione per via sotto-cutanea o intra-muscolare .. 76
 3.8. Somministrazione via intra-tecale .. 78
 3.9. Somministrazione per via polmonare .. 79
 3.10. Somministrazione per via nasale .. 80
 3.11. Somministrazione per via trans-dermica ... 81
 3.12. Somministrazione per vie topiche ... 82
 3.13. Principali fonti utilizzate ... 83

4. Bio-disponibilità e distribuzione dei farmaci .. 85
 4.1. La distribuzione dei farmaci .. 87
 4.2. Destino dei farmaci ... 89
 4.3. Bio-disponibilità .. 90
 4.4. Il volume di distribuzione dei farmaci ... 92
 4.5. Legame farmaco-proteina plasmatica .. 97
 4.6. Fattori che modificano la distribuzione dei farmaci .. 103
 4.7. Principali fonti utilizzate .. 104

5. Metabolismo dei farmaci ... 105
 5.1. Metabolismo ed attività dei farmaci .. 107
 5.2. Sistemi metabolici coinvolti nel metabolismo dei farmaci ... 108
 5.3. Classificazione delle reazioni metaboliche ... 109
 5.4. Induzione ed attivazione ... 113
 5.5. Reazioni del metabolismo di fase II alternativi ... 120
 5.6. Escrezione .. 122
 5.7. Eliminazione urinaria dei farmaci e/o dei loro metaboliti ... 123
 5.8. La clearance di un farmaco .. 124
 5.9. Principali fonti utilizzate .. 128

6. Meccanismi di farmaco-cinetica ... 129
 6.1. Farmaco-cinetica .. 131
 6.2. Cinetica di scomparsa dei farmaci .. 135
 6.3. Cinetica della somministrazione continua .. 139
 6.4. Somministrazione multipla e raggiungimento dello stato stationario 144
 6.5. Principali fonti utilizzate .. 147

7. Farmaco-dinamica ... 149
 7.1. Farmaco-dinamica .. 151
 7.2. Lusso di azione dei farmaci ... 152
 7.3. Recettori dei farmaci .. 155
 7.4. Recettori intra-cellulari .. 162
 7.5. Interazioni farmaco-recettore .. 163
8. Attività farmacologica

8.1. Attività farmacologica

8.2. Indice terapeutico e profili di sicurezza ed efficacia

8.3. Relazione tra dose prescritta di un farmaco ed il suo effetto farmacologico

8.4. Fattori inerenti al farmaco

8.5. Fattori inerenti al paziente

8.6. Meccanismi delle interazioni tra farmaci (antagonismo o sinergismo)

8.7. Principali fonti utilizzate

9. Tossicità da farmaci

9.1. Differenti tipi di tossicità da farmaci

9.2. Allergia da farmaci

9.3. Alterazioni fisiologiche durante la gravidanza

9.4. La distribuzione al feto: il caso della teratogeneresi da talidomide

9.5. Sindrome del bambino grigio

9.6. Principali fonti utilizzate
1. Generalia pharmacologica

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singoli sotto-capitoli)

1. Generalia pharmacologica..1
 1.1. Infermiere come Professionista (Legge n. 43 del febbraio 2006): ..3
 1.1.1. Infermiera e medico: l'farmaci..3
 1.1.2. Aspetti organizzativi della gestione dei farmaci.................4
 1.1.3. L'interazione farmaco/paziente e farmaco/farmaco.............4
 1.1.4. Conclusioni...4
 1.2. Il farmaco...5
 1.2.1. Natura dei farmaci...6
 1.2.2. Nome dei farmaci..6
 1.2.3. Classificazione dei farmaci...7
 1.2.4. Legalità e farmaci..7
 1.3. Storia del farmaco...9
 1.3.1. Dal preparato etnico tradizionale al farmaco moderno.........10
 1.4. Approcci nelle intenzioni terapeutici alternativi11
 1.4.1. Medicina Omeopatica..12
 1.5. Farmacologia generale..13
 1.5.1. Modificazioni indotte da farmaci.....................................13
 1.5.2. Utilizzo di un farmaco..13
 1.5.3. Farmaco-cinetica...14
 1.5.4. Farmaco-dinamica...15
 1.6. Meccanismo d'azione dei farmaci..16
 1.7. Effetti di un farmaco..17
 1.7.1. Profili di efficacia e sicurezza.....................................18
 1.8. Fasi della sperimentazione..19
 1.9. Farmaci biotecnologici...20
 1.9.1. Principali categorie di farmaci biotecnologici..................21
 1.9.2. Le anti-chinone come farmaci biotecnologici anti-reumatici.24
 1.9.3. Anticorpi monoclonali di prima generazione.................25
 1.10. Caratteristiche generali degli effetti di un farmaco..........26
 1.10.1. Effetti acuti, cronici, pronti, ritardati.......................26
| 1.10.2. Effetti diretti e effetti indiretti .. | 26 |
| 1.10.3. Effetti placebo ... | 27 |
| 1.11. Testi consigliati ... | 28 |
| 1.12. Principali fonti utilizzate ... | 29 |
1.1. **Infermiere come Professionista (legge n. 43 del febbraio 2006): l'infermiere ed i farmaci**

1.1.1. **Infermiere e medico: i farmaci**

L’infermiere non si occupa di formulare la scelta terapeutica farmacologica (di competenza medica), ma deve **come suo compito** somministrare i farmaci, conoscere le implicazioni che la somministrazione del farmaco ha per il paziente, monitorare il suo stato clinico, e riconoscerne eventuali variazioni.

In questo modo il medico verrà aggiornato momento per momento e potrà eventualmente adeguare la prescrizione.

L’atto della prescrizione è di competenza medica e la somministrazione è di competenza infermieristica:

- **ogni professionista è responsabile delle azioni legate al proprio ambito**

Per questo motivo, rimuovere le comuni cause di errore è importante per il paziente e per entrambi i professionisti medico ed infermiere.

L’adozione della **scheda di terapia unica (STU)** o, ancor meglio, di un sistema informatizzato integrato “monodose” diminuiscono fortemente il rischio di errore legato alla trascrizione manuale.

In ambito ospedaliero:

- **la somministrazione dei farmaci è una prestazione esclusivamente infermieristica**

Il professionista infermiere deve utilizzare:

- **protocolli e procedure standardizzati per la gestione dei farmaci in modo da uniformare i comportamenti prescrittivi**
1.1.2. Aspetti organizzativi della gestione dei farmaci

L'infermiere ha in carico anche aspetti organizzativi che riguardano i farmaci ed il loro utilizzo:

- adeguato approvvigionamento (evitando gli sprechi)
- conservazione corretta
- controllo periodico delle scadenze e integrità delle confezioni
- conservazione delle note informative

1.1.3. L'infermiere e le interazioni farmaco/paziente e farmaco/farmaco

Il professionista deve avere tutte le informazioni che gli permettono di riconoscere e mettere in evidenza le eventuali interazioni tra farmaci che si sono verificate durante il ricovero

L'infermiere professionista è la figura professionale che può erogare assistenza infermieristica per quanto riguarda le interazioni farmacologiche, ed insegnare ai pazienti e alle loro famiglie il relativo comportamento da adottare, sia durante il ricovero che al proprio domicilio

1.1.4. Conclusioni

L'infermiere è:

- direttamente responsabile dei trattamenti del paziente
- tenuto a riconoscere con competenza i rischi ed i problemi legati ad ogni pratica terapeutica
- capace di fronteggiare con immediatezza la gravità delle interazioni
- in grado di descrivere ed utilizzare come indicatori gli effetti osservati
1.2. Il farmaco 🏥💊

Definizione di **farmaco**

Un farmaco (dal greco φάρμακον rimedio, veleno) può essere definito come, una sostanza chimica con una struttura nota, ma diversa da nutrimenti o ingredienti naturali della dieta, e che produce un **effetto biologico** quando viene somministrata ad un organismo vivente.

Definizione di **medicinale**

Un medicinale è: una preparazione chimica, che può contenere uno o più farmaci, e che viene somministrata con l’intenzione di produrre un effetto terapeutico.

Definizione di **principio attivo**

Il termine “principio attivo” indica una sostanza che possiede una certa attività biologica, includendo tutte le sostanze dotate di effetto terapeutico (farmaci), di effetto benefico (vitamine, pro-biotici) o di effetto tossico (veleni). I principi attivi sono la parte farmacologicamente attiva dei medicinali.

🔗 Oltre al **principio attivo**, i medicinali contengono altre sostanze con varie funzioni:

- eccipienti
- stabilizzanti
- solventi
1.2.1. NATURA DEI FARMACI

I farmaci possono essere:
- di origine sintetica
- sostanze chimiche di origine biologica (vegetale, microbica, animale)
- sostanze prodotte tramite l’ingegneria genetica (farmaci biotecnologici)

n.b.: molte sostanze come l’insulina o la tiroxina, sono ormoni endogeni ma diventano farmaci nel momento in cui vengono somministrati intenzionalmente a scopo sostitutivo o terapeutico

1.2.2. NOME DEI FARMACI

Ciascun farmaco possiede più nomi:
- nome chimico
- nome generico o comune
- nome ufficiale
- nome commerciale

Es.: (4S,4aS,5aS,6S,12aS)-4-(dimethylamino)-3,6,10,12,12a-pentaidrossi-6-metil-1,11-diosso-1,4,4a,5,5a,6,11,12a-octaidro-2-tetracenecarbossamide (nome chimico)
- tetraciclin (nome comune e nome ufficiale)
- Acromicina®, Panmicina® (nome commerciale)
1.2.3. **Classificazione dei farmaci**

Tra le più comuni, troviamo classificazioni

- *in base al sistema anatomico su cui esercitano la loro azione principale; es.:
 - sistema cardiovascolare
 - sistema gastrointestinale
 - sistema nervoso centrale

- *in base al loro impiego terapeutico; es.:
 - antibiotici
 - antidepressivi
 - diuretici

- *In base alla loro azione fisiologica o meccanismo di azione; es.:
 - anti-colinergici
 - bloccanti dei canali del calcio

1.2.4. **Legalità e farmaci**

I farmaci possono essere:

- prescrivibili (necessitano di prescrizione medica)
- non-prescrivibili (farmaci da banco, *over the counter*, OTC)

e inoltre possono essere

- legali
- non legali: sostanze di abuso (dette anche ricreazionali)
Definizione di **farmacologia**

La farmacologia può essere definita come lo studio degli effetti dei farmaci sulle funzioni dei sistemi viventi

La **farmacologia sperimentale** si occupa dello studio del meccanismo di azione di molecole naturali o chimiche dette farmaci

Definizione di **tossicologia**

La tossicologia è quella parte della farmacologia che studia gli effetti indesiderati o pericolosi dei farmaci, i meccanismi di tali effetti e le condizioni in cui questi si verificano

Definizione di **farmaco-terapia**

La farmaco-terapia è quella parte della farmacologia che studia l’impiego dei farmaci nella prevenzione, nella diagnosi e nel trattamento delle malattie
1.3. Storia del farmaco

Figura 1.2. Storia della farmacologia: time line essenziale
Immagini public domain da: nlm.nih.gov, wdict.net, mega.chem.ut.ee, clendening.kumc.edu, oilsandplants.com, adattate

<table>
<thead>
<tr>
<th>Time Line</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>~3,000 bc</td>
<td></td>
</tr>
<tr>
<td>~1,600 ac</td>
<td></td>
</tr>
<tr>
<td>~1,800</td>
<td></td>
</tr>
<tr>
<td>~1,900</td>
<td></td>
</tr>
<tr>
<td>~1,970</td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td></td>
</tr>
</tbody>
</table>

Johan J. Wepfer 1620-1695 basi della farmacologia sperimentale
Rudolph Buchheim 1820-1879 trasformazione della farmacologia da scienza empirica a scienza esatta (bio-assay)

Teofrasto von Hohenheim detto Paracelso 1493-1541
pozizioni magiche rimedi a base di erbe

Galen 129-200

chimica
prodotti naturali
chimica strutturale
chimica di sintesi

scienze biomediche
patologia
fisiologia
biochimica
biologia molecolare
biofarmaceutici

farmaci
di sintesi
farmaci
di sintesi
industria farmaceutica
farmacie
commercio
terapeutici

Oswald Schmiedeberg 1838-1921 padre della moderna farmacologia (effetto dei narcotici acido glucuronico)
1.3.1. DAL PREPARATO ETNICO TRADIZIONALE AL FARMACO MODERNO

Figura 1.3. Derivati dal salice. Foglie e corteccia di salice sono menzionate negli antichi testi assiri, sumerì ed egizi come rimedio per dolori e febbre

Ippocrate ne descrisse le proprietà (V a. C.)

I nativi amerindi li usavano come ingrediente princiipe nei trattamenti medici

L'effetto è dovuto al loro contenuto in acido salicilico: il precursor dell'aspirina

Nel 1763 le proprietà medicinali furono studiate da Edward Stole in Inghilterra

L'estratto attivo di corteccia, chiamato salicina, fu isolato nella sua forma cristallina da Henri Leroux nel 1828, e da Raffaele Piria, che riuscì in seguito a separare l'acido nella sua forma pura

La salicina è acida (pH 2.4) in soluzione satura in acqua, da qui: acido salicilico

In 1897 Felix Hoffmann creò per sintesi una forma modificata della salicina (derivata in questo caso dalla Spìreae L.), che causava meno danni digestivi dell'acido salicilico puro. Il nuovo farmaco, formalmente acido acetil-salicilico, fu chiamato aspirin dalla Bayer AG che lo produsse: fu il primo del gruppo dei farmaci anti-inflammatori non steroidei (non steroidal anti-inflammatory drugs, NSAIDs)

Liberamente tratto da una lezione della dott. Rossella Dall'Olio
1.4. Approcci nelle intenzioni terapeutici alternativi

Esistono molti approcci, nelle intenzioni terapeutici, alternativi alla medicina scientifica occidentale. Tra cui:

- **allopatia (Gregory James, 1735-1821)**
 - es.: salassi, emetici e purganti utilizzati fino a scomparsa dei sintomi

- **omeopatia (Hahnemann, 1755-1843)**
 - *Similia similibus curantur* (i simil i curano i simili). La legge dei simili esprime il concetto che per curare una malattia il medico deve utilizzare una medicina che sia in grado di produrre una malattia artificiale ad essa molto simile, che si sostituisce ad essa per poi scomparire
 - le dosi da utilizzarsi dovevano essere il minimo indispensabile a produrre una indicazione percettibile dell'azione del rimedio, e nulla più, in modo da minimizzare o annullare gli effetti avversi
 - l’attività di un farmaco viene potenziata dalla diluizione 1:10\(^6\)

- **medicine alternative o “olistiche”**
 - rifiuto del modello medico (malattia dovuta ad alterazioni dei normali meccanismi fisiologici)
 - si basano sul malessere soggettivo che può essere collegato o meno alla condizione patologica
 - sono caratterizzate dalla mancanza di oggettività per la definizione e la valutazione della patologia
1.4.1. **Medicina Omeopatica**

- in omeopatia la diluizione viene detta potenza. Le potenze sono diluizioni 1 a 100 (potenze centesimali o potenze C) o diluizioni 1 a 10 (potenze decimali o potenze D). In una diluizione C una parte di sostanza viene diluita in 99 parti di diluente e successivamente “dynamizzata”, ovvero agitata con forza secondo un procedimento chiamato dagli omeopati succussion; in una diluizione D, invece, una parte di sostanza viene diluita in 9 parti di diluente e sottoposta poi alla stessa “dynamizzazione”
- ogni sostanza omeopatica pronta per l’impiego riporta il tipo di diluizione e la potenza.
- In un rimedio con potenza 12C la sostanza originaria è stata diluita per dodici volte, ogni volta 1 a 100, per un totale di una parte su 10012
- una potenza 12D, frequente in omeopatia, equivale ad una soluzione nella quale la concentrazione è una parte su un milione di milioni (1012) che equivale ad esempio ad un millimetro cubo su mille metri cubi
- numerosi preparati omeopatici sono diluiti a potenze sino a 30C ed oltre
- nella pratica omeopatica le potenze C e D non sono considerate equivalenti, ovvero 1C non è ritenuto equivalente a 2D dal punto di vista terapeutico, sebbene lo sia dal punto di vista della chimica delle soluzioni

Osservazioni critiche

- a potenze elevate e in particolare a partire proprio da 12C o dal 24D, le leggi della chimica provano che il prodotto finale è così diluito da non contenere più neppure una molecola della sostanza di partenza
- il numero di molecole contenuto in una mole di sostanza è fissato dal numero di Avogadro che è uguale a circa 10^24 molecole/mole (6.02214179 \times 10^{23} \text{ mol}^{-1})
- una diluizione 12C o una 24D della stessa mole di sostanza raggiunge livelli di concentrazione che equivalgono a una sola molecola del farmaco. L’eventuale effetto terapeutico del rimedio omeopatico, pertanto, non sarebbe legato alla presenza fisica del farmaco, ma a qualcos’altro, che gli stessi sostenitori dell’omeopatia non caratterizzano
- gli omeopati credono nella memoria dell’acqua
- le molecole dell’acqua per un determinato periodo di tempo, anche dopo numerose trasformazioni e a grande distanza dal luogo di origine, conserverebbero una geometria molecolare derivata dagli elementi chimici con cui sono venute a contatto. Secondo i sostenitori di questa teoria, una possibile spiegazione sta nella coerenza interna dei campi elettromagnetici prevista dalla elettrodinamica quantistica (QED). La soluzione diluita conserverebbe l’informazione del principio attivo e gli stessi effetti terapeutici di una dose maggiore. Senza l’effetto memoria dell’acqua, le concentrazioni di principio attivo in queste soluzioni acquose sarebbero così basse, da essere prive di effetti terapeutici
1.5. Farmacologia generale 🌱

1.5.1. Modificazioni indotte da farmaci

Un farmaco può indurre:
- modificazioni positive per la salute: medicamento
- modificazioni negative per la salute: tossico o veleno

1.5.2. Utilizzo di un farmaco

L'uso di un farmaco può avere uno scopo:
- curativo
- sintomatico
- profilattico
- diagnostico
- ricreazionale (da abuso)

Figura 1.4. Scopo dei farmaci
1.5.3. **FARMACO-CINETICA**

Definizione di farmaco-cinetica

Si definisce farmaco-cinetica quella parte della farmacologia che si occupa di assorbimento, distribuzione, metabolismo ed eliminazione dei farmaci

La farmaco-cinetica influenza l’azione terapeutica e la tossicità

In particolare la farmaco-cinetica si occupa di meccanismi generali che regolano l’attività biologica di qualsiasi xenobiotico quali:
- assorbimento
- distribuzione
- metabolismo
- eliminazione

Definizione di xenobiotico

Con il termine xenobiotico si definisce una sostanza chimica che è estranea al sistema biologico

**La categoria degli xenobiotici include i farmaci, i contaminanti ambientali, gli agenti cancerogeni, gli insetticidi, i cosmetici, ma anche composti di origine naturale e composti che si originano per l’aggiunta di additivi chimici o in seguito alla cottura dei cibi*
1.5.4. **FARMACO-DINAMICA**

Definizione di farmaco-dinamica

La *farmaco-dinamica* descrive il meccanismo d'azione dei farmaci a livello molecolare, cellulare, e di tessuto.

La farmacodinamica in particolare si occupa di:

- bersagli cellulari dell’azione dei farmaci
- interazione farmaco-recettore
- attività intrinseca di un farmaco
- meccanismi di trasduzione del segnale
1.6. Meccanismo d’azione dei farmaci

Il meccanismo d’azione dei farmaci può essere considerato ai seguenti quattro livelli di diversa complessità:

- sistemi corporei
- tessuti
- cellule
- molecole

Tabella 1.1: Meccanismo d’azione dei farmaci

<table>
<thead>
<tr>
<th>meccanismo</th>
<th>definizione</th>
<th>componenti della risposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>sistema</td>
<td>effetto sulla funzione</td>
<td>sistemi integrati, compresi i sistemi collegati (es.: sistema nervoso, sistema cardio-vascolare)</td>
</tr>
<tr>
<td>tessuto</td>
<td>effetto sulla funzione</td>
<td>es.: elettro-genesi, contrazione, secrezione, attività metabolica del tessuto, proliferazione, etc.</td>
</tr>
<tr>
<td>cellula</td>
<td>trasduzione</td>
<td>le sostanze biochimiche legate al bersaglio del farmaco (es.: canale ionico, enzima, etc.)</td>
</tr>
<tr>
<td>molecola</td>
<td>integrazione con il bersaglio molecolare del farmaco</td>
<td>Il bersaglio del farmaco (es.: recettore, canale bersaglio molecolare ionico, enzima, molecola di trasporto)</td>
</tr>
</tbody>
</table>
1.7. Effetti di un farmaco

<table>
<thead>
<tr>
<th>effetti terapeutici</th>
<th>• effetti benefici attesi dal paziente e ricercati dal medico curante</th>
</tr>
</thead>
<tbody>
<tr>
<td>effetti collaterali</td>
<td>• effetti non ricercati e generalmente non utili</td>
</tr>
<tr>
<td></td>
<td>• non necessariamente tossici</td>
</tr>
<tr>
<td></td>
<td>• legati agli effetti terapeutici perché indotti da un medesimo meccanismo di azione (es.: effetto bradicardizzante di un β-bloccante usato come antipertensivo)</td>
</tr>
<tr>
<td></td>
<td>• gli effetti collaterali possono essere effetti terapeutici per un altro paziente affetto da differente patologia (es.: effetto anti-aritmico di un β-bloccante)</td>
</tr>
<tr>
<td>effetti tossici</td>
<td>• effetti dannosi da evitare possono essere dovuti allo stesso meccanismo di azione degli effetti terapeutici</td>
</tr>
<tr>
<td></td>
<td>• effetti dannosi da evitare possono essere dovuti a meccanismi differenti dal meccanismo di azione degli effetti terapeutici</td>
</tr>
</tbody>
</table>
1.7.1. **Profilo di efficacia e sicurezza**

Definizioni di **profilo di efficacia** e **profilo di sicurezza**

L’insieme degli effetti utili costituisce il **profilo di efficacia** di un principio attivo

L’insieme degli effetti collaterali e tossici è alla base del **profilo di sicurezza** di un farmaco

La forma farmaceutica, le vie e le modalità di somministrazione del medicinale possono in parte modificare il profilo di efficacia e sicurezza del principio attivo

- es.: forme farmaceutiche a rilascio modificato per via orale o parenterale tendono a ridurre il picco di concentrazione del principio attivo e quindi ridurre il rischio di effetti collaterali o tossici concentrazione-dipendenti.
- es.: forme orali a rilascio pronto o somministrazioni endovenose a bolo possono comportare picchi eccessivi di concentrazioni plasmatiche e tessutali con possibile comparsa di effetti tossici

La finestra terapeutica

Un farmaco viene utilizzato come medicinale se le dosi utili per indurre gli effetti terapeutici sono inferiori alle dosi che inducono effetti dossi inaccettabili

- più è ampia la distanza fra dosi terapeutiche e dosi tossiche inaccettabili più il medicinale è considerato sicuro: **finestra terapeutica**
1.8. Fasi della sperimentazione

Sintesi (bio)chimica

10,000 sostanze

Saggi preclinici

effetti sulle funzioni corporee,
meccanismo d'azione, tossicità

omogenato di tessuto

cellule

organis isolati

animali

Sperimentazione clinica di fase 1

pressione arteriosa
soggetti sani

effetti sulle funzioni corporee,
definizione della dose,
farmaco-cinetica

10 sostanze

ECG
campione di sangue

Uso generale

valutazione a lungo termine del rapporto rischi/bebeneficio

Autorità sanitarie

approvazione legale

Gruppi di pazienti

comparazione con terapia standard

Pazienti selezionati

effetti sulla malattia sicurezza, efficacia,
farmaco-cinetica

sperimentazione clinica di fase 4

sperimentazione clinica di fase 3

sperimentazione clinica di fase 2

Figura 1.5. Dalla sintesi all'approvazione per l'uso terapeutico. Liberamente tratto da Lüllmann (2000) e elker.com
1.9. *Farmaci biotecnologici*

- Vengono prodotti attraverso metodi biologici
 - es.: produzione di antibiotici o di anticorpi monoclonali attraverso microrganismi

La produzione di **proteine** ricombinanti mediante processi biotecnologici (ingegneria genetica) garantisce l’ottenimento di farmaci proteici (ormoni, enzimi, fattori della coagulazione, etc.) ad elevato grado di purezza e sicurezza in quanto privi di contaminanti quali **virus** o altri agenti infettivi.

Inoltre, permette di disporre delle crescenti quantità di farmaco necessarie, eliminando la precarietà dell’approvvigionamento dagli organi animali, o, ancora più critico, umani, utilizzati in passato per la produzione di particolare farmaci.

- es.: l’insulina umana ricombinante al posto di quella ottenuta dal pancreas di bovino o di suino

Ormone della crescita

- Di particolare significato è la produzione per via biotecnologica dell'ormone della crescita umano, che essendo specie-specifico, in passato poteva solo essere estratto dalle ghiandole pituitarie di cadaveri umani, unica sorgente disponibile.

Tuttavia ciò comportava gravi problemi:

 - **scarso rendimento delle tecniche estrattive**
 - **pericolo di trasmissione di agenti patogeni**

- es.: trasmissioni dal donatore al ricevente di prioni con conseguente **morbo di Creutzfeldt-Jakob**
 (una forma di encefalopatia spongiforme) in una alta percentuale di pazienti trattati
1.9.1. **Principalì categorie di farmaci biotecnologici**

- anticorpi
- enzimi
- ormoni
- fattori di crescita
- citochine

Le citochine

- sono **molecole proteiche** prodotte da vari tipi di **cellule**
- vengono escrete nel mezzo circostante di solito in risposta ad uno **stimolo**, ed in grado di modificare il comportamento di altre cellule inducendo nuove attività come replicazione, differenziamento e morte (spesso apoptosi)
- hanno azione sia locale sia sistemica

Le citochine possono quindi avere un effetto

- **autocrino** (modificando il comportamento della stessa cellula che l'ha secreta)
- **paracrino** (modificano il comportamento di cellule adiacenti)
- **endocrino** (modificando il comportamento di cellule molto distanti da loro)

Hanno una vita media generalmente di pochi minuti
Tabella 1.3: Time table della preparazione dei primi farmaci biotecnologici

<table>
<thead>
<tr>
<th>anno</th>
<th>farmaco</th>
<th>patologia correlata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>insulina</td>
<td>diabete mellito</td>
</tr>
<tr>
<td>1985</td>
<td>ormone della crescita</td>
<td>nanismo armonico</td>
</tr>
<tr>
<td>1986</td>
<td>HBsAG ricombinante come vaccino</td>
<td>epatite B</td>
</tr>
<tr>
<td>1986-1989</td>
<td>interferone-α</td>
<td>leucemie, sarcoma di Kaposi (AIDS)</td>
</tr>
<tr>
<td></td>
<td>interferone-β</td>
<td>sclerosi multipla</td>
</tr>
<tr>
<td></td>
<td>interferone-γ</td>
<td>malattia granulomatosa cronica</td>
</tr>
<tr>
<td>1987</td>
<td>attivatore del plasminogen</td>
<td>dissoluzione di trombi</td>
</tr>
<tr>
<td>1989</td>
<td>fattori della coagulazione VII, VIII, IX</td>
<td>emofilia</td>
</tr>
<tr>
<td>1989</td>
<td>eritropoietina</td>
<td>anemia</td>
</tr>
<tr>
<td>1989</td>
<td>interleuchine</td>
<td>neoplasie, disordini immunitari</td>
</tr>
<tr>
<td>1990</td>
<td>primo esperimento di terapia genica</td>
<td>immunodeficienza combinata</td>
</tr>
<tr>
<td>1991</td>
<td>granulocyte colony stimulating factor</td>
<td>infezioni post-chemioterapia</td>
</tr>
<tr>
<td>1991</td>
<td>granulocyte-monocyte colony stimulating factor</td>
<td>trapianto di midollo</td>
</tr>
<tr>
<td>1993</td>
<td>vaccino ricombinante</td>
<td>pertosse</td>
</tr>
<tr>
<td>1995</td>
<td>follitropina α</td>
<td>trattamento dell'infertilità</td>
</tr>
<tr>
<td>2000</td>
<td>lutropina α</td>
<td>trattamento dell'infertilità nei deficit del LH</td>
</tr>
<tr>
<td></td>
<td>coriogonadotropina α</td>
<td>trattamento dell'infertilita</td>
</tr>
</tbody>
</table>
Complessità dei farmaci biotecnologici

I farmaci biotecnologici sono più grandi e complessi rispetto a quelli chimici

<table>
<thead>
<tr>
<th>chimici</th>
<th>biotecnologici</th>
</tr>
</thead>
<tbody>
<tr>
<td> aspirina p.m. 180</td>
<td> interferone β p.m. 19,000</td>
</tr>
</tbody>
</table>

Figura 1.6. Paragone di complessità tra aspirina (sopra) e interferone β (dx.)

Immagine della struttura per l'interferone 1AU1 (PDB, protein data bank), Karpusas (1997) ottenuta con Jmol e Pov-Ray, per l'acido acetil-salicilico da 3544.mol (chemspider.com)
1.9.2. Le anti-chinine come farmaci biotecnologici anti-reumatici

Farmaci biotecnologici sono stati proposti per il trattamento dell’artrite reumatoide: anticorpi ingegnerizzati ed altre proteine ricombinanti

- **Anticorpi chimerici uomo/topo contro TNF-α**
 - infliximab®
 - adalimumab®

- **Recettore del TNF-α legato al dominio Fc di una molecola IgG umana**
 - etanercept®

- **Antagonista dell’IL-1**
 - anakinra®

Figura 1.7. Farmaci tradizionali e biotecnologici anti-artrite. IL: interleuchina; TNF: tumour necrosis factor. Fc: frammento cristallizzabile; IgG: immuno-globulina G.

Liberamente tratto da Rang (2011)
1.9.3. **Anticorpi monoclonali di prima generazione**

Figura 1.8. Struttura base degli anticorpi
La struttura base è quella delle immunoglobuline G (IgG)

- **Fab**: fragment antigen binding, frammento legante l’antigene; **Fc**: frammento cristallizzabile; **CL**: constant light, parte costante della catena leggera; **CH(1-3)**: constant heavy, dominio costante della catena pesante

- Gli anticorpi monoclonali possono essere murini, provenienti da cellule di altre specie, umani e ingegnerizzati trans-specie
 - es.: anticorpi umanizzati, cioè con porzioni di catena peptidica di provenienza da geni umani ed altre porzioni provenienti da geni generalmente murini

Per via biotecnologica si possono produrre anche porzioni di anticorpo:
- Fab (monovalenti)
- (Fab)$_2$ (divalenti)
- mono-catena (monovalenti)
1.10. Caratteristiche generali degli effetti di un farmaco

1.10.1. Effetti acuti, cronici, pronti, ritardati

- Distinzione attraverso il regime di somministrazione
 - effetti **acuti** (immediati, non stabili) sono gli effetti che compaiono dopo una singola somministrazione del farmaco
 - effetti **cronici** (che compaiono a distanza di tempo) sono gli effetti che si manifestano solo in relazione a trattamenti ripetuti e prolungati (es.: effetti anti-depressivi, effetto anti-ipertensivo dei β-bloccanti)

- Distinzione attraverso la correlazione temporale
 - effetti **pronti** si manifestano senza latenza significativa
 - effetti **ritardati** si presentano dopo un periodo di latenza variabile da frazione di ore a settimane o mesi

1.10.2. Effetti diretti e effetti indiretti

- Gli effetti di un farmaco possono essere interpretati come:
 - **Conseguenza diretta del meccanismo di azione del farmaco**
 - es.: azione vasodilatante di un α-bloccante (es.: prazosina) conseguente al blocco del recettore α1-adrenergico
 - **Conseguenza indiretta o riflessa**
 - es.: la vasodilatazione arteriolare induce una riduzione acuta della pressione arteriosa (PA) che innesca processi a feed-back negativo come l’attivazione del sistema renina-angiotensina-aldosterone (RAA) ed attivazione del sistema nervoso simpatico (SNS). Questi meccanismi inducono effetto rebound (rimbalzo) sulla PA, tachicardia ed aumento della ritenzione di sodio e acqua
1.10.3. **Effetti placebo**

Definizione di *placebo*

Per placebo si intende un medicinale che, costituito solo da eccipienti inerti, imita in tutti gli aspetti sensoriali (forma, colore, dimensione, sapore, odore ...) un prodotto medicinale senza tuttavia contenere il principio attivo

Definizione di *effetto placebo*

"**L'effetto placebo** è l'effetto terapeutico aspecifico, psicologico o psicofisiologico, prodotto dalla somministrazione di un placebo, o l'effetto di una remissione spontanea riferita al placebo" (Shapiro, 1997)

La risposta placebo giustifica mediamente oltre il 35% dei successi terapeutici ed in alcune patologie oltre il 50-60% dei successi (non solo sintomi o patologie della sfera psichica, ma anche sintomi e malattie organiche come l'analgesia centrale e periferica)
1.11. Testi consigliati

Testo completo. Comprende nozioni di gestione infermieristica

Buon testo adatto per le laurea sanitarie triennali

Ottimo testo di farmacologia generale adatto per ampliare le conoscenze

La "bibbia" del farmacologo: testo di riferimento continuamente aggiornato anche con edizione on line: versione ridotta

La "bibbia" del farmacologo: testo di riferimento continuamente aggiornato anche con edizione on line
1.12. Principali fonti utilizzate

Langley, J.N. (1905) On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curare. J. Physiol. 33, 374-413

Siti web

chemspider.com visitato il 05/06/2012 accessibile il 18/03/2013
clendening.kumc.edu_schmiedeberg visitato il 04/06/2012 accessibile il 18/03/2013
fda.gov_avvisi_sulla_sicurezza_dei_farmaci visitato il 01/01/2011 accessibile il 18/03/2013
jmol.org visitato il 05/06/2012 accessibile il 18/03/2013
mega.chem.ut.ee_buchheim visitato il 04/06/2012 accessibile il 18/03/2013
.nlm.nih.gov_galeno visitato il 04/06/2012 accessibile il 18/03/2013
oilsandplants.com_paracelsus visitato il 04/06/2012 accessibile il 18/03/2013
pei.de_institute-paul-ehrlich_paul-ehrlich-publications visitato il 11/06/2012 accessibile il 18/03/2013
povray.org visitato il 05/06/2012 accessibile il 18/03/2013
wdict.net_wepfer visitato il 04/06/2012 accessibile il 18/03/2013
clicker.com visitato il 25/07/2012 accessibile il 18/03/2013
ipasvi.it_legge_43 visitato il 27/10/2012 accessibile il 18/03/2013
2. L'organismo e il farmaco

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singoli sotto-capitoli)

2. L'organismo e il farmaco...33
 2.1. Farmaco-cinetica: definizione ..35
 2.2. Principali tipi di barriere ..36
 2.2.1. Membrana cellulare..36
 2.2.2. Le barriere tra i compartimenti biologici..............................37
 2.2.3. Barriera emato-encefalica..38
 2.3. Trasporto dei farmaci attraverso le membrane40
 2.3.1. La diffusione semplice..41
 2.3.2. Filtrazione attraverso la membrana cellulare........................47
 2.3.3. Diffusione facilitata..48
 2.3.4. Trasporto attivo...49
 2.3.5. Trasporto farmaci per endocitosi......................................50
 2.3.6. Passaggio dei farmaci attraverso le membrane biologiche in funzione delle loro caratteristiche chimico-fisiche..........................51
 2.4. Principali fonti utilizzate..52
2.1. Farmaco-cinetica: definizione

Definizione di **farmaco-cinetica**

Si definisce farmaco-cinetica quella parte della farmacologia che si occupa di assorbimento, distribuzione, metabolismo ed eliminazione dei farmaci.

Figura 2.1. Farmaco-cinetica

- Assorbimento
- Distribuzione
- Eliminazione
2.2. ** Principali tipi di barriere **

2.2.1. **Membrana cellulare**

La membrana cellulare è costituita da un doppio strato fosfolipidico (le teste idrofile formano le superfici interna ed esterna e le code idrofobe si uniscono al centro della membrana).

Altri componenti: carboidrati, glicolipidi, glicoproteine, colesterolo e proteine periferiche (disposte su entrambe le facce della membrana) e proteine integrali (trans-membrana).

Le **molecole apolari** hanno gli elettroni negli orbitali molecolari equamente distribuiti: non vi è polarizzazione di carica tra le diverse parti della molecola. Sono quindi in grado di mescolarsi con i lipidi che sono apolari (**liposolubili**).

Le **molecole polari** hanno gli elettroni negli orbitali molecolari polarizzati verso un nucleo, lasciano relativamente scoperto un altro nucleo; questo genera una distribuzione non omogenea delle cariche: da qui il termine di polare. Sono quindi in grado di mescolarsi con l'acqua che è polare essa stessa (**idrosolubili**).

Le membrane cellulari hanno due interfacce con il fluido extra-cellulare e con il liquido intra-cellulare con gruppi polari idrofili.

La componente polare interna garantisce l'impermeabilità della membrana all'acqua ed ai suoi soluti.

![Figura 2.2. Struttura della membrana cellulare](immagine)
2.2.2. **Le barriere tra i compartimenti biologici**

<table>
<thead>
<tr>
<th>Barriera</th>
<th>Serraggio inter-cellulare</th>
<th>Passaggio</th>
</tr>
</thead>
<tbody>
<tr>
<td>con l'ambiente esterno: mucosa gastroenterica, pelle, polmone, vie urinarie basse e vescica, epitelio vaginale</td>
<td>zone occludenti (giunzioni serrate continue)</td>
<td>l'unica via di ingresso per i farmaci è attraverso la membrana cellulare</td>
</tr>
<tr>
<td>capillari</td>
<td>macule</td>
<td>spazi inter-cellulari aperti</td>
</tr>
<tr>
<td>capillari dei glomeruli e delle ghiandole escretrici e secretrici</td>
<td>fenestrature</td>
<td>passaggio libero per PM <45,000 (limite critico albumina 68,000 Da)</td>
</tr>
<tr>
<td>barriera emato-encefalica</td>
<td>giunzioni strette</td>
<td>i farmaci attraversano le membrane cellulari</td>
</tr>
<tr>
<td>placenta</td>
<td>ampia superficie capillare lassa</td>
<td>lenta equilibrazione</td>
</tr>
<tr>
<td>peritoneo</td>
<td>macule</td>
<td>passaggio essenzialmente libero</td>
</tr>
</tbody>
</table>
2.2.3. **BARRIERA EMATO-ENCEFALICA**

![Diagram of capillary model and cerebral capillary with emato-encephalic membrane]

Figura 2.3. Diffusione capillare
Caratteristiche della barriera emato-encefalica

La barriera emato-encefalica (BEE) appare come evoluta:

- per proteggere il sistema nervoso centrale (SNC) da eventuali sostanze tossiche (che sono generalmente idrosolubili)
- per proteggere il SNC da improvvisi aumenti di sostanze circolanti (neuro-trasmettitori)
- per consentire l’altissima complessità cellulare e molecolare del SNC, escludendo il controllo immunitario

La permeabilità della BEE è maggiore

- in situazioni fisiologiche:
 - età neonatale
 - età senile
- in processi patologici del cervello, tra cui:
 - infiammazioni
 - traumi
 - neoplasie

La zona chemo-recettrice del vomito

L'area del SNC che presenta una BEE permeabile anche nell'adulto sano è:

- la zona chemo-recettrice del vomito (chemoreceptor trigger zone, CTZ)

La funzione della CTZ è di consentire al SNC di ricevere informazioni sulla presenza di molte sostanze nei fluidi extra-cerebrali, consentendo quindi reazioni a feed-back

La CTZ rende possibile l’azione all’interno del SNC di una serie di farmaci; es.:

- es.: il domperidone, antagonista recettoriale della dopamina, che non può passare BEE ma accede alla CTZ e previene la nausea causata da dopamina-agonisti come l’apomorfina utilizzata nel m. di Parkinson)
2.3. Trasporto dei farmaci attraverso le membrane

Categorie principali di modalità di transito attraverso la membrana cellulare:

- **trasporto passivo** (non richiede uso di energia):
 - diffusione semplice
 - diffusione facilitata
 - filtrazione

- **trasporto attivo** (richiede uso di energia):
 - trasporto attivo propriamente detto
 - endocitosi (es.: insulinina)

Figura 2.4. Transiti attraverso la membrana cellulare. TR: trasportatore/recettore; FL: farmaco/ligando.
2.3.1. La diffusione semplice

Caratteri della **diffusione semplice** di un farmaco attraverso le membrane cellulari:

- è la modalità più frequente di passaggio dei farmaci attraverso le membrane
- avviene attraverso la porzione lipidica della membrana
- avviene sempre secondo gradiente di concentrazione
- è direttamente proporzionale al gradiente di concentrazione ed alla dimensione della superficie della membrana
- è inversamente proporzionale allo spessore della membrana
- è tanto più rapida e completa quanto più il farmaco è liposoluble
- non richiede consumo di energia da parte della cellula
- non è selettiva (non dipende dal tipo di farmaco ma solo dai suoi caratteri fisico-chimici)
Influenza della carica elettrica sul passaggio trans-membrana

Un farmaco passa attraverso la membrana più rapidamente se è privo di carica

- per un acido debole, la forma priva di carica HA può attraversare le membrane mentre A⁻ non passa
- per una base debole, la forma priva di carica B passa mentre la forma carica BH⁺ non passa

Acidi deboli

Basi deboli

Figura 2.6. Passaggio transmembrana di basi deboli. Liberamente tratto da Howland (2005)

<table>
<thead>
<tr>
<th>intestino</th>
<th>stomaco</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH elevato = bassa [H+]</td>
<td>pH basso = elevata [H+]</td>
</tr>
<tr>
<td>non protonato</td>
<td>protonato</td>
</tr>
<tr>
<td>non carico</td>
<td>carico</td>
</tr>
<tr>
<td>elevato $P_{\text{olio/acqua}}$</td>
<td>basso $P_{\text{olio/acqua}}$</td>
</tr>
<tr>
<td>elevata permeabilità</td>
<td>bassa permeabilità</td>
</tr>
</tbody>
</table>

Eccezioni alla regola

† Es.: gli antibiotici ammino-glicosidici la cui molecola non ionizzata è scarsamente liposolubile (la presenza di gruppi in grado di formare legami idrogeno rende idrofilica la molecola)
Polarizzazione delle membrane

- Le membrane biologiche sono fortemente polarizzate con cariche elettronegative accumulate sul lato interno della membrana (differenza di potenziale di membrana di circa 70-90 mV)
- Questa caratteristica è mantenuta da un sistema di canali ionici attivi ed impedisce la diffusione passiva di farmaci ionizzati o polarizzati

Il pK_a

La concentrazione effettiva della forma permeabile del farmaco nel suo sito di assorbimento è determinata dalle concentrazioni relative delle forme cariche e non cariche

- Il rapporto fra le due forme dipende dal pH nel sito di assorbimento e dalla forza dell’acido o della base debole rappresentata dal pK_a
- Il pK_a è la misura della forza di interazione di un composto con un protone. Più basso è il pK_a di un farmaco, più forte è l’acido. Viceversa, più alto è il pK_a più forte è la base. Per semplificare, il pK_a (il valore di pH in cui il 50% della molecola farmaco è presente nella sua forma ionizzata e indica il pH sopra e sotto il quale il fenomeno dell’intrappolamento ionico può influenzare le capacità del farmaco di attraversare le membrane biologiche

![Diagram of pK_a](image)
Influenza del pH e l'intrappolamento ionico

La ionizzazione molecolare influenza:
- il passaggio attraverso la membrana
- la distribuzione allo stato stazionario del farmaco nei vari compartimenti acquosi

Il rapporto farmaco ionizzato/non ionizzato dipende da:
- pK_a della molecola
- pH del compartimento

Poiché solo molecole non ionizzate passano la membrana, si avrà una distribuzione non uniforme sui due lati della membrana stessa:
- i farmaci acidi saranno più concentrati dal lato in cui si abbia un pH più elevato
- i farmaci basici saranno più concentrati dal lato in cui si abbia un pH più basso

Il fenomeno si chiama: **intrappolamento ionico**

Figura 2.8. Ionizzazione e pH

<table>
<thead>
<tr>
<th>pH</th>
<th>Concentrazione</th>
<th>pK_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>succo gastrico</td>
<td>3.5</td>
</tr>
<tr>
<td>7.4</td>
<td>plasma</td>
<td>8.6</td>
</tr>
<tr>
<td>8</td>
<td>urina</td>
<td></td>
</tr>
</tbody>
</table>

- il grado di ionizzazione aumenta a pH alcalino
- il grado di ionizzazione aumenta a pH acido

<table>
<thead>
<tr>
<th>Concentrazione</th>
<th>Aspirina</th>
<th>Acido Debole</th>
<th>Petidina</th>
<th>Base Debole</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>10^6</td>
<td>10^2</td>
<td>10^3</td>
<td>10^1</td>
</tr>
</tbody>
</table>

- pK_a di aspirina è 3.5
- pK_a di petidina è 8.6
Presenza di compartimenti a diverso pH nell’organismo

Urina
- Acidificazione dell'urina: aumenta l'escrezione di basi deboli e riduce quella di acidi deboli (es.: metamfetamina)
- Alcalinizzazione dell'urina: ha effetto opposto cioè escrezione di acidi deboli (es.: fenobarbitale e aspirina)

Plasma
- Aumento del pH plasmatico (es.: per somministrazione bicarbonato di sodio): causa movimento di farmaci debolmente acidi verso il plasma ed il SNC
- Riduzione del pH plasmatico (es.: per somministrazione di un inibitore anidrasi carbonica): causa movimento di farmaci in uscita dal plasma e dal SNC
2.3.2. **Filtrazione attraverso la membrana cellulare**

Caratteri della **filtrazione** di un farmaco attraverso le membrane cellulari:

- avviene attraverso i pori idrofili presenti nella porzione proteica della membrana nel caso di membrane cellulari o negli spazi tra le cellule nel caso di membrane capillari

- è proporzionale ai gradienti di concentrazione o di carica elettrica o di pressione osmotica

- è tanto più completa quanto più il farmaco è idrosolubile

- non richiede consumo di energia da parte della cellula

- non è selettiva (non dipende dal tipo di farmaco ma solo dai suoi caratteri fisico-chimici e dalle sue **dimensioni**, intese come ingombro sterico)
2.3.3. Diffusione facilitata

Caratteri della **diffusione facilitata** di un farmaco attraverso le membrane cellulari:

- Avviene attraverso la porzione lipidica della membrana
- Avviene sempre secondo gradiente di concentrazione
- Non è strettamente correlata al gradiente di concentrazione (può cessare quando il gradiente è ancora presente)
- Non dipende dal grado di lipo- o idro-solubilità del farmaco
- Non richiede consumo di energia da parte della cellula
- Richiede la presenza di trasportatori
- È selettiva (il trasportatore è specifico per molecole con definite caratteristiche fisico-chimiche)
- È antagonizzabile (competitivamente) da parte di farmaci affini (cioè con caratteristiche fisico-chimiche simili)
- È saturabile (la quantità di farmaco trasportato dipende dal numero di trasportatori disponibili)
2.3.4. **Trasporto attivo**

Caratteri del **trasporto attivo** di un farmaco attraverso le membrane cellulari:

- avviene generalmente attraverso la porzione lipidica della membrana
- avviene anche contro gradiente di concentrazione
- non dipende dal grado di lipo- o idro-solubilità del farmaco
- richiede consumo di energia da parte della cellula
- richiede la presenza di particolari molecole proteiche dette trasportatori
- è selettivo (il trasportatore è specifico per molecole strutturalmente affini)
- è saturabile (la quantità di farmaco trasportato dipende dal numero dei trasportatori disponibili)
- è antagonizzabile (competitivamente) da parte di farmaci affini
2.3.5. **Trasporto Farmaci per Endocitosi**

Endocitosi mediata da recettori

![Diagramma dell'endocitosi mediata da recettori](image)

Fluido extra-cellulare

Citoplasma

Esocitosi

Ingresso nel citoplasma

Fusione vescolare

Eliminazione di: elementi di membrana recettori

Trasferimento alla superficie di: nuovi elementi di membrana nuovi recettori

Ligando

Recettore

Nuovo recettore

Figura 2.9. Endocitosi mediata da recettori
2.3.6. Passaggio dei Farmaciattraverso le Membrane Biologiche in Funzione delle loro Caratteristiche Chimico-Fisiche

<table>
<thead>
<tr>
<th>caratteristiche del farmaco</th>
<th>passaggio attraverso le membrane biologiche per processo passivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>sostanze:</td>
<td></td>
</tr>
<tr>
<td>- idrosolubili</td>
<td>filtrazione attraverso i pori della membrana cellulare (es.: acquaporine) e della membrana capillare</td>
</tr>
<tr>
<td>- non ionizzabili</td>
<td></td>
</tr>
<tr>
<td>- con diametro molecolare inferiore a 4Å</td>
<td></td>
</tr>
<tr>
<td>es.: acqua, urea, alcool etilico</td>
<td></td>
</tr>
<tr>
<td>elettroliti deboli</td>
<td>diffusione semplice della forma indissociata. Il trasferimento dipende dal pK_a della sostanza e dal gradiente di pH ai due lati della membrana</td>
</tr>
<tr>
<td>es.: la maggior parte dei farmaci</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>passaggio attraverso le membrane biologiche per trasporto</th>
</tr>
</thead>
<tbody>
<tr>
<td>sostanze:</td>
</tr>
<tr>
<td>- idrosolubili</td>
</tr>
<tr>
<td>- non ionizzate</td>
</tr>
<tr>
<td>- con diametro molecolare superiore a 4Å</td>
</tr>
<tr>
<td>es.: glucosio</td>
</tr>
<tr>
<td>acidi e basi有机化合物 ionizzati</td>
</tr>
<tr>
<td>trasporto attivo con dispendio energetico mediante un trasportatore</td>
</tr>
<tr>
<td>proteine ed altre molecole a peso molecolare elevato</td>
</tr>
<tr>
<td>fagocitosi e pinocitosi (trasporto vescicolare)</td>
</tr>
</tbody>
</table>
2.4. Principali fonti utilizzate

3. La somministrazione dei farmaci

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singoli sotto-capitoli)

3. La somministrazione dei farmaci.................................53
 3.1. LE PRINCIPALI PREPARAZIONI DEI FARMACI ..55
 3.1.1. Preparazioni solide per uso orale...........56
 3.1.2. Preparazioni liquide per uso orale..........58
 3.1.3. Preparazioni per applicazione cutanea......59
 3.1.4. Preparazioni per inalazione................60
 3.1.5. Preparazioni pressurizzate..................60
 3.1.6. Preparazioni parenterali....................61
 3.1.7. Preparazioni auricolari, nasali e oro-mucosali:61
 3.1.8. Preparazioni oftalmiche.....................62
 3.1.9. Preparazioni somministrate attraverso le cavità naturali inferiori...62
 3.2. VIE DI SOMMINISTRAZIONE63
 3.3. SOMMINISTRAZIONE PER VIA ORALE64
 3.3.1. Varie preparazioni per la somministrazione per via orale...65
 3.3.2. Vantaggi della somministrazione orale..........66
 3.3.3. Svantaggi della somministrazione orale........66
 3.3.4. Fattori che alterano assorbimento del farmaco somministrato per os.........67
 3.3.5. Farmaci prima dei pasti, dopo i pasti e lontano dai pasti...........68
 3.4. SOMMINISTRAZIONE PER VIA SUB-LINGUALE69
 3.4.1. Vantaggi della somministrazione dei farmaci per via sub-linguale...69
 3.4.2. Svantaggi della somministrazione sub-linguale..........................69
 3.5. SOMMINISTRAZIONE PER VIA RETTALE70
 3.5.1. Assorbimento dei farmaci via rettale...........70
 3.5.2. Ragioni per preferire la via rettale...........71
 3.5.3. Inconvenienti nella somministrazione per via rettale..............71
 3.6. SOMMINISTRAZIONE PER VIA ENDO-VASCOLARE72
 3.6.1. Caratteristiche generali........................72
 3.6.2. Somministrazione in bolo e per infusione...........73
 3.6.3. Obiettivi della somministrazione endo-vascolare.................73
 3.6.4. Inconvenienti della somministrazione endo-vascolare................74
 3.6.5. Somministrazione endovenosa: vantaggi ed inconvenienti possibili........75
 3.6.6. Somministrazione endo-arteriosa................75
 3.7. SOMMINISTRAZIONE PER VIA SOTTO-CUTANEA O INTRA-MUSCOLARE
...76
<table>
<thead>
<tr>
<th>Capitolo 3. La somministrazione dei farmaci</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.1. Caratteristiche generali..................</td>
<td>76</td>
</tr>
<tr>
<td>3.7.2. Vantaggi della somministrazione sotto-cutanea o intra-muscolare</td>
<td>77</td>
</tr>
<tr>
<td>3.7.3. Inconvenienti della somministrazione sotto-cutanea o intra-muscolare</td>
<td>77</td>
</tr>
<tr>
<td>3.8. SOMMINISTRAZIONE VIA INTRA-TECALE...............</td>
<td>78</td>
</tr>
<tr>
<td>3.8.1. Caratteristiche generali della somministrazione per via intra-tecale</td>
<td>78</td>
</tr>
<tr>
<td>3.8.2. Vantaggi.......................................</td>
<td>78</td>
</tr>
<tr>
<td>3.8.3. Svantaggi..</td>
<td>78</td>
</tr>
<tr>
<td>3.9. SOMMINISTRAZIONE PER VIA POLMONARE...............</td>
<td>79</td>
</tr>
<tr>
<td>3.9.1. Caratteristiche generali della somministrazione per via polmonare</td>
<td>79</td>
</tr>
<tr>
<td>3.9.2. Vantaggi.......................................</td>
<td>79</td>
</tr>
<tr>
<td>3.9.3. Svantaggi..</td>
<td>79</td>
</tr>
<tr>
<td>3.10. SOMMINISTRAZIONE PER VIA NASALE...............</td>
<td>80</td>
</tr>
<tr>
<td>3.10.1. Caratteristiche generali della somministrazione per via nasale</td>
<td>80</td>
</tr>
<tr>
<td>3.10.2. Vantaggi.......................................</td>
<td>80</td>
</tr>
<tr>
<td>3.10.3. Svantaggi..</td>
<td>80</td>
</tr>
<tr>
<td>3.11. SOMMINISTRAZIONE PER VIA TRANS-DERMICA.........</td>
<td>81</td>
</tr>
<tr>
<td>3.11.1. Assorbimento dei farmaci attraverso la cute</td>
<td>81</td>
</tr>
<tr>
<td>3.11.2. Vantaggi.......................................</td>
<td>81</td>
</tr>
<tr>
<td>3.11.3. Svantaggi..</td>
<td>81</td>
</tr>
<tr>
<td>3.12. SOMMINISTRAZIONE PER VIE TOPICHE..............</td>
<td>82</td>
</tr>
<tr>
<td>3.12.1. Caratteristiche delle somministrazioni topiche</td>
<td>82</td>
</tr>
<tr>
<td>3.12.2. Vantaggi.......................................</td>
<td>82</td>
</tr>
<tr>
<td>3.12.3. Svantaggi..</td>
<td>82</td>
</tr>
<tr>
<td>3.13. PRINCIPALI FONTI UTILIZZATE....................</td>
<td>83</td>
</tr>
</tbody>
</table>
3.1. **Le principali preparazioni dei farmaci**

| Tabella 3.6: Elenco delle principali preparazioni dei farmaci |
|-------------------|----------------|----------------|----------------|----------------|
| **Via di somministrazione** | **Preparazioni solide per uso orale** | **Preparazioni liquide per uso orale** | **Preparazioni per applicazioni cutanee** | **Preparazioni per inalazione** |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
3.1.1. Preparazioni solide per uso orale

Polveri: si ottengono dalla polverizzazione di “droghe” vegetali, animali e/o minerali. A seconda della grandezza dei granuli, si suddividono in: molto fini, fini, moderatamente fini e grossolane.

Alcuni principi attivi, se preparati in soluzione, sono instabili, sono perciò preparati in due confezioni separate: una contenente la polvere, una contenente il solvente per una soluzione estemporanea (es.: alcuni antibiotici).

Granulati: derivano da miscele omogenee di polveri trattate in modo tale che le particelle di polveri si aggreghino in granelli più grandi.

Granuli: pillole piccolissime, del peso di 30-50 mg, contenenti medicinali attivi e rivestite da zucchero.

Capsule: formazioni sferiche o cilindriche fatte con gelatina. Sono dette cheratinizzate le capsule rivestite di cheratina, insolubili nel succo gastrico; sono dette cellulosizzate le capsule rivestite di cellulosa, insolubili nel succo gastrico, che cedono lentamente il farmaco nell’ambiente intestinale.

Confetti: sono compresse rivestite di zucchero.

Il rivestimento serve a:

- mascherare il gusto e l'odore sgradevole
- proteggere il farmaco dalla produzione alla somministrazione (ad esempio contro l'umidità atmosferica).
- mantenere nella stessa compresa sostanze tra loro incompatibili
- consentire la dissoluzione del farmaco in una particolare regione del tratto gastrointestinale (es.: sostanze acido-sensibili se libere a livello dello stomaco potrebbero subire inattivazione).

A seconda del tipo di rivestimento si può controllare anche il tempo di dissoluzione della sostanza per avere un effetto più o meno immediato nel tempo.
Pillole: preparazioni di forma sferica costituite da un medicamento solido o liquido; possono essere rivestite per una più lunga conservazione

Compresse: forme ottenute da compressioni del farmaco; nella compressa, oltre al principio attivo, ci possono essere anche altre sostanze (lattoso, amido, saccarosio, etc.) che hanno dei compiti diversi, come aumentare la massa o contenere sostanze leganti

Nelle compresse sono anche presenti dei disgreganti che sono quelle sostanze usate per far sì che una volta entrata nello stomaco la compressa si apra e liberi il principio attivo; per velocizzare questo processo si possono aggiungere sostanze osmoticamente attive che richiamando acqua determinano l'apertura e la disgregazione della compressa stessa

Le compresse possono essere:
- non rivestite
- rivestite
- effervescenti
- solubili
- dispersibili
- gastro-resistenti
- a rilascio modificato

Gomme da masticare: preparazioni con una base costituita da gomma, da masticare ma non inghiottire

Cachets (o cialdini): piccoli recipienti di ostia a forma di scatolina, che si riempiono del farmaco spolverato. Vanno deglutiti tal quali dopo averli inumiditi
3.1.2. **Preparazioni liquide per uso orale**

Sciroppi: si preparano solubilizzando 665 g di saccarosio in 335 g d’acqua (2/3), portata ad ebollizione, poi filtrata a cui si aggiunge un farmaco.

Elisir: in essi è presente etanolo come co-solvente accanto all’acqua.

Sospensioni: si ottengono sospendendo in acqua un farmaco solido insolubile.

Emulsioni: si preparano sospendendo in acqua un farmaco liquido con essa miscibile grazie alla presenza di sostanze stabilizzatrici che ritardano la separazione delle due fasi.

![Figura 3.2. Locandina della prima rappresentazione dell’opera “L’elisir d’amore”, musiche di Gaetano Donizetti. Immagine di public domain](image)
3.1.3. Preparazioni per applicazione cutanea

- **Creme**: forme a consistenza molle, contenenti quantità varie di idrolati

- **Pomate**: forme di consistenza molle per la natura dello stesso farmaco e per l'ecципiente che può essere un grasso (lanolina, vasellina, cera, etc.). Sono formate da sostanze grasse ma non resinose

- **Unguenti**: come le pomate, ma formate da sostanze sia grasse che resinose. Sono utilizzati per la medicazione in tessuti anche più distali dell'epidermide, dato che la natura grassa blocca la traspirazione aumentando così la dilatazione dello strato corneale e permettendo pertanto un effetto sistemico

- **Lozioni**: soluzioni acquose o idro-alcoholiche di sostanze usate per lavare parti ammalate come il cuoio capelluto

- **Linimenti**: forme semifluide costituite, da oli, grassi, saponi e farmaci

- **Schiume medicate**: preparazioni costituite da grandi volumi di gas disperso in un liquido generalmente contenente uno o più principi attivi, un tensioattivo che assicuri la loro formazione e vari altri ecципienti. Sono di solito destinate ad essere applicate sulla cute o sulle mucose

 Le schiume medicate si formano generalmente al momento della somministrazione da una preparazione liquida contenuta in un contenitore pressurizzato per uso su pelle gravemente lesa e su ferite aperte, sono sterilii

- **Cataplasmi**: (dal greco κατάπλασμα) costituiti da una pasta composta di sostanze vegetali mucillaginose, oleose o amilacee, che viene raccolta in garza o panno sottile e applicata per lo più calda sulla pelle

- **Impiastrì e cerotti medicati**: sono costituiti da mescolanze di cere, resine, corpi grassi nei quali sono incorporati medicamenti. Hanno forte potere adesivo. I cerotti esplicano effetti sistemici: fungono da serbatoi applicati sulla cute e rilasciano il farmaco con velocità controllata, assicurando per un tempo durevole il mantenimento di concentrazioni plasmatiche efficaci
3.1.4. PREPARAZIONI PER INALAZIONE

- **Liquidi per inalazione**: soluzioni o dispersioni o preparazioni destinate ad essere vaporizzate ed inalate.

- **Liquidi per nebulizzazione**: soluzioni acquose, sospensioni o emulsioni destinate ad essere trasformate in aerosol tramite nebulizzatori ad una data velocità di erogazione.

- **Preparazioni pressurizzate con dosatore**: soluzioni, sospensioni o emulsioni fornite in speciali contenitori dotati di una valvola dosatrice che consente una più accurata definizione della dose.

- **Polveri per inalazione**: polveri che si somministrano per mezzo di inalatori di polvere secca.

![Schema di un nebulizzatore](image)

3.1.5. PREPARAZIONI PRESSURIZZATE

- **Spray**: sono presentate in contenitori speciali, ermetici e contenenti uno o più principi attivi sotto pressione di un gas liquefatto o compresso, che costituisce il propellente. Le preparazioni sono rilasciate dal contenitore tramite una valvola in forma di aerosol o di spruzzo liquido o semi-solido.
3.1.6. **Preparazioni parenterali**

- **Preparazioni iniettabili**: soluzioni, emulsioni o sospensioni sterili preparate disciogliendo, emulsionando o sospendendo il principio attivo e qualunque sostanza aggiunta in acqua per preparazioni iniettabili.

- **Infusioni endovenose**: soluzioni acquose o emulsioni, con acqua come fase continua, sterili, isotoniche al sangue e apiogene.

- **Concentrati per preparazioni iniettabili**: soluzioni sterili per preparazioni iniettabili da diluire.

- **Polveri per preparazioni iniettabili**: sostanze solide, sterili, ripartite nei loro contenitori finali, che danno luogo a soluzioni limpide, se agitate con il volume prescritto di liquido.

3.1.7. **Preparazioni auricolari, nasali e oro-mucosali**

- **Colluttori**: preparazioni sciroppose che si applicano con pennello o con batuffolo di cotone (toccature) sulle gengive, sulle tonsille e sulle pareti interne della bocca.

- **Gargarismi**: liquidi medicati che servono per la cura della bocca e del faringe. Essi vengono portati in bocca senza essere deglutiti ma agitati in bocca stessa e rigettati all’esterno.

- **Lavaggi auricolari**: soluzioni acquose con un pH entro i limiti fisiologici destinate alla pulizia del meato uditivo esterno.

- **Lavaggi nasali**: soluzioni acquose con un pH entro i limiti fisiologici destinate alla pulizia delle cavità nasali.

- **Tamponi auricolari**: sono introdotti nel meato uditivo esterno.

- **Tamponi nasali**: sono introdotti nelle cavità nasali.
3.1.8. **Preparazioni oftalmiche**

- **Colliri**: (dal greco κολλάριον) preparazioni medicamentose per la cura degli occhi. Possono essere acuosi (da instillare con contacchi), oleosi, molli (in questo caso si parla di pomate oftalmiche) e solidi (lapis e polveri finissime)

- **Inserti oftalmici**: preparazioni sterili, solide o semi-solide, destinate ad essere inserite nel sacco congiuntivale

- **Bagni oculari**: soluzioni acquose sterili destinate a lavare o bagnare gli occhi

3.1.9. **Preparazioni somministrate attraverso le cavità naturali inferiori**

- **Supposte**: applicazioni a forma conica, cilindrica o a torpedo da applicare per via rettale, il cui eccipiente (burro di cacao e gelatina) fonde alla temperatura corporea

- **Capsule rettali**: preparazioni solide con rivestimento lubrificante

- **Clisteri, enteroclismi, enemi**: soluzioni di farmaci (ad azione purgante, astringente, disinfectante o antiflogistica) che vengono introdotte, mediante apposito apparecchio per via anale, nell’ultima porzione dell’intestino allo scopo di agire localmente su esso

- **Irrigazioni, lavande, schiume e tamponi**: soluzioni o emulsioni di farmaci che vengono portate mediante appositi apparati (irrigger) a contatto con mucose (uretra, vagina, utero, vescica, intestino, ecc.)

- **Candelette**: applicazioni uretrali di forma cilindrica lunghe 5-10 cm del diametro di 3-7 mm

- **Ovuli**: applicazioni vaginali di forma ovulare
3.2. **Vie di somministrazione**

<table>
<thead>
<tr>
<th>modalità</th>
<th>via</th>
</tr>
</thead>
<tbody>
<tr>
<td>enterale</td>
<td>orale</td>
</tr>
<tr>
<td></td>
<td>sub-linguale</td>
</tr>
<tr>
<td></td>
<td>rettale</td>
</tr>
<tr>
<td>parenterale</td>
<td>endo-vascolare</td>
</tr>
<tr>
<td></td>
<td>sotto-cutanea</td>
</tr>
<tr>
<td></td>
<td>intra-muscolare</td>
</tr>
<tr>
<td></td>
<td>intra--tecale</td>
</tr>
<tr>
<td>inalatoria</td>
<td>polmonare</td>
</tr>
<tr>
<td></td>
<td>nasale</td>
</tr>
<tr>
<td>percutanea</td>
<td>trans-dermica</td>
</tr>
<tr>
<td>topica</td>
<td>occhio</td>
</tr>
<tr>
<td></td>
<td>membrane mucose</td>
</tr>
</tbody>
</table>

Tabella 3.7: Vie di somministrazione

Figura 3.4. Vie di somministrazione principali e correlazione con le vie di distribuzione.
Frecce rosse: circolazione arteriosa; frecce blu: circolazione venosa; frecce gialle: circolo entero-epatico; in viola: eliminazione renale
3.3. Somministrazione per via orale

La maggioranza dei farmaci viene assunta per via orale (la via enterale più comune)

L'assorbimento a seguito di somministrazione orale:

- segue le leggi generali del passaggio dei farmaci attraverso le membrane
- avviene, per tutte le sostanze inclusi i farmaci, principalmente nell'intestino tenue
- è minimo prima del passaggio dello sfintere pilorico (salvo eccezioni)
- può essere irregolare essendo influenzato da:
 - lo stato di pienezza del viscer
 - la natura dei cibi ingeriti contestualmente
 - il grado di motilità, vascolarizzazione e secrezioni intestinali
 - l'uso contemporaneo di altri farmaci

è in genere lento

- in genere il 75% della dose del farmaco somministrata per via orale è assorbita in 1-3 h
- può essere accelerato (somministrazione a stomaco vuoto assieme a una sufficiente quantità di acqua)
- può essere rallentato (somministrazione in preparazioni a cessione ritardata)
3.3.1. Varie preparazioni per la somministrazione per via orale

somministrazione per os sottoforma di:

- pillole gastro-resistenti
- compresse, capsule
- gocce, emulsioni, prep. effervescenti
- pillole con matrice
- pillole rivestite a rilascio ritardato

tratto in cui avviene l’assorbimento
• forma assorbibile del farmaco

A. Il rivestimento si scioglie entrando nel duodeno, liberando il farmaco
B. Il farmaco si libera per azione acida nello stomaco
C. Il farmaco è ingerito già libero
D. il farmaco viene liberato lentamente dalla matrice
E. il farmaco viene liberato dopo un lungo transito intestinale

3.3.2. VANTAGGI DELLA SOMMINISTRAZIONE ORALE

La via orale (per os):

- è la più accettabile dai pazienti (compliance migliore)
- è la più economica
- è la più sicura

3.3.3. SVANTAGGI DELLA SOMMINISTRAZIONE ORALE

La somministrazione orale:

- necessita di una buona cooperazione da parte del paziente
- può portare a nausea e vomito per irritazione gastrica
- non può essere usata per farmaci che vengano distrutti dai succhi gastrici
- non può essere usata per farmaci che formino con i cibi complessi non assorbibili
- non può essere usata per farmaci che vengano estesamente metabolizzati dal fegato a forme inattive prima di raggiungere la circolazione generale (effetto di primo passaggio)
- non può essere usata in pazienti non collaboranti o che non siano in grado di deglutire
- vi è uno scarso controllo della posologia poiché l’assorbimento può essere irregolare
- non può essere usata in terapie di emergenza poiché l’assorbimento è lento
3.3.4. **FATTORI CHE ALTERANO ASSORBIMENTO DEL FARMACO SOMMINISTRATO PER OS**

- **Alterazione della motilità gastrointestinal**
 - Emicrania e neuropatia diabetica possono dar luogo a rallentamento e conseguente stasi gastrica
 - La morfina induce rallentamento delle contrazioni della muscolatura intestinale (proprietà anti-diarrhoeiche)
 - Uno stato diarreico associato ad alterato transito riduce l'assorbimento del farmaco
 - Alterazioni anatomo-fisiologiche (es.: spesso presenti nell’anziano) rallentano l'assorbimento
 - Flusso ematico splanchnico ridotto in stati di ipo-volemia o scompenso cardiaco

- **Alterazioni dell’assorbimento per aumento del tempo di svuotamento gastrico** possono essere correlate con:
 - Le dimensioni delle particelle
 - Le caratteristiche chimico-fisiche delle molecole del farmaco
 - Il tipo di formulazione farmaceutica
3.3.5. **Farmaci prima dei pasti, dopo i pasti e lontano dai pasti**

I pazienti a cui sono stati prescritti farmaci per via orale devono prestare attenzione all’indicazione se la somministrazione deve essere effettuata lontano dai pasti o vicino ai pasti per i seguenti motivi:

- la somministrazione lontano dai pasti comporta un assorbimento più rapido e completo
- vi possono essere delle interazioni fra il farmaco e gli alimenti ingeriti

es.: tetracicline si legano al calcio del latte e suoi derivati e formano complessi che non vengono assorbiti
es.: warfarin interagisce con il succo di mirtillo (aumenta l'assorbimento)
es.: i Ca²⁺-antagonisti interagiscono con il succo di pompelmo (riduzione dell'assorbimento)
es.: l'alcool etilico interagisce con tutti i farmaci del sistema nervoso centrale (SNC)

- per farmaci irritanti la somministrazione in vicinanza dei pasti limita i fenomeni irritativi selle mucose

Distanza dai pasti

per somministrazione prima dei pasti si intende da 30 a 0 minuti prima del pasto
per somministrazione dopo i pasti si intende entro 30 minuti dopo il pasto
per somministrazione lontano dai pasti si intende 3-4 ore prima o dopo il pasto
3.4. Somministrazione per via sub-linguale 📚💊

3.4.1. Vantaggi della somministrazione dei farmaci per via sub-linguale

Alcuni farmaci (es.: nitратi organici, ormoni steroidi, analgesici oppiacei) possono venir somministrati per via sub-linguale, dove la mucosa orale è sottile e la vascolarizzazione è abbondante e superficiale

- l’assorbimento è rapido
- il farmaco raggiunge il circolo generale saltando il filtro epatico (e quindi l’effetto di primo passaggio)
- si evita la possibile distruzione dal farmaco da parte dei succhi digestivi
- si può eliminare il farmaco residuo una volta raggiunto l’effetto

3.4.2. Svantaggi della somministrazione sub-linguale

La somministrazione sub-linguale:

- *necessita una buona collaborazione da parte del paziente*
- *il controllo della posologia è scarso*
- *non può essere usata per farmaci che:*
 - non sono assorbiti dalla mucosa orale
 - non si sciogliono rapidamente in bocca
 - abbiano un sapore sgradevole
 - siano irritanti per la mucosa
3.5. Somministrazione per via rettale

3.5.1. ASSORBIMENTO DEI FARMACI VIA RETTALE

Caratteristiche dell'assorbimento per via rettale:

- segue le leggi generali del passaggio dei farmaci attraverso le membrane
- è in genere quantitativamente inferiore a quello dei farmaci somministrati per via orale (la mucosa dell’ampolla rettale e del sigma ha capacità di assorbimento inferiore a quella del tenue)
- è molto variabile da farmaco a farmaco
- è molto influenzato dallo stato di riempimento dell’ampolla rettale
- è in genere lento
- i farmaci somministrati per via rettale possono evitare (ma solo parzialmente) il filtro epatico e quindi l’effetto di primo passaggio (solo il plesso emorroidario superiore è tributario della vena porta, mentre le vene emorroidarie medie e inferiori sono tributarie dell’iliaca interna)

Figura 3.6. Circolazione venosa rettale
3.5.2. **RAGIONI PER PREFERIRE LA VIA RETTALE**

La via rettale è un’alternativa alla via orale quando quest’ultima è sconsigliabile per:

- presenza di vomito
- paziente non collaborante (es.: bambini)
- degradabilità del farmaco nei fluidi digestivi o interferenza del cibo con l’assorbimento
- malattie che modificano l’assorbimento gastroenterico
- rilevante effetto di primo passaggio
- sapore sgradevole

3.5.3. **INCONVENIENTI NELLA SOMMINISTRAZIONE PER VIA RETTALE**

- diversi farmaci possono causare irritazione della mucosa rettale
- è molto influenzato dallo stato di riempimento dell’ampolla rettale
3.6. Somministrazione per via endo-vascolare

Diverse sono le vie di somministrazione endo-vascolare:
- endovenosa (i.v. o e.v.)
- endo-arteriosa
- intra-cardiaca
- intra-peritoneale: indiretta ma equipollente alla via endovenosa

3.6.1. Caratteristiche generali

Deve essere utilizzata quando:
- l’assorbimento sia scarso per altre vie
- sia impossibile utilizzare altre vie di somministrazione (farmaci irritanti, paziente non collaborante, etc.)
- sia necessaria una comparsa rapida dell’effetto farmacologico (terapie d’emergenza)
- si desideri una grande accuratezza di dosaggio

n.b.: la bio-disponibilità del farmaco somministrato i.v. è pari al 100%
3.6.2. **Somministrazione in bolo e per infusione**

Nella terapia endovenosa le soluzioni e i farmaci vengono iniettati in una vena e introdotti, così, direttamente nel circolo ematico

- una somministrazione di un **singolo bolo** consente di ottenere concentrazioni plasmatiche molto elevate di farmaco
 n.b.: il picco di concentrazione che si ottiene nei tessuti dipenderà dalla velocità di infusione
- una somministrazione per **infusione venosa** costante evita il raggiungimento di alti picchi di concentrazione plasmatica

3.6.3. **Obiettivi della somministrazione endo-vascolare**

La somministrazione endo-vascolare si utilizza per:

- ripristinare e mantenere il bilancio dei liquidi e degli elettroliti
- somministrare farmaci
- fornire nutrienti
- trasfondere sangue ed emoderivati
3.6.4. **INCONVENIENTI DELLA SOMMINISTRAZIONE ENDO-VASCOLARE**

- emorragie
- stravasi
- infezioni
- effetti tossici locali (es.: flebili indotte da amfotericina B) o sistemici (es.: elevate concentrazioni di farmaci anti-neoplastici, anti-aritmici, digitali, etc.)
- sovra-dosaggio
- incompatibilità tra farmaci e soluzioni veicolanti
- allergie
- effetti dirompenti sul circolo (per iniezioni troppo rapide di volumi significativi)
- embolia
- impossibilità di limitare l'assorbimento in caso di errore di farmaco o di dosaggio
3.6.5. Somministrazione endovenosa: vantaggi ed inconvenienti possibili

È vantaggiosa:
- se il farmaco è molto irritante per i tessuti (si ottiene una immediata diluizione specie se si utilizzano vasi di grosso calibro, come attraverso un catetere venoso centrale, CVC)
- se il farmaco non è assorbito per altre vie
- per ottenere un rapidissimo inizio dell’effetto
- per controllare accuratamente la concentrazione ematica del farmaco
- per somministrare grandi quantità di liquidi

Inconvenienti possibili:
- effetti dirompenti sul circolo (per iniezione troppo rapida di grandi volumi)
- embolia
- impossibilità di limitare l’assorbimento in caso di errori di dosaggio

3.6.6. Somministrazione endo-arteriosa

La somministrazione endo-arteriosa è indicata nei casi in cui si voglia raggiungere la massima concentrazione in un unico determinato distretto periferico

La controindicazione principale sta nella complessità dell’atto e nei rischi connessi
3.7. Somministrazione per via sotto-cutanea o intra-muscolare

3.7.1. CARATTERISTICHE GENERALI

L’assorbimento, sia per via sotto-cutanea che intra-muscolare, avviene attraverso l’endotelio dei vasi capillari (o dei vasi linfatici)

L’assorbimento dipende da molti fattori quali il tipo di preparazione farmaceutica, la solubilità del farmaco nel liquido interstiziale, il flusso ematico

L’assorbimento è in genere rapido (10-30 min) per via intramuscolare (specie se il paziente non è a riposo), un po’ meno per via sottocutanea (sempre più rapido dell’assorbimento per os)

L’assorbimento può essere:

- accelerato (massaggio e riscaldamento della parte)
- ritardato (raffreddamento della parte, applicazione di un laccio emostatico, uso di vasocostrittori, uso di preparazioni ritardo o deposito)
3.7.2. **VANTAGGI DELLA SOMMINISTRAZIONE SOTTO-CUTANEA O INTRA-MUSCOLARE**

- È una via parenterale di facile utilizzo anche da parte del paziente stesso o del *care giver* non professionista

3.7.3. **INCONVENIENTI DELLA SOMMINISTRAZIONE SOTTO-CUTANEA O INTRA-MUSCOLARE**

- dolore nel punto di iniezione
- ematomi
- necrosi (della cute, del tessuto sotto-cutaneo o muscolare)
- ascesso sterile
- pigmentazioni
- compromissione di tronchi nervosi
- possibilità di iniezione intra-vasale accidentale
3.8. Somministrazione via intra-tecale

3.8.1. Caratteristiche generali della somministrazione per via intra-tecale

Per somministrazione intra-tecale si intende la somministrazione di un farmaco nello spazio sub-aracnoideo. Questa via viene utilizzata per la somministrazione di:

- farmaci per l'induzione di anestesia regionale
- farmaci analgesici oppiodi
- per il trattamento di patologie a carico del sistema nervoso centrale
 - farmaci anti-batterici
 - farmaci anti-fungini
 - farmaci anti-neoplastici

3.8.2. Vantaggi

Permette il by-pass della barriera emato-encefalica.

3.8.3. Svantaggi

Di complessa attuazione, richiede competenze mediche, con rischi di errori ed effetti collaterali legati alle procedure: in particolare perdita di liquor

Può essere dolorosa per il paziente.
3.9. Somministrazione per via polmonare 🛑

3.9.1. Caratteristiche generali della somministrazione per via polmonare

Attraverso la via polmonare (inalatoria) vengono somministrati farmaci ad effetto sistemico che si presentano allo stato gassoso o nebulizzato

- anestetici generali
- ossigeno
- altri farmaci nebulizzati (es.: insulina per aerosol in fase di sperimentazione)

Se il polmone è l'organo bersaglio del trattamento, questa via di somministrazione risulta il metodo più appropriato

Nel caso di farmaci nebulizzati, il diametro delle particelle deve essere piccolo (inferiore ai 2 µm) per raggiungere gli alveoli polmonari

3.9.2. Vantaggi

Consente un rapido assorbimento per la grande superficie di barriera alveolo-capillare disponibile e per gli elevati flussi ematici e linfatici

Consente la somministrazione di farmaci in fase gassosa o di particelle in aerosol

3.9.3. Svantaggi

- Non consente un dosaggio preciso a causa della quota espirata, con l'eccezione di somministrazione in circuito chiuso come avviene durante le procedure anestesiologiche
- Non possono essere evitati possibili effetti sistemici anche per farmaci che non aggiungono gli alveoli
3.10. Somministrazione per via nasale

3.10.1. Caratteristiche generali della somministrazione per via nasale

La somministrazione per via nasale viene utilizzata per farmaci gassosi o sotto forma di particelle liquide e solide sospese nell’aria (aerosol). L’assorbimento è rapido, ma di entità variabile in quanto dipende dalle dimensioni delle particelle:

- le particelle che raggiungono più efficientemente gli alveoli polmonari hanno dimensioni comprese tra 0.2 e 2 μm
- le particelle di dimensioni > 2 μm si depositano nei bronchi e bronchioli
- le particelle di dimensioni < 0.2 μm scompaiono rapidamente dall’alveolo e vengono espirate
- se le dimensioni sono opportune i farmaci hanno solo effetti locali (malattie polmonari)

3.10.2. Vantaggi

- Non è invasiva
- Si salta il filtro epatico; manca quindi l’effetto di primo passaggio

3.10.3. Svantaggi

- Effetti sistemici non desiderati
3.11. Somministrazione per via trans-dermica 🎈🎉

3.11.1. ASSORBIMENTO DEI FARMACI ATTRAVERSO LA CUTE

La cute integra è assai poco permeabile alla maggior parte dei farmaci a causa dello strato corneo.
La cute si comporta come una barriera lipoidea e pertanto solo farmaci liposolubili possono passare per diffusione semplice, ma il passaggio è in genere molto lento e quantitativamente limitato.
L’assorbimento è maggiore attraverso le ghiandole sudoripare e sebacee, ma rimane scarso e incostante.
L’assorbimento può essere accelerato mediante:
- sospensione del farmaco in veicoli oleosi
- massaggio della cute
- bendaggio occlusivo (favorisce l'assorbimento da parte dei tessuti locali)

3.11.2. VANTAGGI

- Assorbimento lento che consente livelli costanti del farmaco
- Ben tollerato ed accettato dal paziente

3.11.3. SVANTAGGI

- Procedura di lunga durata
- Pochi farmaci adatti a questa via di somministrazione
- Assorbimento impreciso e discontinuo
- Possibili effetti sistemici in particolare in presenza di lesioni della cute
3.12. Somministrazione per vie topiche

3.12.1. Caratteristiche delle somministrazioni topiche

Si definisce somministrazione per via topica l'applicazione di farmaci alla cute, alle mucose o alla congiuntiva per ottenere effetti locali.

Questa via viene utilizzata per:

- farmaci oculistici (colliri o creme somministrati nel sacco congiuntivale)
- unguenti, crema, schiume, gel, candelele a livello delle mucose dell'orecchio, cavità orale, cavità mucose (es.: vagina)

3.12.2. Vantaggi

- Effetto concentrato nei tessuti interessati

3.12.3. Svantaggi

- La somministrazione trans-cutanea di farmaci per ottenere effetti solo locali non elimina l'assorbimento che può dare luogo ad effetti sistemici
- Assorbimento discontinuo ed impreciso
- Possibili effetti sistemici (es.: crisi ipertensiva indotta da fenilefrina in gocce oculari)
3.13. Principali fonti utilizzate

Siti web

wikipedia/commons_Four_colors_of_pills.jpg visitato il 28/03/2013 accessibile il 28/03/2013

treccani.it/vocabolario visitato il 04/04/2013 accessibile il 04/04/2013

galenotech.org/dermatol.htm visitato il 04/04/2013 accessibile il 04/04/2013
4. Bio-disponibilità e distribuzione dei farmaci

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singoli sotto-capitoli)

4. Bio-disponibilità e distribuzione dei farmaci 85
 4.1. LA DISTRIBUZIONE DEI FARMACI .. 87
 4.1.1. Come circola la parte liquida dell’organismo? 88
 4.2. DESTINO DEI FARMACI ... 89
 4.3. BIO-DISPOSIBILITÀ ... 90
 4.3.1. Fattori che influenzano la bio-disponibilità 90
 4.3.2. Bio-equivalenza .. 91
 4.4. IL VOLUME DI DISTRIBUZIONE DEI FARMACI 92
 4.4.1. Liquidi: distribuzione e movimenti .. 92
 4.4.2. Volume apparente di distribuzione dei farmaci nell’organismo 93

4.4.3. Utilità pratica del volume apparente di distribuzione Vd 94
4.4.4. Determinazione del volume apparente di distribuzione Vd 95
4.4.5. Correlazione tra Vd e i compartimenti tissutali coinvolti 96
4.5. LEGAME FARMACO-PROTEINA PLASMATICA 97
 4.5.1. Legame dei farmaci con le proteine plasmatiche: funzione 97
 4.5.2. Concentrazioni plasmatiche e legame alle proteine 98
 4.5.3. Caratteri del legame dei farmaci con le proteine plasmatiche 99
 4.5.4. L’albumina: la principale proteina plasmatica legante i farmaci 100
 4.5.5. Competizione tra farmaci per il legame con le proteine plasmatiche ... 102
4.6. FATTORI CHE MODIFICANO LA DISTRIBUTUZIONE DEI FARMACI 103
4.7. PRINCIPALI FONTI UTILIZZATE ... 104
4.1. La distribuzione dei farmaci

La distribuzione di un farmaco in un dato tessuto dipende principalmente da:
- lipo-solubilità e grado di ionizzazione del farmaco
- entità del flusso ematico nel tessuto
- legame del farmaco alle proteine plasmatiche

La distribuzione iniziale di un farmaco non corrisponde necessariamente alla sua distribuzione finale (fenomeno della ridistribuzione)

Il farmaco può concentrarsi in un dato distretto dell’organismo (depositi intra-cellulari o extra-cellulari) ed esercitarvi
- un effetto farmacologico
ma più spesso
- un effetto tossico (es.: tetracicline e tessuto osseo)
- o nessun effetto (es.: barbiturici e tessuto adiposo)
4.1.1. Come circola la parte liquida dell’organismo?

Il plasma ricircola in un tempo molto rapido: una sostanza iniettata endovenosa, si mescola e raggiunge una diffusione uniforme nel plasma nel giro di pochissimi minuti.

Il plasma inoltre viene ultrafiltrato dal rene molte volte ogni giorno: 3 L è il volume plasmatico, 150 L/d il filtrato glomerulare, quindi il plasma è filtrato da 30 a 50 volte al giorno.

Il ricambio di acqua è poi di più di 2 L al giorno.

<table>
<thead>
<tr>
<th>Tabella 4.8: Organi e flusso ematico. Da Barbieri (2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tessuto</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>polmoni</td>
</tr>
<tr>
<td>reni</td>
</tr>
<tr>
<td>fegato</td>
</tr>
<tr>
<td>cuore</td>
</tr>
<tr>
<td>cervello</td>
</tr>
<tr>
<td>muscoli</td>
</tr>
<tr>
<td>pelle</td>
</tr>
<tr>
<td>tessuto adiposo</td>
</tr>
</tbody>
</table>
4.2. Destino dei farmaci 🌱 🌱 🌱

Il destino dei farmaci può essere considerato nelle seguenti fasi:
- assorbimento dal sito di somministrazione
- distribuzione nell'organismo
- metabolismo
- eliminazione

Figura 4.1. Il plasma: luogo centrale per il destino dei farmaci.
Freccce rosse: movimenti verso il plasma; freccce blu: movimenti in uscita dal plasma verso i tessuti; freccce arancione: circolo entero-epatico
4.3. Bio-disponibilità 🕵️‍♂️ umiejętności

Definizione di bio-disponibilità

Bio-disponibilità è la percentuale di dose somministrata (farmaco non modificato) che raggiunge la circolazione sistemica

- Esempio di bio-disponibilità:
 - somministrati 100 mg di un farmaco via orale
 - 70 mg di questo farmaco sono assorbiti in forma immодificata
 - per cui la bio-disponibilità è del 70%

n.b.: la bio-disponibilità di un farmaco somministrato per via endovenosa è del 100%. Per tutte le altre vie la bio-disponibilità sarà sempre minore del 100%

La formulazione farmaceutica e la via di somministrazione devono essere idonee per favorire la massima bio-disponibilità del farmaco

4.3.1. **Fattori che influenzano la bio-disponibilità**

- Metabolismo epatico di primo passaggio
- Solubilità del farmaco
- Instabilità chimica
- Natura della preparazione farmaceutica

4.3.2. **Bio-equivalenza**

Definizione di bio-equivalenza

Due prodotti farmaceutici sono considerati bio-equivalenti, a parità di attività intrinseca, quando i loro profili concentrazione-tempo, ottenuti con la stessa dose somministrata, sono così simili che è improbabile producano differenze rilevanti negli effetti terapeutici e/o avversi.

- Due preparazioni farmaceutiche sono:
 - chimicamente equivalenti se contengono lo stesso farmaco alle stesse dosi
 - biologicamente equivalenti se portano alle stesse concentrazioni plasmatiche nel tempo, quando somministrate allo stesso individuo
 - terapeuticamente equivalenti se danno lo stesso effetto terapeutico, quando somministrate allo stesso individuo

- La bio-equivalenza di due forme farmaceutiche è particolarmente importante quando il farmaco:
 - ha un basso indice terapeutico
 - è molto potente
 - è usato per il trattamento o la prevenzione di patologie gravi

- Farmaci per i quali sono documentate variazioni rilevanti della bio-disponibilità dovute alla forma farmaceutica
 - es.: digossina, paracetamolo, clordiazepossido, fenitoina, warfarin
4.4. Il volume di distribuzione dei farmaci

4.4.1. Liquidi: distribuzione e movimenti

Figura 4.3 (sopra). Liquidi e solidi. Da: Barbieri (2012)

Movimenti dei liquidi
Da un punto di vista operativo si può generalizzare quanto segue:

- il liquido intra-cellulare comunica con l'esterno attraverso il liquido interstiziale da cui è separato dalla membrana cellulare
- ciò che entra ed esce dal nostro corpo passa attraverso il liquido interstiziale, che è in comunicazione con il plasma
- il plasma e, di conseguenza, il liquido interstiziale, vengono tenuti in continuo ricircolo dalla pompa cardiaca: gli spazi inter-cellulari sono percorsi da una corrente di fluido

Fa eccezione il liquido cefalo-rachidiano, prodotto dai plessi corioidei, che ha un flusso in uscita dal SNC sostenuto dalla pressione di secretezione
4.4.2. **Volume apparente di distribuzione dei farmaci nell’organismo**

Definizione di volume apparente di distribuzione di un farmaco

Il volume apparente di distribuzione (V_d) dei farmaci nell’organismo è quel volume (teorico) che sarebbe necessario per contenere la quantità di farmaco presente nell’organismo alla stessa concentrazione di quella plasmatica.

![image]

I farmaci si distribuiscono nei vari compartimenti in modo disomogeneo:

- **compartimento plasmatico:**
 - farmaci con elevato peso molecolare o che si legano alle proteine plasmatiche non possono passare attraverso le discontinuità endoteliali

- **liquido extra-cellulare:**
 - farmaci con basso peso molecolare ed idrofili che non possono passare le membrane cellulari

- **acqua corporea totale:**
 - farmaci con basso peso molecolare idrofili

- **tessuto adiposo:**
 - farmaci altamente liposolubili

- **altri siti:** **feto**
4.4.3. **Utilità pratica del volume apparente di distribuzione** V_d

$V_d = \frac{D}{C}$

D: quantità di farmaco (dose)
C: concentrazione plasmatica
V_d: volume di distribuzione apparente

- per conoscere la quantità di farmaco presente nell'organismo:

$$V_d \times C = D$$

- per determinare il regime terapeutico ottimale (dose necessaria ad ottenere una data concentrazione plasmatica desiderata)

$$\frac{D}{V_d} = C$$
4.4.4. Determinazione del volume apparente di distribuzione V_d

Il V_d si determina attraverso la somministrazione di una dose standard di un farmaco che inizialmente è contenuto interamente nel sistema vascolare.

Successivamente, il farmaco passa dal plasma nell’interstizio e nelle cellule diminuendo la sua concentrazione plasmatica.

4.4.5. Correlazione tra Vd e i compartimenti tissutali coinvolti

<table>
<thead>
<tr>
<th>Vd calcolato (L)</th>
<th>Farmaci (esempi)</th>
<th>Compartimento tissutale nel quale il farmaco è distribuito</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>eparina, warfarin, furosemide</td>
<td>liquido plasmatico, sistema vascolare</td>
</tr>
<tr>
<td>10-20</td>
<td>aspirina, ampicillina, gentamicina</td>
<td>fluido extra-cellulare (acqua plasmatica e liquido interstiziale)</td>
</tr>
<tr>
<td>20-40</td>
<td>prednisolone, amoxicillina</td>
<td>acqua corporea totale (fluidi extra- ed intra-cellulari)</td>
</tr>
<tr>
<td>70</td>
<td>propanololo, imipramina</td>
<td>accumulo e legame tissutale</td>
</tr>
</tbody>
</table>

Il volume apparente di distribuzione quindi è una misura che non corrisponde ad un volume di un compartimento reale.
4.5. *Legame farmaco-proteina plasmatica* 🌼

- Nel plasma i farmaci si possono trovare in due forme:
 - forma libera
 - forma legata (generalmente a proteine)

- La quantità di farmaco legata ad una proteina dipende da:
 - la concentrazione di farmaco libero
 - la sua affinità per i siti di legame sulle proteine
 - la concentrazione delle proteine a cui si lega

4.5.1. *Legame dei farmaci con le proteine plasmatiche: funzione*

- Il trasporto plasmatico di sostanze legate alle proteine consente di:
 - trasportare nel sangue di sostanze così lipofile da essere insolubili nell’acqua plasmatica
 - ridurre la concentrazione di farmaco libero nel plasma
 - mantenere il gradiente di concentrazione tra lume intestinale e plasma aumentando l’assorbimento intestinale
 - limitare la filtrazione glomerulare (quindi l’eliminazione) ed il passaggio attraverso la BEE e la placenta
 - formare complessi farmaco-proteina che rappresentano un deposito circolante, il quale libera tanto più farmaco quanto più farmaco libero viene metabolizzato o eliminato; il legame quindi diminuisce l’intensità dell’effetto farmacologico, ma ne aumenta la durata

Il trasporto plasmatico di sostanze legate alle proteine è caratterizzato da legami farmaco-proteine di norma non-selettivi, e quindi farmaci diversi possono competere per le stesse proteine (possibilità di *spiazzamento*)
4.5.2. Concentrazioni plasmatiche e legame alle proteine

Nel plasma, a concentrazioni terapeutiche, la maggior parte dei farmaci sono legati alle proteine plasmatiche

- mediamente la frazione di farmaco libera nella soluzione acquosa è bassa
- la forma attiva farmacologicamente è la parte libera

Figura 4.6. Importanza del legame alle proteine per l'intensità e la durata dell'effetto di un farmaco
4.5.3. **Caratteri del legame dei farmaci con le proteine plasmatiche**

- I farmaci si legano, nella maggior parte dei casi
 - all'albumina (se acidi)
 - alla glicoproteina acida α1 (se basici)

- La quantità di farmaco legata è variabile da farmaco a farmaco (es.: barbitale 5%; warfarin 98%)

- Il legame è, salvo rare eccezioni, debole e reversibile; il complesso farmaco-proteina è perciò facilmente dissociabile

- La quota di farmaco legata è in equilibrio con la quota libera nel plasma; se questa cresce, cresce anche la quota legata fino a un massimo (saturazione della capacità di legame delle proteine)

La quota di farmaco legata alle proteine è farmacologicamente inattiva
4.5.4. L’albumina: la principale proteina plasmatica legante i farmaci

<table>
<thead>
<tr>
<th>albumina</th>
</tr>
</thead>
<tbody>
<tr>
<td>F + S ⇌ FS</td>
</tr>
</tbody>
</table>

F = farmaco libero
S = sito di legame
FS = complesso farmaco-albumina

Concentrazione albumina nel sangue:
- è di circa 0.6 mmol/L (4 g/100 mL)
- ha due siti principali di legame per cui può legare i farmaci fino a 1.2 mmol/L
- per la maggior parte dei farmaci la concentrazione plasmatica richiesta per avere un effetto clinico è minore di 1.2 mmol/L
- ne consegue che i siti di legame non sono saturati e la concentrazione FS (farmaco legato) varia in maniera direttamente proporzionale con quella di F (farmaco libero)
- in queste condizioni di non saturazione il seguente rapporto è indipendente dalla concentrazione farmaco

\[
\frac{[FS]}{([F] + [FS])}
\]
Esempio di rapporto tra forma libera e forma legata di un farmaco nel plasma

Aumentando la concentrazione di un farmaco con dose terapeutica vicino alla saturazione dei siti di legame dell'albumina, si aumenta in modo non lineare la concentrazione del farmaco libero
4.5.5. **Competizione tra farmaci per il legame con le proteine plasmatiche**

Classi di farmaci in riferimento al legame con le proteine plasmatiche

- **Farmaci di classe I:**
 - la dose utilizzata del farmaco è inferiore alla capacità di legame dell’albumina
 - i siti di legame sono in eccesso rispetto al farmaco disponibile e la quota di farmaco legata è alta (la maggior parte dei composti di uso clinico)

- **Farmaci di classe II:**
 - il farmaco è somministrato in dosi molto superiori al numero dei siti di legame dell’albumina
 - la quota relativa al farmaco libero è alta

Spiazzamento dei farmaci

- Nel caso di un farmaco di classe I somministrato insieme ad un farmaco di classe II:
 - farmaco di classe I (es.: tolbutamide, sulfaniluree, insulina) si trova inizialmente per il 95% legato e per il 5% libero
 - alla contemporanea somministrazione di un farmaco di classe II (es.: un sulfamidico), quest'ultimo spiazzia il farmaco di classe I dal legame causando un rapido aumento plasmatico della quota libera del farmaco di classe I

Importanza dello spiazzamento dei farmaci

- Lo spiazzamento dei farmaci dalle proteine plasmatiche è importante se:
 - il farmaco che viene spiazzato si trova inizialmente legato per oltre il 90%
 - il paziente ha una ridotta capacità di bio trasformazione epatica del farmaco spiazzato
 - il farmaco spiazzato ha un indice terapeutico ristretto
 - il farmaco spiazzato e lo spiazzante interagiscono farmaco-dinamicamente (warfarin e aspirina)
4.6. **Fattori che modificano la distribuzione dei farmaci**

Sono molti i fattori che modificano la distribuzione dei farmaci:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Età</td>
<td></td>
</tr>
<tr>
<td>✽</td>
<td>ipo-albuminemia nell’anziano e nel neonato</td>
</tr>
<tr>
<td>✽</td>
<td>presenza di albumina fetale a ridotta capacità di legame nel neonato</td>
</tr>
<tr>
<td>✽</td>
<td>presenza di metaboliti endogeni spiazzanti nell’anziano e nel neonato</td>
</tr>
<tr>
<td>Gravidanza</td>
<td></td>
</tr>
<tr>
<td>✽</td>
<td>ipo-albuminemia</td>
</tr>
<tr>
<td>✽</td>
<td>variazioni nei volumi dei compartimenti dell’acqua corporea</td>
</tr>
<tr>
<td>Permanenza a letto</td>
<td></td>
</tr>
<tr>
<td>✽</td>
<td>deterioramento della funzione circolatoria</td>
</tr>
<tr>
<td>Epatopatie</td>
<td></td>
</tr>
<tr>
<td>✽</td>
<td>ipo-albuminemia; accumulo di metaboliti endogeni spiazzanti</td>
</tr>
<tr>
<td>Nefropatie</td>
<td></td>
</tr>
<tr>
<td>✽</td>
<td>ipo-albuminemia; riduzione della capacità di legame della albumina</td>
</tr>
<tr>
<td>Ustioni gravi, malattie infettive e infiammatorie, traumi, interventi chirurgici, neoplasie, colite ulcerosa</td>
<td></td>
</tr>
<tr>
<td>✽</td>
<td>ipo-albuminemia</td>
</tr>
<tr>
<td>✽</td>
<td>aumento della concentrazione di orosomucoide (proteina della fase acuta dell’infiammazione che lega vari farmaci)</td>
</tr>
</tbody>
</table>
4.7. Principali fonti utilizzate

Siti web

http://amsacta.unibo.it/3437

visitato il 15/06/2012 accessibile il 21/03/2013
5. Metabolismo dei farmaci

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singoli sotto-capitoli)

5. Metabolismo dei farmaci .. 105
 5.1. Metabolismo ed attività dei farmaci 107
 5.2. Sistemi metabolici coinvolti nel metabolismo dei farmaci
 .. 108
 5.3. Classificazione delle reazioni metaboliche 109
 5.3.1. Studio del metabolismo del farmaco 110
 5.3.2. Strutture molecolari dell’organismo coinvolti nel metabolismo dei farmaci
 .. 111
 5.3.3. Cambiamento di attività a seguito di metabolismo.......... 112
 5.4. Induzione ed attivazione .. 113
 5.4.1. Induzione vs. attivazione ... 113
 5.4.2. Il citocromo P450 .. 114
 5.4.3. Induzione metabolica enzimatica 117
 5.4.4. Inibizione metabolica ... 118
 5.4.5. Ossidazioni non microsomiali 119
 5.4.6. Alcool Deidrogenasi .. 119
 5.5. Reazioni del metabolismo di fase II 120
 5.5.1. Reazioni di conjugazione ... 120
 5.5.2. Caratteri e conseguenze della glucurono-conjugazione 120
 5.5.3. Circolo entero-epatico .. 121
 5.6. Escrezione .. 122
 5.7. Eliminazione urinaria dei farmaci e/o dei loro metaboliti ...
 .. 123
 5.8. La clearance di un farmaco ... 127
 5.8.1. La clearance renale di un farmaco 127
 5.9. Principali fonti utilizzate ... 128
5.1. Metabolismo ed attività dei farmaci

I farmaci utilizzano i processi metabolici fisiologici che tendono a rendere le molecole del normale metabolismo più idrosolubili e quindi più facilmente eliminabili

- es.: glicuronazione della bilirubina

Anche i farmaci vengono eliminati più rapidamente e non si accumulano se resi idrosolubili attraverso processi metabolici

Le trasformazioni metaboliche che il composto farmaco subisce possono portare a 3 effetti sulla sua attività:

- disattivazione metabolica
- attivazione metabolica
- cambio di attività farmacologica

![Diagramma metabolismo farmaci]

Figura 5.1. Effetti del metabolismo sull'attività dei farmaci. Liberamente tratto dalle lezioni della Dott. Rossella Dall'Olio
5.2. Sistemi metabolici coinvolti nel metabolismo dei farmaci

Gli enzimi deputati alle bio-trasformazioni hanno
- una scarsa specificità
che si traduce in
- una bassa efficienza catalitica
compensata però
- dal loro numero elevato
- dalla loro ubiquità

Figura 5.2. Principali sistemi metabolici coinvolti nel metabolismo dei farmaci

GSH: glutazione ridotto (tripeptide contenente cisteina)
5.3. **Classificazione delle reazioni metaboliche**

Le reazioni metaboliche si classificano come:
- reazioni di fase I
- reazioni di fase II

In generale:
- le reazioni di fase I sono reazioni di **funzionalizzazione**
- le reazioni di fase II sono reazioni di **conjugazione**

Reazioni fase I:
- sono reazioni di degradazione (**cataboliche**)

Le reazioni di fase I modificano il composto di partenza:
- mediante ossidazione, riduzione o idrolisi
- introducendo o liberando un gruppo polare idrofilo

Le reazioni di fase I producono:
- metaboliti che possono essere attivi o inattivi

Ciascun farmaco può subire una o più di queste modificazioni

Reazioni di fase II:
- sono reazioni di sintesi (**anaboliche**)
- le reazioni di fase II trasferiscono substrati endogeni sui farmaci o sui metaboliti della fase I

es.: la conjugazione con acido glucuronico o con solfati da in genere composti più polari e inattivi
5.3.1. Studio del metabolismo del farmaco

Lo studio del metabolismo del farmaco consente:
- di conoscere il meccanismo d’azione
- di conoscere il destino all’interno dell’organismo
- di progettare modifiche strutturali per poter modulare a scopo terapeutico la resistenza alle stesse reazioni metaboliche

<table>
<thead>
<tr>
<th>obiettivi</th>
<th>strategie</th>
</tr>
</thead>
<tbody>
<tr>
<td>aumento della bio-disponibilità (assorbimento)</td>
<td>progettazione di farmaci derivati o di pro-farmaci</td>
</tr>
<tr>
<td>rilascio del farmaco a livello del sito d’azione (distribuzione)</td>
<td>inserimento di modifiche strutturali atte a rallentare/accelerare la bio-trasformazione</td>
</tr>
<tr>
<td>incremento/riduzione della durata d’azione (metabolismo ed eliminazione)</td>
<td></td>
</tr>
</tbody>
</table>
5.3.2. STRUTTURE MOLECOLARI DELL’ORGANISMO COINVOLTE NEL METABOLISMO DEI FARMACI

- Reazioni di fase I
 - gruppi funzionalizzanti più comuni:

 \[R \rightarrow R\text{OH} \quad R \rightarrow R\text{COOH} \]

 \[R \rightarrow R\text{SH} \quad R \rightarrow R\text{NH}_2 \]

- Reazioni di fase II
 - molecole endogene (ME) che donano una parte di se stesse (Y) agli xeno-biotici (XB)

 \[\text{XB} + \text{ME}Y \rightarrow \text{XBY} + \text{ME} \]
5.3.3. **Cambiamento di attività a seguito di metabolismo**

Spesso le reazioni di fase I portano alla formazione di prodotti che sono più reattivi e talvolta più tossici o carcinogenici dei loro farmaci d’origine.

Le reazioni di fase II portano di norma alla formazione di composti inattivi.

○ eccezione: il minoxidil (attivatore dei canali al potassio usato per l’ipertensione grave)

Figura 5.4. Metabolismo e cambiamento di attività dei farmaci

La maggior parte dei farmaci subisce in sequenza: **modificazioni di fase 1** e **coniugazione di fase 2**

Alcuni farmaci vengono direttamente **coniugati in fase 2**

Il farmaco coniugato è generalmente **inattivato**

Dopo le modifiche di fase 1, il farmaco può essere:

- **attivato**
- **inattivato** (evento più frequente)
5.4. Induzione ed attivazione

5.4.1. INDUZIONE VS. ATTIVAZIONE

Figura 5.5. Induzione vs. attivazione

Nel grafico vengono indicati solo i processi che portano ad un aumento (up regulation) dell'attività enzimatica: esistono i processi inversi che portano alla down regulation dell'attività enzimatica

In giallo il processo di induzione; in azzurro il processo di attivazione; in verde il livello di attività enzimatica

Il livello di attività enzimatica viene determinato:

- dall'induzione dall'espressione genica che può venir regolata per induzione o soppressione della trascrizione
- dall'attivazione delle molecole di enzima che può venir regolata da attivatori e soppressori
5.4.2. **IL CITOCROMO P450**

Iso-enzimi del citocromo P450

Il citocromo P450 è uno dei principali attori nel metabolismo dei farmaci. Si presenta con molte isoforme ad attività enzimatica non sovrapponibile (sono stati identificati 57 geni diversi). I principali iso-enzimi P450 sono (tra parentesi % dei farmaci trasformati dalla singola iso-forma):

<table>
<thead>
<tr>
<th>CYP1A1</th>
<th>CYP1A2 (2%)</th>
<th>CYP2A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C9/10 (15%)</td>
<td>CYP2C19 (15%)</td>
<td>CYP2D6 (25%)</td>
</tr>
<tr>
<td>CYP2AE1 (2%)</td>
<td>CYP3A4 (60%)</td>
<td>CYP3A5</td>
</tr>
<tr>
<td>CYP3A7</td>
<td>CYP4A</td>
<td>CYP2B</td>
</tr>
</tbody>
</table>

Co-enzimi ed induttori

Tabella 5.10: Co-enzimi e induttori. Elenco a scopo didattico in continua evoluzione

<table>
<thead>
<tr>
<th>isoenzima: CYP2C/C10</th>
<th>isoenzima: CYP2D6</th>
<th>isoenzima: CYP3A4/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>substrati comuni</td>
<td>induttori</td>
<td>substrati comuni</td>
</tr>
<tr>
<td>warfarin</td>
<td>fenobarbitale</td>
<td>desipramina</td>
</tr>
<tr>
<td>fenitoina</td>
<td>rifampicina</td>
<td>imipramina</td>
</tr>
<tr>
<td>ibuprofene</td>
<td>-</td>
<td>aloperidolo</td>
</tr>
<tr>
<td>tolbutamide</td>
<td>-</td>
<td>propanololo</td>
</tr>
</tbody>
</table>
Citocromo P450 3A4

- CYP3A4 è responsabile del metabolismo di circa il 60% di tutti i farmaci
- rappresenta circa il 28% dei CYP P450
- presente ad alta concentrazioni nella mucosa intestinale, è responsabile del metabolismo effetto primo passaggio per farmaci come clorpromazina e il clonazepam
- bioflavonoidi contenuti nel succo di pompelmo (*Citrus paradisi*) riducono l’espressione di questo enzima
- viene inibito da parecchi farmaci di uso comune, a volte fortemente, più spesso solo parzialmente

Farmaci che inibiscono fortemente CYP3A4

- **antibiotic**i
 - eritromicina
 - claritromicina
 - telitromicina
 - cloramfenicol
- **agenti anti-fungini**
 - ketoconazolo
 - itraconazolo
- **anti-depressivi**
 - nefazolone
- **inibitori delle proteasi**
 - es.: farmaci anti-HIV
Fattori che influenzano la super-famiglia del citocromo P450

- **età**
- **sesto**
- **fattori ambientali. Es.:**
 - fumo di sigaretta
 - inquinanti quali idrocarburi aromatici
- **dieta. Es.:**
 - attivatori: *Cruciferae*, carne di manzo molto arrostita alla brace
 - inibitori: bio-flavonoidi del succo di pompelmo
- **farmaci. Es.:**
 - induttori: barbiturici, anti-convulsivanti, antistaminici, iperico, assunzione cronica di alcool
 - inibitori: estrogeni, cimetidina, anticoagulantì, assunzione acuta di alcool
- **fattori genetici. Es.:**
 - polimorfismo CYPD6: nessun effetto della codeina che deve essere O-demetilata per essere attiva
 - polimorfismo CYP2C9: associato ad effetti letali del warfarin
- **alterata funzionalità epatica (digiuno, epatiti, tumori epatici)**
5.4.3. **Induzione metabolica enzimatica**

- Temporaneo livello variabile di alcuni enzimi bio-trasformanti indotto dalla esposizione cronica a sostanze endogene o a farmaci. Richiede tempo (giorni) per manifestarsi e scomparire.

- Può portare a:
 - riduzione dell’effetto terapeutico
 - aumento dell’effetto terapeutico
 - aumento dell’effetto tossico

Può essere alla base di fenomeni di apparente resistenza alla terapia.

La presenza di induttore può portare alla somministrazione di dosi elevate del farmaco associato che diventano tossiche alla sospensione del trattamento inducente.

Esempi di farmaci che aumentino il metabolismo di altri farmaci per induzione enzimatica

<table>
<thead>
<tr>
<th>Farmaco induttore</th>
<th>Farmaco il cui metabolismo viene aumentato</th>
</tr>
</thead>
<tbody>
<tr>
<td>fenilbutazone (anti-infiammatorio)</td>
<td>cortisolo, digossina</td>
</tr>
<tr>
<td>fenitoina (anti-epilettico, nevralgia del trigemo)</td>
<td>cortisolo, digossina, teofillina</td>
</tr>
<tr>
<td>fenobarbitale e altri barbiturici</td>
<td>anticoagulanti, barbiturici, clorpromazina, cortisolo, fenitoina</td>
</tr>
<tr>
<td>rifampicina</td>
<td>anticoagulanti, digitossina, glucocorticoidi, contraccettivi orali, propranol</td>
</tr>
</tbody>
</table>
5.4.4. **Inibizione metabolica**

L’inibizione metabolica può essere descritta come una **temporanea** riduzione dell’attività di alcuni enzimi bio-trasformanti dovuta a:

- inibizione competitiva o irreversibile
- alterata sintesi enzimatica
- alterata disponibilità di cofattori

Può portare a:

- aumento dell’intensità e della durata dell’effetto terapeutico e tossico
- diminuzione dell’attività farmaco-dinamica e/o tossica (in caso di pro-farmaci)

Esempi di inibitori: anti-fungini, macrolidi, chinina, cimetidina, cloramfenicol, fenotiazine, antidepressivi serotoninergerici, β bloccanti, alcool (uso acuto), bio-flavonoidi del succo di pompelmo

Alcuni farmaci sono:

- inibitori a tempi brevi
- induttori per somministrazioni prolungate

Esempi di farmaci che inibiscono il metabolismo di altri farmaci

Tabella 5.12: Esempi di farmaci che diminuiscono il metabolismo di altri farmaci

<table>
<thead>
<tr>
<th>farmaco inibitore</th>
<th>farmaco il cui metabolismo viene inibito</th>
</tr>
</thead>
<tbody>
<tr>
<td>cimetidina (anti-istaminico anti-H2)</td>
<td>diazepam, warfarin</td>
</tr>
<tr>
<td>dicumarolo</td>
<td>fenitoina</td>
</tr>
<tr>
<td>disulfiram</td>
<td>etanolo, fenitoina, warfarin</td>
</tr>
<tr>
<td>fenilbutrazone (farmaco anti-infiammatorio non steroideo, FANS)</td>
<td>fenitoina</td>
</tr>
</tbody>
</table>
5.4.5. Ossidazioni non microsomiali

Le reazioni di ossido-riduzione non sono esclusivamente microsomiali

- alcool deidrogenasi
- aldeide deidrogenasi
- xantina ossidasi
- diammina ossidasi
- mono-ammina ossidasi

Definizione di microsomi

I microsomi sono strutture sub-cellulari che derivano dalla frammentazione delle vescicole e delle cisterne reticolo endoplasmico durante la ultra-centrifugazione: non esistono come tali in vivo.

5.4.6. Alcool Deidrogenasi

È un enzima presente quasi esclusivamente nelle cellule parenchimali del fegato:

- converte etanolo in acetaldeide
- converte metanolo in formaldeide

\[\text{CH}_3\text{CH}_2\text{OH} + \text{NAD}^+ \rightleftharpoons \text{CH}_3\text{CHO} + \text{NADH} + \text{H}^+ \]

È strettamente associato alla acetaldeide deidrogenasi

\[\text{CH}_3\text{CHO} + \text{CoA} + \text{NAD}^+ \rightleftharpoons \text{acetil-CoA} + \text{NADH} + \text{H}^+ \]

- mentre l'acetaldeide (come tutte le aldeidi) è tossica, l'acetil-CoA (coenzima A) può entrare nel ciclo di Krebs ed essere metabolizzato
- solamente se la produzione di acetil-CoA eccede la capacità del ciclo di Krebs può condensare dando origine a corpi chetonici che sono potenzialmente tossici
5.5. *Reazioni del metabolismo di fase II* 🌈

5.5.1. **Reazioni di coniugazione**

- Se il metabolita derivante da fase I è polare (idrofilo) può essere escreto dal rene
- Se il metabolita derivante da fase I è apolare (lipofilo) può essere riassorbito dal tubolo renale per cui la coniugazione con un substrato endogeno (es.: acido glucuronico, acido solforico, acido acetico, o un amminoacido) da luogo a composti polari più idrosolubili che possono essere eliminati via rene

5.5.2. **Caratteri e conseguenze della glucuronono-coniugazione**

- La glucuronono-coniugazione:
 - è il processo più frequente di bio-trasformazione dei farmaci
 - consiste nel legame tra acido glucuronico (derivato dai carboidrati dell’organismo) e vari gruppi funzionali del farmaco (amminico, carbossilico, sulfidrilico, fenolico, alcoolico)
 - viene catalizzata da enzimi microsomiali epatici (le glucuronil-transferasi)
 - può essere insufficiente (età neonatale, malattie epatiche, etc.) e provocare di conseguenza sindromi morbose (es.: sindrome grigia da cloramfenico)

Il farmaco glucuronono-coniugato:

- diventa più idrosolubile e farmacologicamente inattivo, tranne rare eccezioni (es.: la morfina 6-glucuronide che è 6 volte più potente della morfina)
- può passare con la bile dal fegato all’intestino dove è idrolizzato dalle β-glucuronidasi (intestinali e batteriche) ritornando libero e quindi riassorbibile (es. fisiologico: circolo entero-epatico della bilirubina)
5.5.3. **Circolo entero-epatico**

Le tappe del circolo entero-epatico:
- dopo somministrazione orale un farmaco viene trasportato, via vena porta, al fegato (reazioni di funzionalizzazione)
- al pH fisiologico le molecole sono trasformate in acidi e sono prevalentemente ionizzate: la carica negativa conferisce una alta polarità (incapaci di passare la membrana)
- questi prodotti vengono coniugati, poi passano dagli epatociti all'intestino attraverso la bile
- nell'intestino, i prodotti O-glucurononati possono essere scissi per azione di \(\beta \)-glucuronidasi batteriche della flora intestinale, permettendo la liberazione di molecole del farmaco che vengono riassorbite a livello del colon

Figura 5.7. Circolo entero-epatico
Liberamente tratto da Lüllmann (2000)
5.6. Escrezione

L'escrezione avviene tramite:
- urina
- feci
- respirazione
- traspirazione
- latte materno

L'escrezione di un farmaco comporta un movimento dello stesso opposto a quello che l'aveva condotto nella sede d'azione.

Si ha un ritorno del farmaco dai tessuti al sangue poi un passaggio dal sangue agli organi di escrezione e infine un passaggio da questi agli escreti fisiologici dell'organismo. La escrezione costituisce, assieme all'accumulo nei depositi e alla bio-trasformazione un mezzo per allontanare il farmaco dalla sede d'azione e, pertanto, per porre fine al suo effetto farmacologico.

Figura 5.8. Destino di una sostanza a
5.7. Eliminazione urinaria dei farmaci e/o dei loro metaboliti

Caratteri della eliminazione urinaria dei farmaci

L'eliminazione urinaria dei farmaci avviene al netto di tre eventi:

- filtrazione glomerulare
- secrezione tubulare
- riassorbimento tubulare
Caratteri della filtrazione glomerulare dei farmaci

Quando il sangue scorre nell’arteria glomerulare la quota di farmaco libero nel plasma verrà filtrata dal glomerulo assieme agli altri costituenti plasmatici

Non verranno filtrati:
 - la quota di farmaco legata alle proteine
 - farmaci di diametro molecolare superiore ai 100 Å (diametro dei pori dei capillari glomerulari)

Poiché solo la quota libera viene filtrata, farmaci tenacemente legati alle proteine plasmatiche verranno escreti più lentamente dal rene

La velocità di filtrazione glomerulare di un farmaco dipende principalmente dalla pressione del sangue nell’arteriola glomerulare. In condizioni standard:

\[
VGF = 125 \text{ mL/min} \quad \text{che è il 20\% di} \quad FPR = 600 \text{ mL/min}
\]

VGF= velocità filtrazione glomerulare; FPR= flusso plasmatico renale

Caratteri della secrezione tubulare dei farmaci

La secrezione tubulare dei farmaci
 - è un processo di trasporto attivo (nella maggior parte dei casi)
 - è localizzata a livello del tubulo prossimale
 - dipende dalla presenza di due sistemi di trasporto (per le basi e per gli acidi) scarsamente specifici
 - poiché i sistemi hanno scarsa specificità, differenti acidi (o differenti basi) possono competere per il sistema di trasporto; non esiste invece competizione tra un acido e una base
 - entrambi i sistemi di trasporto sono saturabili e pertanto ogni sostanza, eliminata da tale sistema, ha una sua massima velocità di secrezione (\(T_m = \text{Tubular maximum} \))
Caratteri del riassorbimento tubulare dei farmaci

- il riassorbimento tubulare dei farmaci:
 - avviene a livello di tutto il tubulo
 - è, a parità di altre condizioni, tanto maggiore quanto maggiore è la lipo-solubilità del farmaco
 - dipende, per farmaci che sono elettroliti deboli, dal pH dell’urina tubulare:
 - il riassorbimento degli acidi deboli verrà favorito se il loro pK è maggiore del pH (urina acida)
 - il riassorbimento delle basi deboli verrà favorito se il loro pK è minore del pH (urina basica)

Caratteri dei farmaci escreti con le urine

- I farmaci od i loro metaboliti escreti con le urine sono polari e/o ionizzati

Figura 5.10. Il riassorbimento tubulare dei farmaci
5.8. La clearance di un farmaco

Si definisce clearance di un farmaco la quantità di plasma che viene liberata (cleared) da quel farmaco nell’unità di tempo (espressa in mL/min)

La clearance è un indice della velocità di scomparsa di un farmaco dal plasma

I processi che portano alla scomparsa di un farmaco dall’organismo avvengono principalmente nel fegato (biotrasformazione, CLE) e nel rene (escrezione, CLR). Altri organi possono, in misura minore, contribuire alla scomparsa del farmaco (CLA). La clearance totale (total body clearance) sarà allora:

\[
\text{CL totale} = \text{CLR} + \text{CLE} + \text{CLA}
\]

La clearance totale può essere definita da:

\[
\text{CL} = \text{costante di eliminazione} \ (K_{el}) \times V_d
\]

La clearance totale esprime la frazione di \(V_d\) che può essere purificata da quel farmaco nell’unità di tempo

5.8.1. La clearance renale di un farmaco

La velocità con cui un farmaco viene escreto dal rene varia, a parità di altre condizioni, a seconda del tipo del farmaco stesso

tale velocità può essere misurata dalla clearance renale

una sostanza filtrata dal glomerulo e non riassorbita ne secreta dal tubulo avrà una clearance renale pari a 125 (quantità di plasma filtrato in un minuto)

pertanto farmaci con clearance renale inferiore a 125 verranno riassorbiti dal tubulo, farmaci con clearance renale superiore a 125 verranno secreti da tubulo
5.9. Principali fonti utilizzate

Siti web

medicine.iupui.edu/clinpharm/ddis/table.aspx visitato il 26/10/2012 accessibile il 20/03/2013
wikimedia.org_CYP3A4_PDB1W0E visitato il 26/10/2012 accessibile il 20/03/2013
amsacta.cib.unibo.it/34377/ visitato il 26/09/2012 accessibile il 20/03/2013
6. Meccanismi di farmaco-cinetica

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singolo sotto-capitolo)

6. Meccanismi di farmaco-cinetica .. 129
 6.1. Farmaco-cinetica ... 131
 6.1.1. Emivita di un farmaco ... 132
 6.2. Cinetica di scomparsa dei farmaci 135
 6.2.1. Cinetica e somministrazione 135
 6.2.2. Caratteri della cinetica di primo ordine 136
 6.2.3. Caratteri della cinetica di ordine 0 138
 6.3. Cinetica della somministrazione continua 139

 6.3.1. Influenza della velocità di infusione 140
 6.3.2. Il periodo di wash out ... 141
 6.3.3. Dose di carico .. 142
 6.3.4. L’accumulo di farmaci nell’organismo 142

6.4. Somministrazione multipla e raggiungimento dello stato

stazionario ... 144
 6.4.1. Farmaci somministrati via orale 146
 6.5. Principali fonti utilizzate .. 147
6.1. Farmaco-cinetica

La farmaco-cinetica descrive i processi che determinano:

- velocità assorbimento
- velocità di distribuzione
- velocità di eliminazione

Definizione di farmaco-cinetica

La farmaco-cinetica si occupa di cambiamenti quantitativi nel tempo sia della concentrazione plasmatica sia delle quantità totali del farmaco nell’organismo in seguito alla sua somministrazione.

Curva relativa alla concentrazione plasmatica di un farmaco in funzione del tempo

Figura 6.1. Andamento temporale della concentrazione plasmatica di un farmaco. Sono indicati la concentrazione massima raggiunta (C_{max}), il tempo necessario per raggiungere la concentrazione massima (T_{max}) e l’area sottocurva (area under curve, AUC).

Liberamente tratto dalle lezioni della dott. Rossella Dall’Olio
6.1.1. **Emivita di un farmaco**

Definizione di emivita

L’emivita di un farmaco è un parametro che viene definito come la quantità di tempo necessaria affinché la sua concentrazione si dimezzi nel compartimento di riferimento

- I due eventi che determinano la diminuzione della concentrazione plasmatica di farmaco attivo sono:
 - metabolismo
 - eliminazione

L’emivita di un farmaco si riferisce solitamente al compartimento dove si svolge la sua attività farmacologica

- es.: l’emivita nel plasma di un farmaco è un parametro che viene definito come la quantità di tempo necessaria affinché la concentrazione plasmatica del farmaco stesso si dimeodzi

- L’emivita è un parametro necessario per capire:
 - quanto tempo il farmaco sarà presente a livello plasmatico a concentrazioni terapeutiche
 - quanto tempo sarà necessario per eliminare quasi completamente la quantità di farmaco somministrata
Parametri che influenzano l'eliminazione

I parametri che influenzano l'eliminazione di un farmaco sono:
- la clearance
- il volume di distribuzione

Ne consegue che alterano l'eliminazione attesa:
- una riduzione della clearance o aumento del volume di distribuzione che aumentano l'eliminazione di un farmaco
- modificazioni di condizioni fisiologiche che influenzano il volume di distribuzione
- la diminuzione della massa magra in un paziente anziano o l'aumento della massa grassa in un obeso
- altre condizioni patologiche
Figura 6.2. Emivita plasmatica di alcuni farmaci (approssimata). n.b.: la scala del tempo è logaritmica
6.2. Cinetica di scomparsa dei farmaci

Le cinetiche principali di scomparsa dei farmaci sono due:

- cinetica di primo ordine: ad ogni intervallo di tempo viene eliminata una percentuale costante (situazione più comune)
- cinetica di ordine zero: ad ogni intervallo di tempo viene eliminata una quantità costante (generalmente in somministrazioni ad alto dosaggio)

6.2.1. Cinetica e somministrazione

La cinetica di scomparsa dei farmaci dipende dalla modalità di somministrazione:

- **Dose singola**
 Per dose singola si intende una dose somministrata singolarmente e non ripetuta prima dello smaltimento della dose stessa

- **Infusione continua**
 Per infusione continua si intende una somministrazione lenta e costante per raggiungere un equilibrio tra farmaco introdotto e farmaco eliminato

- **Somministrazione multipla**
 Per somministrazione multipla si intende la somministrazione di dosi discrete in presenza del farmaco non ancora eliminato: le dosi si sovrappongono parzialmente

- **Washout (smaltimento)**
 Per washout si intende il tempo necessario perché un farmaco comunque somministrato sia eliminato
6.2.2. Caratteri della cinetica di primo ordine

Si dice che la scomparsa di un farmaco dall’organismo segue una cinetica di primo ordine se una percentuale costante della concentrazione di quel farmaco è metabolizzata o eliminata nell’unità di tempo:

- la curva di scomparsa ha perciò un andamento esponenziale;
- l’emivita plasmatica è costante, cioè è indipendente dalla concentrazione del farmaco e quindi dalla dose somministrata;
- la maggior parte dei farmaci scompare dall’organismo seguendo una cinetica di primo ordine.

Figura 6.3. Modello ad un compartimento (distribuzione istantanea, eliminazione di primo ordine)

Decremento mono-esponenziale della concentrazione plasmatica di un farmaco

\(Cp\% = \text{percentuale della concentrazione plasmatica} \)
Eliminazione di primo ordine: percentuali rispetto all'emivita

Tabella 6.13: Percentuali della quantità di un farmaco eliminata secondo una cinetica di primo ordine dopo un dato numero di emivite plasmatiche

<table>
<thead>
<tr>
<th>numero di emivite</th>
<th>percentuale di farmaco eliminata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 = 50%</td>
</tr>
<tr>
<td>3</td>
<td>50 + 25 = 75%</td>
</tr>
<tr>
<td>3</td>
<td>50 + 25 + 12.5 = 87.5%</td>
</tr>
<tr>
<td>4</td>
<td>50 + 25 + 12.5 + 6.25 = 93.75%</td>
</tr>
<tr>
<td>5</td>
<td>50 + 25 + 12.5 + 6.25 + 3.125 = 96.9%</td>
</tr>
<tr>
<td>6</td>
<td>50 + 25 + 12.5 + 6.25 + 3.125 + 1.56 = 97.5%</td>
</tr>
</tbody>
</table>
6.2.3. **CARATTERI DELLA CINETICA DI ORDINE 0**

Si dice che la scomparsa di un farmaco dall’organismo segue una cinetica di ordine zero quando una **quantità** costante di quel farmaco è metabolizzata o eliminata nell’unità di tempo.

È la situazione tipica per farmaci somministrati a dosi alte

- la curva di scomparsa del farmaco ha perciò un andamento rettilineo
- l’emivita plasmatica non è costante ma direttamente proporzionale alla concentrazione (cioè alla dose somministrata)
- diversi farmaci che di norma seguono una cinetica di primo ordine passano a una cinetica di ordine zero quando la loro concentrazione nell’organismo supera una certa soglia

Figura 6.4. Cinetica di ordine 0. Liberamente tratto dalle lezioni della Dott. Rossella dall'Olio
6.3. Cinetica della somministrazione continua

- Con infusioni endovenose continue, la velocità di ingresso di un farmaco nell’organismo è costante.
- La quasi totalità dei farmaci segue una cinetica di primo ordine, cioè viene metabolizzata una percentuale costante del farmaco per unità di tempo.
- La concentrazione ematica aumenta fino a che la velocità di eliminazione del farmaco non compensa la velocità di ingresso (stato stazionario).

6.3.1. **Influenza della velocità di infusione**

La velocità di infusione del farmaco influenza la concentrazione plasmatica in modo diretto:

- lo stato stazionario è raggiunto quando la velocità di somministrazione è uguale alla velocità di eliminazione.
- raddoppiando la velocità di infusione si raddoppia la concentrazione plasmatica finale.
- patologie renali o epatiche aumentano la concentrazione allo stato stazionario del farmaco diminuendo la clearance.

6.3.2. **IL PERIODO DI WASH OUT**

Eventualmente quando si interrompe l’infusione inizia il periodo di wash out (smaltimento) con un andamento temporale simile a quello osservato nel raggiungimento dello stato stazionario.

Il solo meccanismo presente è quello della eliminazione.

6.3.3. **Dose di carico**

Nel caso in cui esista un ritardo nel raggiungimento di livelli plasmatici necessari per indurre un effetto farmacologico, non accettabile in campo clinico, si somministra al paziente una **dose di carico** del farmaco, sotto forma di dose singola, seguita da una infusione volta al mantenimento dello stato stazionario:

\[D_C = V_d \times C_{ss} \]

dove \(D_C \) = dose di carico; \(V_d \) = volume di distribuzione; \(C_{ss} \) = concentrazione plasmatica del farmaco allo stato stazionario desiderata

6.3.4. **L’accumulo di farmaci nell’organismo**

Poiché se un farmaco segue una cinetica di primo ordine occorre un tempo pari a 4 volte l’emivita plasmatica per la sua quasi scomparsa dall’organismo, qualsiasi intervallo tra le somministrazioni inferiore a tale periodo porterà ad accumulo del farmaco

- in tal caso infatti la concentrazione del farmaco nell’organismo cresce esponenzialmente fino a quando la quantità eliminata è equivalente a quella somministrata (stato stazionario o *plateau*)

- la velocità con cui lo stato stazionario viene raggiunto dipende dalla costante di eliminazione del farmaco \(K_e \) che è inversamente proporzionale all’emivita plasmatica del farmaco ed è indipendente dalla dose somministrata e dall’intervallo tra le somministrazioni

- semplici calcoli dimostrano che lo stato stazionario (esattamente il 93.75% del *plateau*) viene raggiunto in un tempo uguale a 4 emivite plasmatiche
Accumulo di un farmaco nell'organismo dopo somministrazioni ripetute

Tabella 6.14: Accumulo di farmaco. Il $T_{1/2}$ del farmaco è di quattro ore

<table>
<thead>
<tr>
<th>(h)</th>
<th>quantità del farmaco nell'organismo</th>
<th>INTERVALLO TRA LE DOSI: 4 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prima della dose</td>
<td>dopo la dose</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>10.00</td>
</tr>
<tr>
<td>4</td>
<td>5.00</td>
<td>15.00</td>
</tr>
<tr>
<td>8</td>
<td>7.50</td>
<td>17.50</td>
</tr>
<tr>
<td>12</td>
<td>8.75</td>
<td>18.75</td>
</tr>
<tr>
<td>16</td>
<td>9.38</td>
<td>19.38</td>
</tr>
<tr>
<td>20</td>
<td>9.69</td>
<td>19.69</td>
</tr>
<tr>
<td>24</td>
<td>9.84</td>
<td>19.84</td>
</tr>
<tr>
<td>28</td>
<td>9.92</td>
<td>19.92</td>
</tr>
<tr>
<td>32</td>
<td>9.96</td>
<td>19.96</td>
</tr>
<tr>
<td>infinito</td>
<td>10.00</td>
<td>20.00</td>
</tr>
</tbody>
</table>
6.4. Somministrazione multipla e raggiungimento dello stato stazionario

La somministrazione a dose fisso è preferibile alla somministrazione per infusione continua.

In caso di somministrazione endovenosa singola il tempo di dimezzamento non dipende dalla dose iniettata.

In caso di iniezione multipla se si inietta un farmaco ripetutamente a intervalli di tempo regolari si raggiungerà lo stato stazionario (intervalli 5 volte minori rispetto al tempo di dimezzamento.

Cinetica dei regimi a dose fissa/a intervallo di tempo fisso

- Se si riduce la dose di farmaco e si somministrano dosi più piccoli ad intervalli più brevi, a parità di dose totale somministrata si riducono le fluttuazioni di concentrazione.

(a) Concentrazione plasmatica e dose; (b) oscillazioni della concentrazione in funzione della frequenza di somministrazione a dose complessiva fissa.
6.4.1. Farmaci somministrati via orale

Le caratteristiche principali dei farmaci somministrati per via orale (per os) sono:

- i farmaci somministrati via orale sono assunti sulla base di un regime a dosi fisse a intervalli regolari
- l'assorbimento dei farmaci per via orale è lento
- la concentrazione plasmatica del farmaco è influenzata sia dalla velocità di assorbimento sia dalla velocità di eliminazione
- la somministrazione orale ripetuta da luogo ad oscillazioni delle concentrazioni plasmatiche
- una singola dose del farmaco data per via orale da luogo ad un singolo picco della concentrazione plasmatica seguito da un progressivo declino dei livelli del farmaco

6.5. Principali fonti utilizzate

7. Farmaco-dinamica

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singoli sotto-capitoli)

7. Farmaco-dinamica ... 149
 7.1. Farmaco-dinamica .. 151
 7.2. Luogo di azione dei farmaci 152
 7.2.1. Le proteine come bersaglio dei farmaci 153
 7.2.2. Il DNA (geni) come bersaglio dei farmaci 153
 7.2.3. Altri bersagli ... 154
 7.3. Recettori dei farmaci .. 155
 7.3.1. Classi di recettori cellulari 158
 7.3.2. Recettori canale .. 160
 7.4. Recettori intra-cellulari ... 162
 7.5. Interazioni farmaco-recettore 163
 7.6. Attività intrinseca .. 164
 7.6.1. Affinità, attività intrinseca, efficacia 164
 7.6.2. Agonisti parziali .. 165
 7.6.3. Attivazione costitutiva dei recettori 165
 7.7. Farmaci agonistì ... 166
 7.7.1. Curve dose-risposta 167
 7.7.2. Potenza ed efficacia di farmaci agonisti 168
 7.8. Agonisti inversi .. 169
 7.9. Antagonisti ... 170
 7.9.1. Antagonisti competitivi 171
 7.9.2. Antagonisti non competitivi 172
 7.10. Principali fonti utilizzate 174
7.1. Farmaco-dinamica

Definizione di farmaco-dinamica

La farmaco-dinamica è lo studio degli effetti biochimici e fisiologici dei farmaci sull'organismo, ed il loro meccanismo d'azione

La farmaco-dinamica si occupa quindi di:

- identificare i siti d'azione dei farmaci
- delineare le interazioni fisiche e/o chimiche tra farmaco e cellula
- caratterizzare la sequenza completa farmaco-effetto
7.2. **Luogo di azione dei farmaci**

Gli effetti terapeutici e tossici dei farmaci traggono origine dalle loro interazioni con molecole presenti nell’organismo.

Per lo più i farmaci agiscono combinandosi con macromolecole specifiche in modo tale da alterarne le proprietà biochimiche e biofisiche.

Definizione di recettore di un farmaco

Si definisce **recettore di un farmaco** *il componente di una cellula che interagisce con un farmaco dando inizio alla catena di eventi biochimici che portano agli effetti farmacologici.*

I recettori si differenziano dai **trasportatori** (es.: albumina):

- i trasportatori legano il farmaco e mediano la sua distribuzione ma non la sua attività farmacologica.

I recettori si differenziano dai **bersagli molecolari**:

- Una molecola bersaglio si lega con un ligando per indurre effetti specifici. Una molecola bersaglio può essere di origine esogena o endogena.
7.2.1. Le proteine come bersaglio dei farmaci

I bersagli proteici più comuni dei farmaci sono:
- recettori
- enzimi
- trasportatori
- canali ionici

7.2.2. Il DNA (geni) come bersaglio dei farmaci

Più raramente i farmaci, direttamente o indirettamente, hanno come bersaglio il DNA con effetti che possono essere:
- aspecifici (es.: mutazioni casuali)
- specifici (es.: attivazione o disattivazione genica)

Effetti dell'etanolo tramite l'induzione genica

- *mitogen-activated, extracellular-activated kinase* (MEK) e *extracellular signal-regulated protein kinase* (ERK) possono essere responsabili della neuroplasticità indotta da alcool
- l'etanolo induce espressione di **Immediately early genes** IEG (*c-fos* e *egr-1*) in regioni cerebrali che sono associate con il reward (gratificazione)
- in condizioni di non-dipendenza (intossicazione alcoolica acuta) l’attivazione di *c-fos* indotta da una somministrazione acuta di alcool non è MEK-dipendente
- in condizioni di dipendenza, l’aumento dell’espressione di *c-fos* indotta da una somministrazione acuta di alcool, è dipendente dalle MEK poiché un pretrattamento con l'inibitore delle MEK UO126, ristabilisce i caratteri fisiologici
7.2.3. **Altri bersagli**

Alcuni farmaci, non agiscono attraverso l’interazione con un recettore proteico.

<table>
<thead>
<tr>
<th>categoria di farmaci</th>
<th>bersaglio</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-acidi</td>
<td>ioni idrogeno (H⁺)</td>
</tr>
<tr>
<td>diuretici e preparati osmotici</td>
<td>H₂O</td>
</tr>
<tr>
<td>agenti chelanti i metalli</td>
<td>metalli pesanti (Fe, Cu, etc.)</td>
</tr>
<tr>
<td>falsi substrati o composti</td>
<td>bio-polimeri (DNA)</td>
</tr>
</tbody>
</table>
7.3. Recettori dei farmaci 🌟🌟

- I recettori sono responsabili della selettività dell’azione farmacologica

- I recettori determinano le relazioni quantitative tra dose ed effetti farmacologici
 Alterazioni della funzione recettoriale (quantitative o qualitative) causano alterazioni nell'attività dei farmaci

- Sono recettori per i farmaci ad es.:
 - recettori per i neurotrasmettitori e gli ormoni
 - enzimi
 - canali ionici
 - acidi nucleici
Bersagli proteici dei farmaci

Figura 7.1. Bersagli proteici dei farmaci: **recettori**

![Diagramma dei recettori](immagine1.png)

- Agonista
 - direttamente apertura del canale ionico
 - attraverso trasduzione
 - attivazione/inibizione dell’enzima
 - modulazione del canale ionico
 - trascrizione del DNA
 - nessun effetto
 - blocco del mediatore endogeno

Figura 7.2. Bersagli proteici dei farmaci: **canali ionici**

Esempi:
- didropine (armaci vasodilatatori)
- benzodiazepine (farmaci tranquillanti)
- sulfaniluree (farmaci anti-diabetici)
- barbiturici

![Diagramma dei canali ionici](immagine2.png)

- Bloccanti
 - chiusura del canale
- Modulatori
 - aumento/diminuzione della probabilità di apertura del canale

continua nel quadro seguente
Figura 7.3. Bersagli proteici dei farmaci: **enzimi**
Esempi:
- neostigmina (inibitore reversibile della acetilcolin-esterasi)
- aspirina (inibitore irreversibile della cicloossigenasi)
- fluoro-uracile (falso substrato ad attività anti-neoplastica)

Figura 7.4. Bersagli proteici dei farmaci: **trasportatori**
Esempi:
- diuretici dell’ansa (blocco della pompa Na⁺/K⁺/2Cl⁻)
- glicosidi cardio-attivi (blocco della pompa Na⁺/K⁺)
- omeoprazolo (blocco della pompa protonica)
7.3.1. **Classi di recettori cellulari**

- **Canali ionici regolati da ligandi (recettori ionotropi)**
- **Recettori accoppiati alle proteine G (metabotropici)**
- **Recettori accoppiati a chinasi**
- **Recettori nucleari**

Effetti cellulari

<table>
<thead>
<tr>
<th></th>
<th>msec</th>
<th>sec</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>finestra temporale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec. ACh nicotinico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>esempi</td>
</tr>
<tr>
<td>Rec. Ach muscarinico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rec. citochine</td>
</tr>
<tr>
<td>Rec. citochine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rec. estrogeni</td>
</tr>
</tbody>
</table>

Recettori stimolatori ed inibitori attraverso la trasduzione delle G protein

Figura 7.6. Recettori stimolatori ed inibitori accoppiati alle G protein

Le G protein (proteine G) sono proteine trasduttrici di segnale presenti nelle membrane cellulari

Le G protein sono accoppiate con recettori sulle membrane

Il genoma umano codifica per circa 950 recettori accoppiati alle G protein in grado di reagire a:
- fotoni (luce)
- ormoni e fattori di crescita
- farmaci
- altri ligandi endogeni

Malfunzionamenti delle vie di segnale relate ai recettori accoppiati alle G protein (GPRC, G protein-coupled receptor) sono coinvolti nella patogenesi di molte condizioni patologiche. Ad es.:
- diabete
- cecità
- allergie
- depressione
- difetti cardiovascolari
- alcune forme di neoplasia

Viene stimato che più della metà dei recettori cellulari per i principi attivi farmacologici in uso oggi siano recettori accoppiati alle G protein.
7.3.2. Recettori canale

Sono recettori canale:
- recettori nicotinici
- recettori GABAα (acido γ-ammino-butirrico)
- recettori per la glicina
- recettori ionotropi per il glutammato
- recettore canale per il sodio/potassio

![Diagram of a channel receptor showing sites of binding for acetylcholine, potassium, sodium, and acetylcholine bound to the channel in open and closed states.](image)

Figura 7.7. Recettore canale per sodio/potassio. Sodio entra, potassio esce
Recettore canale del GABA_A

Figura 7.8. Recettore canale dell'acido γ-ammino-butirrico (GABA_A) e farmaci che interagiscono con esso

Liberamente tratto da: Beelli (2005)
7.4. Recettori intra-cellulari

I recettori intra-cellulari trasducono il segnale portato da ormoni e da altri mediatori lipofilici:
- ormoni steroidei e tiroidei
- acido retinoico
- vitamina D
- altri

I recettori intra-cellulari interagiscono con il genoma, modificando l’espressione genica e quindi la composizione proteica della cellula.

7.5. **Interazioni farmaco-recettore**

- L’interazione fra un farmaco e un recettore determina una attivazione o una non-attivabilità del recettore

- L’interazione tra un farmaco e un recettore segue la legge chimica dell’azione di massa

- Il farmaco interagisce con un recettore e l’effetto risultante è proporzionale al numero dei recettori occupati

- Il legame farmaco-recettore è:
 - **saturabile**
 - **stereo-specifico**
 - **reversibile**

- **L’interazione-farmaco-recettore è responsabile degli effetti farmacologici e degli effetti indesiderati**
 - **L’interazione tra farmaco e recettore è mediata da legami chimici deboli come:**
 - ponti idrogeno
 - forze di van der Waals
 - interazioni idrofobiche

Figura 7.10. Interazione farmaco-recettore: agonista vs. antagonista. Liberamente tratto da Rang (2003)

R: recettore; R*: recettore attivato
7.6. Attività intrinseca

L'attività intrinseca riflette la capacità di un farmaco di determinare un effetto biologico

7.6.1. Affinità, attività intrinseca, efficacia

L'affinità di un farmaco esprime la "forza" con cui il farmaco si lega al recettore: un farmaco che si combina "bene" col recettore e risulta fortemente legato, possiede una elevata affinità per quel recettore.

Farmaci che agiscono su recettori dello stesso tipo, possono però produrre risposte di differente entità per la loro diversa attività intrinseca.

L'attività intrinseca è la misura della risposta massima che il farmaco può produrre (non incrementabile neppure somministrandolo a dosi molto più alte); è un parametro per distinguere farmaci che si legano allo stesso sito recettoriale ma non producono effetti uguali: esprime cioè l'efficacia del farmaco.

Due farmaci che agiscono sugli stessi recettori e possiedono la stessa affinità, ma diversa attività intrinseca (o efficacia) richiedono una differente quantità di recettori occupati per produrre la stessa risposta, il che equivale a dire che il farmaco con più bassa attività intrinseca (o efficacia) richiede un maggior numero di recettori occupati e quindi una dose più alta.
7.6.2. **Agonisti parziali**

- Alcuni agonisti non sono in grado di indurre la risposta massima a qualsiasi concentrazione a cui vengono utilizzati.
- Tali farmaci sono definiti **agonisti parziali**.
- Posseggono una **minore attività intrinseca** o **minore efficacia**.

7.6.3. **Attivazione costitutiva dei recettori**

- Recettori che in assenza di ligando sono fisiologicamente costitutivamente attivati (es.: recettori per benzodiazepine, cannabinoidi, dopamina).
- Recettori che in assenza di ligando sarebbero fisiologicamente inattivi, possono essere attivati per una mutazione: attivazione costitutiva patologica (es.: aumento del numero di recettori β-adrenergici).
- In queste condizioni un ligando potrebbe ridurre il livello di attivazione costitutiva.
7.7. **Farmaci agonisti**

Si definisce **agonista** un farmaco che si lega ad un recettore e genera una risposta biologica.

Generalmente un agonista riproduce gli effetti dei composti endogeni correlati. L’entità della risposta indotta dipende dalla concentrazione del farmaco a livello del sito recettoriale, che, a sua volta, è dipendente:

- dalla dose farmaco somministrata
- dalla velocità assorbimento
- dai caratteri chimico-fisici del farmaco

La cinetica di un farmaco agonista è caratterizzata da 2 parametri principali:

- effetto massimo
- dose efficace media (ED₅₀, effective dose 50)

Figura 7.11. Cinetica di un farmaco agonista. Dalle lezioni della Dott. R. Dall'Olio
7.7.1. **Curve dose-risposta**

Le curve dose/risposta consentono di paragonare efficacia e potenza di due farmaci diversi.

L’effetto di un farmaco è proporzionale al numero di recettori occupati, quindi aumenta all’aumentare della dose.

l’effetto massimo si verifica quando tutti i recettori sono occupati

Figura 7.12. Curva dose-risposta: paragone tra potenza ed efficacia di acetilcolina e propionilcolina

Acetilcolina (endogena) e propionilcolina (esogena, farmaco) agiscono sui medesimi recettori.

Liberamente tratto dalle lezioni della Dott. Rossella Dall'Olio.
7.7.2. Potenza ed efficacia di farmaci agonisti

La potenza di un farmaco cresce in maniera inversamente proporzionale alla dose richiesta per l'effetto farmacologico.

L'efficacia di un farmaco cresce in funzione dell'effetto massimo raggiungibile nell'ambito dei dosaggi utilizzabili.

Figura 7.13. Potenza di un farmaco

Liberamente tratto dalle lezioni della Dott. Rossella Dall'Olio

Figura 7.14. Efficacia di un farmaco

Liberamente tratto dalle lezioni della Dott. Rossella Dall'Olio
7.8. Agonisti inversi

Alcuni farmaci possono spostare l’equilibrio a favore della forma inattiva del recettore. Essi hanno una alta affinità per la forma inattiva del recettore: legandosi lo bloccano in questo stato.

Vengono chiamati: • **agonisti inversi** (farmaci con efficacia negativa)

per distinguendoli da: • **agonisti** (efficacia positiva)

• **antagonisti** (efficacia zero)

Figura 7.15. Agonisti inversi

Dati da: Rang (2003)

a a

agonista

agonista in presenza di antagonista

agonista inverso in presenza di antagonista

b b

agonista in presenza di antagonista

agonista inverso in presenza di antagonista

antagonista in presenza di antagonista inverso
7.9. Antagonisti

Definizione di farmaco antagonista

Gli antagonisti sono farmaci che si legano con alta affinità ai recettori, ma non sono in grado di indurre di per sé una risposta biologica

L’effetto farmacologico di un antagonista è dovuto alla sua proprietà di inibire l’effetto dell’agonista endogeno che agisce attraverso lo stesso recettore

Classificazione dei farmaci antagonisti

I farmaci antagonisti possono essere:

- competitivi
- non competitivi (allosterici)

L'antagonismo dei farmaci può essere

- antagonismo chimico
- antagonismo farmaco-cinetico
- antagonismo sul recettore
- antagonismo fisiologico
7.9.1. **Antagonisti competitivi**

Gli antagonisti competitivi si legano reversibilmente allo stesso sito a cui si lega l’agonista.

Le due molecole perciò competono per un sito comune

Un antagonista competitivo sposta la curva dose-risposta dell’agonista verso destra

Aumentando la concentrazione di agonista si può generare lo stesso effetto massimo ottenuto in assenza dell’antagonista

Un antagonista competitivo riduce la potenza dell’agonista

Figura 7.16. Antagonismo competitivo: schema (in alto a dx.); cinetica (in basso). Curva dose effetto del farmaco agonista in presenza di dosi crescenti (da a ad e) di farmaco antagonista

Liberamente tratto dalle lezioni della Dott. Rossella Dall'Olio
7.9.2. **Antagonisti non competitivi**

Gli antagonisti non competitivi possono:
- interagire in modo irreversibile con lo stesso sito dell’agonista
- legarsi ad un sito del recettore diverso da quello occupato dall’agonista (meccanismo allosterico)

Un antagonista non competitivo deprime l’effetto massimo ottenibile anche con dosi elevate dell’agonista senza modificarne la potenza

Figura 7.17. Antagonismo non competitivo: schema (in alto a dx.); cinetica (a dx). A: farmaco agonista; C: farmaco antagonista; AR: complesso attivo farmaco-recettore; ARB: complesso inattivo farmaco-recettore

Liberamente tratto dalle lezioni della Dott. Rossella Dall'Olio
Antagonismo chimico

Si definisce antagonismo chimico la situazione in cui due sostanze si combinano in soluzione e l’effetto del farmaco attivo viene annullato

- es.: agenti chelanti dei metalli pesanti

Antagonismo farmaco-cinetico

Si definisce antagonismo farmaco-cinetico la situazione in cui l’antagonista riduce efficacemente la concentrazione del farmaco attivo al suo sito di azione

Può avvenire con:

- aumento della velocità di degradazione metabolica del farmaco (es.: il fenobarbitale riduce l’effetto anticoagulante del warfarin)
- riduzione dell’assorbimento gastrointestinale

Antagonismo fisiologico

Describe l’interazione di due farmaci le cui azioni opposte sull’organismo tendono ad annullarsi reciprocamente

es.:
- l’istamina agisce sui recettori delle cellule parietali della mucosa gastrica per indurre secrezione
- l’omeoprazolo blocca questo effetto attraverso inibizione della pompa protonica

Antagonismo sul recettore

Gli antagonisti possono agire sul recettore con due meccanismi diversi, producendo un effetto “sormontabile” o “insormontabile”
7.10. Principali fonti utilizzate

Siti web

neves G protein pathways Science

w u assay development G-protein

visitato il 23/10/2012 accessibile il 20/03/2013

visitato il 23/10/2012 accessibile il 20/03/2013
8. Attività farmacologica

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singoli sotto-capitoli)

8. Attività farmacologica .. 177
 8.1. ATTIVITÀFarmacologica ... 179
 8.2. INDICE TERAPEUTICO E PROFILI DI SICUREZZA ED EFFICACIA ... 180
 8.2.1. Indice terapeutico ... 180
 8.2.2. Profili di efficacia e sicurezza 181
 8.2.3. Il margine di sicurezza .. 182
 8.3. RELAZIONE TRA DOSE PRESCRITTA DI UN FARMACO ED IL SUO
 EFFETTO FARMACOLOGICO ... 184
 8.3.1. Relazione dose-concentrazione-intensità dell’effetto 184
 8.4. FATTORI INERENTI AL FARMACO 185
 8.4.1. Tolleranza farmaco-cinetica 186
 8.4.2. Tolleranza farmaco-dinamica 186
 8.4.3. Desensibilizzazione dei recettori 187
 8.5. FATTORI INERENTI AL PAZIENTE 188
 8.5.1. Emivita plasmatica del farmaco ed età del paziente 189
 8.5.2. Risposte farmacologiche abnormi determinate geneticamente 190
 8.5.3. Risposte farmacologicamente abnormi determinate da fattori patologici non
 correlati ... 192
 8.5.4. Fattori dietetici .. 193
 8.5.5. Compliance del paziente alla terapia 194
 8.6. MECCANISMI DELLE INTERAZIONI TRA FARMACI (ANTAGONISMO O
 SINERGISMO) .. 196
 8.6.1. Incompatibilità fisico-chimiche 197
 8.6.2. Interazioni a livello dell’assorbimento gastro-intestinale 197
 8.6.3. Interazioni a livello del legame farmaco-proteine plasmatiche 197
 8.6.4. Interazioni a livello del metabolismo dei farmaci 198
 8.6.5. Interazioni a livello della eliminazione dei farmaci per via renale 198
 8.6.6. Interazioni a livello funzionale 198
 8.6.7. Interazioni a livello della sede di azione 198
 8.7. PRINCIPALI FONTI UTILIZZATE 199
8.1. Attività farmacologica

Un farmaco può indurre:

- modificazioni positive per la salute: **medicamento**
- modificazioni negative per la salute: **tossico o veleno**

L'interazione farmaco-recettore è responsabile degli effetti terapeutici e degli effetti tossici dei farmaci

Portio et interactiones faciunt venenum (prof. Gian Luigi Biagi): L'attività farmacologica (tossica o terapeutica) è strettamente dipendente dalla dose e dalla interazione con sostanze presenti nell'organismo del paziente (altri farmaci, alimenti, sostanze ambientali)

Figura 8.1. Relazione farmaco-recettore-risposta
8.2. **Indice terapeutico e profili di sicurezza ed efficacia**

8.2.1. **Indice terapeutico**

L'indice terapeutico è un indice della sicurezza di un farmaco.

- I farmaci che hanno un alto indice terapeutico sono molto maneggevoli.
- I farmaci che hanno un basso indice terapeutico sono poco maneggevoli.

![Figura 8.2. Alto e basso indice terapeutico](image)
8.2.2. **Profilo di efficacia e sicurezza**

Definizioni di **profilo di efficacia e profilo di sicurezza**

L’insieme degli effetti utili costituisce il **profilo di efficacia** di un principio attivo

L’insieme degli effetti collaterali e tossici è alla base del **profilo di sicurezza** di un farmaco

La forma farmaceutica, le vie e le modalità di somministrazione del medicinale possono in parte modificare il profilo di efficacia e sicurezza del principio attivo

- es.: forme farmaceutiche a rilascio modificato per via orale o parenterale tendono a ridurre il picco di concentrazione del principio attivo e quindi ridurre il rischio di effetti collaterali o tossici concentrazione-dipendenti

- es.: forme orali a rilascio pronto o somministrazioni endovenose a bolo possono comportare picchi eccessivi di concentrazioni plasmatiche e tissutali con possibile comparsa di effetti tossici

Un farmaco viene utilizzato come medicinale se le dosi utili per indurre gli effetti terapeutici sono inferiori alle dosi che inducono effetti dannosi

- più è ampia la distanza fra dosi terapeutiche e dosi tossiche più il medicinale è considerato sicuro: **finestra terapeutica**

Gli effetti avversi che si considerano in questa valutazione sono quelli il cui impatto sul paziente eccede gli effetti terapeutici cercati

- es.:
 - nausea e vomito lievi sarebbero un effetto significativo per un farmaco anti-antipiretico in un contesto di febbre moderata, portando a sospensione della terapia
 - nausea e vomito, anche significativi, sono effetti accettabili nel contesto di una terapia anti-neoplastica e non portano a sospensione della terapia stessa
8.2.3. **Il margine di sicurezza**

Indice terapeutico:

\[TI = \frac{TD_{50}}{ED_{50}} \]

Ti: *therapeutic index* (indice terapeutico)
TD: *therapeutic dose* (dose terapeutica)
ED: *effective dose* (dose efficace)

Margine di sicurezza:

\[MS = \frac{TD_1}{ED_{99}} \]

MS: margine di sicurezza

Figura 8.3. Il margine di sicurezza

Liberamente tratto dalle lezioni della Dott. Rossella Dall'Olio
<table>
<thead>
<tr>
<th>farmaco</th>
<th>dose efficacite (mg)</th>
<th>dose letale (mg)</th>
<th>indice terapeutico</th>
</tr>
</thead>
<tbody>
<tr>
<td>adrenalina</td>
<td>1</td>
<td>50-100</td>
<td>50-100</td>
</tr>
<tr>
<td>clorpromazina</td>
<td>100</td>
<td>5,000-10,000</td>
<td>50-100</td>
</tr>
<tr>
<td>fenitoina</td>
<td>100</td>
<td>5,000</td>
<td>50</td>
</tr>
<tr>
<td>diazepam</td>
<td>20</td>
<td>1,000</td>
<td>50</td>
</tr>
<tr>
<td>aspirina</td>
<td>1,000</td>
<td>30,000</td>
<td>30</td>
</tr>
<tr>
<td>pentobarbitale</td>
<td>100</td>
<td>1,000</td>
<td>10</td>
</tr>
<tr>
<td>imipramina</td>
<td>300</td>
<td>3,000</td>
<td>10</td>
</tr>
<tr>
<td>digitossina</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>chinidina</td>
<td>100</td>
<td>300</td>
<td>3</td>
</tr>
</tbody>
</table>
8.3. Relazione tra dose prescritta di un farmaco ed il suo effetto farmacologico

8.3.1. RELAZIONE DOSE-CONCENTRAZIONE-INTENSITÀ DELL'EFFETTO

Figura 8.4. Dose-concentrazione-intensità dell'effetto
Liberamente tratto dalle lezioni della Dott. Rossella Dall'Olio

- Dose prescritta
 - atteggiamento mentale del paziente
 - errori nella somministrazione

- Dose somministrata
 - velocità dell'assorbimento
 - intensità dell'assorbimento
 - distribuzione
 - biotrasformazione
 - velocità di eliminazione

- Concentrazione del farmaco nel sito d'azione

- Intensità dell'effetto
 - interazione farmaco-recettore
 - effetto placebo
8.4. Fattori inerenti al farmaco 🕵️‍♀️

不爱 Formulazione farmaceutica
- es.: molti farmaci vengono somministrati sotto forma di prodotti a cessione prolungata per ridurre le fluttuazioni delle concentrazioni plasmatiche del principio attivo e aumentare la compliance

不爱 Schema terapeutico
- es.: scelta del momento della somministrazione (es.: antistaminici prima di coricarsi per effetto sedativo, psicostimolanti nelle ore diurne)

不爱 Tolleranza
- Si parla di:
 - tolleranza farmaco-cinetica quando vi è una diminuzione della concentrazione del farmaco nel sito di azione
 - tolleranza farmaco-dinamica quando subentra un fenomeno di adattamento cellulare

Definizione di compliance

La compliance describe il rispetto da parte del paziente della terapia farmacologica
8.4.1. **Tolleranza farmaco-cinetica**

Si parla di tolleranza farmaco-cinetica quando un farmaco agisce su un organismo riducendo il proprio assorbimento o accelerando la velocità di eliminazione

Es.:
- i barbiturici stimolano il proprio metabolismo inducendo un aumento degli enzimi del metabolismo deputati alla loro bio-trasformazione

8.4.2. **Tolleranza farmaco-dinamica**

Si parla di tolleranza farmaco-dinamica quando l'organismo si adatta alla presenza continuativa del farmaco
È un fenomeno frequente con:
- morfina, ansiolitici, anfetamina (a livello del sistema nervoso centrale (SNC))
- farmaci quali i β2-stimolanti e i nitro-vasodilatatori

La tolleranza farmaco-dinamica spesso dipende da processi di desensibilizzazione

Es.:
- l'adattamento cellulare (plasticità neuronale) in seguito a trattamenti ripetuti con farmaci agonisti di determinati sistemi recettoriali attraverso anche il fenomeno della *down regulation* dei recettori
8.4.3. **Desensibilizzazione dei recettori**

- Somministrazioni ripetute o croniche di un farmaco (agonista o antagonista) possono indurre cambiamenti della responsività del recettore

 È un sistema di protezione sistemica da una stimolazione continua che può arrivare ad indurre morte cellulare per apoptosi

- Perdita di capacità di rispondere all’agonista

 - se la perdita di capacità è specifica del recettore attivato si parla di desensibilizzazione omologa

 - se l’attivazione prolungata di un sistema si induce una perdita di risposta anche di altri recettori si dice desensibilizzazione eterologa

Tipi di desensibilizzazione

- Esistono differenti tipi di desensibilizzazione:

 - se la somministrazione ripetuta o continuata porta una diminuzione dell’effetto si parla di tachifilassi

 - se la somministrazione ripetuta o continuata porta ad una diminuzione dei recettori si parla di down-regulation

- Caso a parte è rappresentato dai recettori voltaggio-dipendenti dopo la stimolazione che hanno un tempo di latenza prima di poter essere riattivati di nuovo

 I recettori in questa fase sono definiti refrattari o non responsivi
8.5. Fattori inerenti al paziente

<table>
<thead>
<tr>
<th>Fattori genetici</th>
<th>Stati patologici</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fattori dietetici</td>
<td>Compliance</td>
</tr>
<tr>
<td>Peso corporeo</td>
<td>Temperatura ambientale</td>
</tr>
<tr>
<td>Età</td>
<td>Stato di riempimento del tubo gastro-enterico</td>
</tr>
<tr>
<td>Sesso</td>
<td>Condizione di lavoro o di riposo muscolare</td>
</tr>
<tr>
<td>Gravidanza</td>
<td>Appartenenza etnica</td>
</tr>
</tbody>
</table>
8.5.1. Emivita plasmatica del farmaco ed età del paziente

<table>
<thead>
<tr>
<th>farmaco</th>
<th>giovani: 20-30 y (T<sub>1/2</sub> ematico, h)</th>
<th>anziani: 65-80 y (T<sub>1/2</sub> ematico), h</th>
<th>fattore di allungamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>isoniazide</td>
<td>1.40</td>
<td>1.50</td>
<td>1.10</td>
</tr>
<tr>
<td>warfarin</td>
<td>37.00</td>
<td>44.00</td>
<td>1.19</td>
</tr>
<tr>
<td>tetracicline</td>
<td>5.50</td>
<td>4.50</td>
<td>1.26</td>
</tr>
<tr>
<td>fenilbutazone</td>
<td>81.20</td>
<td>104.60</td>
<td>1.29</td>
</tr>
<tr>
<td>digossina</td>
<td>51.00</td>
<td>73.00</td>
<td>1.43</td>
</tr>
<tr>
<td>fenazeone</td>
<td>12.00</td>
<td>17.40</td>
<td>1.47</td>
</tr>
<tr>
<td>fenobarbitale</td>
<td>71.00</td>
<td>107.00</td>
<td>1.51</td>
</tr>
<tr>
<td>diidrostreptomicina</td>
<td>5.20</td>
<td>8.40</td>
<td>1.62</td>
</tr>
<tr>
<td>lidocaina</td>
<td>1.34</td>
<td>2.33</td>
<td>1.63</td>
</tr>
<tr>
<td>clordiazepossido</td>
<td>8.90</td>
<td>16.7</td>
<td>1.70</td>
</tr>
<tr>
<td>penicillina G</td>
<td>0.35</td>
<td>0.65</td>
<td>1.86</td>
</tr>
<tr>
<td>kanamicina</td>
<td>1.78</td>
<td>4.70</td>
<td>2.25</td>
</tr>
<tr>
<td>amminopirina</td>
<td>3.00</td>
<td>10.00</td>
<td>3.33</td>
</tr>
<tr>
<td>diazepam</td>
<td>20.00</td>
<td>80.00</td>
<td>4.00</td>
</tr>
</tbody>
</table>
8.5.2. **Risposte farmacologiche abnormi determinate geneticamente**

- **Modificata sintesi di enzimi**
 - es.: inattivatori lenti e rapidi dell’isoniazide

- **Mancata sintesi di enzimi**
 - es.: deficienza della glucoso-6-fosfato deidrogenasi

- **Mancato assorbimento**
 - es.: nell’anemia perniciosa giovanile manca il fattore intrinseco necessario per l’assorbimento intestinale di vitamina B$_{12}$: resistenza alla somministrazione orale di vitamina B$_{12}$

- **Alterazioni recettoriali**
 - es: ridotto numero di recettori β2 nelle vie aeree di asmatici: asma bronchiale
 - es.: disfunzione dei recettori insulinici: diabete resistente all’insulina
 - es.: disfunzione dei recettori per le LDL: ipercolesterolemia familiare
Farmaci ed altri fattori che possono scatenare crisi emolitiche in pazienti con deficienza di glucosio-6-fosfato deidrogenasi

- Farmaci: primachina ed altri antimalarici simili, amminofenazone, acido nalidixico, nitrofurantoina, sulfamidici, chinina e chinidina

- Alimenti: fave

- Patologie concorrenti: acidosi diabetica, epatite, mononucleosi, polmoniti e setticemie batteriche
8.5.3. **Risposte farmacologicamente abnormi determinate da fattori patologici non correlati**

- **Febbre**: è aumentato il passaggio di molti farmaci attraverso le membrane

- **Insufficienza epatica cronica**: può essere diminuito il metabolismo dei farmaci

- **Insufficienza renale cronica**: è diminuita l’eliminazione di molti farmaci
 Per quanto riguarda la distribuzione, questa patologia può indurre:
 - variazioni del pH sistemico (acidosi uremica o alcalosi da ipo-kaliemia)
 - ridotta capacità legame proteine plasmatiche-farmaco, associata alla ipo-albuminemia

- **Insufficienza respiratoria cronica**: è aumentato l’effetto di farmaci che deprimono il centro respiratorio

- **Ipertiroidismo**: è aumentato l’effetto dei simpatico-mimetici

- **Diabete**: è aumentato l’effetto di farmaci iper-glicemizzanti
8.5.4. **FATTORI DIETETICI**

I fattori legati all'assunzione di cibi comprendono:

- interazione tra alimenti e farmaci che alterano assorbimento del farmaco es.: latte e tetracicline
- allungamento tempo assorbimento a stomaco vuoto (indotto da uno svuotamento gastrico rallentato dalla somministrazione del farmaco non con la giusta quantità di acqua, cioè circa 200 mL)
- aumento dell'apporto di sostanze endogene (proprie comunque dell'organismo) ed esogene (estranee all'organismo) che può aggravare e/o indurre patologie

L'ingestione orale di IMAO (inibitori delle monoammino-ossidasi)

- l'ingestione orale di inibitori delle IMAO inibisce il catabolismo di catecolamine e serotonina
- in alcuni soggetti questo può provocare crisi ipertensive anche gravi

Pertanto

- l'assunzione di IMAO non deve essere accompagnata da antidepressivi o farmaci ad azione simpatico-mimetica
- l'assunzione di IMAO combinata con alimenti che contengono tiramina può innescare una incrementazione eccessiva di noradrenalina
8.5.5. **Compliance del paziente alla terapia**

Definizione di compliance

La compliance describe il rispetto delle procedure terapeutiche da parte del paziente

➡️ L’aderenza del paziente alla terapia farmacologica è fondamentale per la riuscita della stessa

➡️ La variabilità della compliance apporta imprevedibilità nella risposta individuale alla terapia farmacologica

- un farmaco con **buona compliance** genera risposte terapeutiche omogenee: **buona affidabilità**
- un farmaco con **scarsa compliance** genera risposte terapeutiche imprevedibili: **scarsa affidabilità**

➡️ Si osservano deviazioni dallo schema consigliato da parte del paziente in percentuali che variano dal 25% al 60%, in diverse situazioni

- **la mancata compliance è quindi un problema sempre presente**
Cause di bassa o mancata compliance

Le cause di una bassa compliance sono generalmente dovute a:
- mancanza di comprensione dell’importanza del farmaco
- mancanza di comprensione dello scopo per il quale è stato prescritto
- mancanza di comprensione delle modalità di somministrazione

Caso per caso sono da valutare anche:
- fattori economici
- insorgenza di reazioni avverse
- disturbi di memoria o incuria verso il proprio stato di salute
- scomparsa dei sintomi prima del completamento della ciclo terapeutico
- ritardo della comparsa degli effetti attesi

Pertanto:

la compliance del paziente nei confronti di una terapia farmacologica dipende in modo decisivo dall'appropriatezza delle informazioni ricevute dal personale sanitario.
8.6. Meccanismi delle interazioni tra farmaci (antagonismo o sinergismo)

I meccanismi delle interazioni tra farmaci possono essere classificati come:

- incompatibilità fisico-chimiche
- interazioni a livello dell’assorbimento gastro-intestinale
- interazioni a livello del legame farmaco-proteine plasmatiche
- interazioni a livello del metabolismo dei farmaci
- interazioni a livello della eliminazione dei farmaci per via renale
- interazioni a livello funzionale
- interazioni a livello della sede di azione
8.6.1. **Incompatibilità fisico-chimiche**

♀ Reazioni chimico-fisiche in sede di preparazione farmaceutica che possono portare a:
- inattivazione per neutralizzazione e/o precipitazione
- trasformazione in sali tossici (incompatibilità)
 - es.: noradrenalina + sodio bicarbonato

8.6.2. **Interazioni a livello dell’assorbimento gastro-intestinale**

♀ Interazioni a livello dell’assorbimento gastro-intestinale:
- cambiamenti del pH del contenuto gastrico o intestinale
- azioni sul tempo di svuotamento gastrico e sulla motilità intestinale
- combinazione di farmaci nel lume intestinale (chelazione, adsorbimento)
- effetti tossici sul tubo gastroenterico

8.6.3. **Interazioni a livello del legame farmaco-proteine plasmatiche**

♀ Es.: spostamento di un farmaco dal suo legame con l’albumina con conseguente aumento della quota libera (quota attiva)
8.6.4. **INTERAZIONI A LIVELLO DEL METABOLISMO DEI FARMACI**

- etanolo che compete per le deidrogenasi epatiche
- induzione enzimatica epatica da barbiturici

8.6.5. **INTERAZIONI A LIVELLO DELLA ELIMINAZIONE DEI FARMACI PER VIA RENALE**

- inibizione competitiva del trasporto tubulare
- cambiamenti del pH urinario
- cambiamenti nell’equilibrio idro-salino

8.6.6. **INTERAZIONI A LIVELLO FUNZIONALE**

- i due farmaci agiscono su organi, apparati o sistemi aventi funzioni sinergiche o opposte

8.6.7. **INTERAZIONI A LIVELLO DELLA SEDE DI AZIONE**

- lo spiazzamento dell'eroïna e farmaci morfino-simili da tutti i siti recettoriali (μ, κ, δ) da parte del naloxone (Narcan®) che è un antagonista puro
 - il naloxone viene usato in caso di depressione respiratoria da sovra-dosaggio di eroina od altre sostanze morfino-simili
 - si può precipitare una sindrome da astinenza
 - n.b.: l'emivita del naloxone è più breve dell'emivita dell'eroïna: è quindi obbligatorio il monitoraggio continuo del paziente
8.7. Principali fonti utilizzate

9. **Tossicità da farmaci**

I edizione
Roberto Rimondini-Giorgini, Luigi Barbieri

(vedi singoli sotto-capitoli)

9. Tossicità da farmaci ... 201
 9.1. DIFFERENTI TIPI DI TOSSEITÀ DA FARMACI 203
 9.1.1. Reazioni avverse ai farmaci .. 204
 9.1.2. ADR A .. 205
 9.1.3. ADR B: dovute al paziente .. 208
 9.2. ALLERGIA DA FARMACI ... 210
 9.2.1. Reazioni allergiche o di ipersensibilità 210
 9.2.2. Reazioni allergiche di I tipo .. 211
 9.2.3. Reazioni allergiche di II tipo ... 214
 9.2.4. Reazioni allergiche di III tipo .. 215
 9.2.5. Reazioni allergiche di IV tipo .. 216
 9.2.6. Reazioni anafilattoidi .. 216
 9.3. ALTERAZIONI FISILOGICHE DURANTE LA GRAVIDANZA 217
 9.4. LA DISTRIBUZIONE AL FETO: IL CASO DELLA TERATOGENESI DA
 TALIDOMIDE ... 218
 9.4.1. Storia della Talidomide ... 218
 9.4.2. Storia della Talidomide II secondo il primo comunicato della ditta
 produttrice .. 219
 9.4.3. Foetal alcohol spectrum disorders (FASDs) 222
 9.5. SINDROME DEL BAMBINO GRIGIO ... 223
 9.6. PRINCIPALI FONTI UTILIZZATE .. 224
9.1. Differenti tipi di tossicità da farmaci

I differenti tipi di tossicità da farmaci (reazioni avverse) possono essere classificati come:

- effetti collaterali
- tossicità da iper-dosaggio
- idiosincrasia
- allergia
- farmaco-dipendenza
- teratogenesi
- carcinogenesi
9.1.1. Reazioni avverse ai farmaci

Le reazioni avverse (ADR) rappresentano un gruppo di patologie (malattie iatrogene, cioè generate dall'intervento medico/sanitario) caratterizzate da manifestazioni cliniche estremamente variabili per quanto riguarda sintomi, decorso e prognosis.

Possono coinvolgere differenti meccanismi:
- farmacologici
- immunologici
- metabolici
- genetici

Sono distinte in tre tipi:
- ADR A: reazioni avverse di tipo A (dovute al farmaco) prevedibili e spesso evitabili
- ADR B: reazioni avverse di tipo B (dovute al paziente) ignote o non conosciute
- ADR C: reazioni avverse di tipo C (effetti statistici) eventi spontanei
9.1.2. ADR A

Eccesso di azione farmacologica principale

Dosaggio incongruo. Es.:
- sonnolenza eccessiva da benzodiazepine
- crisi ipoglicemiche da insulina
- emorragie da anticoagulanti

n.b.: questi effetti possono presentarsi anche a dosi terapeutiche

Interazioni farmacologiche (sia farmaco-cinetiche che farmaco-dinamiche). Es.:
- emorragie causate dallo spiazzamento di anticoagulanti dalle proteine plasmatiche in seguito alla somministrazione di FANS (farmaci anti-flogistici non steroidei)

ADR A: effetti collaterali

Gli effetti indesiderati di un farmaco presenti già alle dosi terapeutiche di comune utilizzo
- compaiono in una percentuale variabile di pazienti
- compaiono con la maggior parte dei farmaci
- compaiono anche alla prima somministrazione
- presentano una relazione dose-effetto

es.:
- ipotensione ortostatica da neuroleptici
- sonnolenza da antistaminici
- diarrea da chinidina
Tossicità da iper-dosaggio

Effetti indesiderati di un farmaco che compaiono solo per dosi elevate, in genere superiori a quelle terapeutiche

- compare in tutti i pazienti
- compare con tutti i farmaci
- compare anche alla prima somministrazione
- è presente una relazione dose-effetto
- la terapia, se possibile, si effettua con antagonisti specifici e bloccando, ove possibile, un ulteriore assorbimento della dose somministrata

es.:

- depressione respiratoria da barbiturici
- emorragie da anticoagulanti
- convulsioni da acido acetilsalicilico
Sovra-dosaggio

Si distinguono:

-sovra-dosaggio assoluto
-sovra-dosaggio relativo

Sovra-dosaggio assoluto immediato:

- effetto avverso dovuto all’assunzione di dosi superiori a quelle terapeutiche (errore, volontario o involontario)

Sovra-dosaggio assoluto cumulativo

- dovuto a lenta escrezione del farmaco e conseguente aumento delle concentrazioni nell’organismo fino a livelli tossici
e.s.: per emivita lunga del principio attivo (digitale)

Sovra-dosaggio relativo con uno o più meccanismi farmaco-cinetici sono alterati:

- riduzione dei meccanismi detossificanti (metabolismo e/o escrezione)
- interazioni farmaco-dinamiche
- spiazzamento dal legame con le proteine plasmatiche
- inibizione farmaco-metabolica
9.1.3. ADR B: DOVUTE AL PAZIENTE

Reazioni di intolleranza associate a condizioni

- preesistenti
- imprevedibili
- non dose-dipendenti

Possono essere:

- **banali**

es.: esantemi cutanei minori da farmaci

- **fatali**

es.: reazioni anafilattiche
 - reazioni cutanee gravi (eritema multiforme o sindrome di Stefens-Johnson, necrolisi epidermica o sindrome di Lyell)

Si dividono in:

- **reazioni da idiosincrasia**
- **reazioni da allergia**
Idiosincrasia

L’idiosincrasia è una reazione abnorme ad un farmaco geneticamente determinata:

- compare solo con alcuni farmaci
- compare solo in alcuni pazienti
- compare anche alla prima somministrazione
- la gravità delle manifestazioni è dose dipendente

Idiosincrasia da alterazione genica

<table>
<thead>
<tr>
<th>difetto</th>
<th>farmaco</th>
<th>lesione</th>
</tr>
</thead>
<tbody>
<tr>
<td>deficit di glucosio-6-fosfato deidrogenasi</td>
<td>sulfamidici, paracetamolo, aspirina, cloramfenicolo, vitamin A K</td>
<td>crisi emolitiche</td>
</tr>
<tr>
<td>alterazioni del canale al Ca²⁺ nelle fibre muscolari</td>
<td>alotano, protossido d’azoto, etere, succinilcolina</td>
<td>ipertermia maligna</td>
</tr>
<tr>
<td>deficit di uroporfirinogeno-sintetasi (aumento dell’ALA-sintetasi)</td>
<td>barbiturici, cloramfenicolo, clordiazepossido, fenitoina, estrogeni</td>
<td>porfiria acuta: coliche addominale e alterazioni neurologiche da accumulo di porfirine nei tessuti e nel SNC</td>
</tr>
<tr>
<td>carenza di meta-emoglobina reduttasi</td>
<td>prilocaina, lidocaina, sulfamidici, nitriti</td>
<td>cianosi da meta-emoglobina</td>
</tr>
<tr>
<td>carenze di NADH-deidrogenasi</td>
<td>anti-piretici, anti-malarici, nitrati, nitriti</td>
<td>cianosi da metaemoglobina e ritardo mentale</td>
</tr>
<tr>
<td>deficit di N-acetiltransferasi</td>
<td>isoniazide (anti-tubercolare)</td>
<td>polinevrite</td>
</tr>
<tr>
<td>ridotta sintesi di DNA nel midollo osseo</td>
<td>cloramfenicolo</td>
<td>aplasia del midollo osseo</td>
</tr>
</tbody>
</table>
9.2. Allergia da farmaci 🕵️‍♀️ 🕵️‍♂️

 أشهر السمية هي: يسبب نوعاً من التحريصات الالتهابية الامموية.

* **L'allergia da farmaci è provocata da reazioni di ipersensibilità immuno-mediated**:
 - il farmaco o i suoi metaboliti si comportano da aperiti (allergeni) legandosi a una proteina plasmatica o membrana cellulare, complesso che funge da antigene completo
 - la reazione ha un decorso temporale diverso da quello dell’effetto farmacologico
 - la sensibilizzazione e la eventuale successiva reazione allergica possono manifestarsi anche con dosi estremamente basse, insufficienti a produrre effetti farmaco-dinamici
 - la reazione non è correlata agli effetti farmaco-dinamici del farmaco ed è paragonabile alle reazioni di ipersensibilità

9.2.1. Reazioni allergiche o di ipersensibilità

Reazioni immunitarie (antigene-anticorpo)

* farmaci di elevato peso molecolare: il peso molecolare elevato può essere raggiunto anche con il legame a proteine plasmatiche o membrane cellulari

Prima esposizione: sensibilizzazione

* primo contatto con il farmaco o con strutture simili (vedi mimetismo antigenico)
* risposta immunitaria umorale (anticorpi) e/o cellulare

Seconda esposizione: reazione allergica

* avviene dopo almeno 1-2 settimane dalla sensibilizzazione (tempo necessario per la risposta immunitaria)
* avviene per quantità così piccole da essere indipendente dalla dose somministrata
9.2.2. **Reazioni allergiche di I tipo**

Produzione di IgE

- **Farmaco allergenico**
- **Carrier**
- **Macrofago**
- **Presentazione dell'antigene**
- **Attivazione dei linfociti B specifici**
- **Espansione clonale**
- **Produzione di anticorpi IgE**
- **Plasmacellula sekernente IgE**

Figura 9.1. Produzione di IgE

- **IL-4**
- **Th2**
- **Treg**
- **IFN-γ**

Richiamo di eosinofili

- **IL-3**
- **IL-5**

Granulocito eosinofilo

Sensibilizzazione cellulare

Recettore per l'Fc delle IgE

Cellula granulosa basofila
Liberazione di mediatori

Figura 9.2. Liberazione di mediatori da parte delle cellule granulose basofile

PAF: platelet-activating factor (fattore attivante le piastrine; ECF: eosinophil chemotactic factor (fattore chemiotattico per gli eosinofili)

Effetti dei mediatori

Effetti principali di alcuni dei mediatori: di interesse per l’approccio terapeutico:

istamina
- vasodilatazione
- aumento della permeabilità vascolare

PGD2
- bronco-costrizione

LTC4 e LTD4
- ortearia/angioedema
- edema della mucosa
Approgetti terapeutici farmacologici alle complicazioni allergiche di I tipo

<table>
<thead>
<tr>
<th>adrenergici</th>
</tr>
</thead>
<tbody>
<tr>
<td>adrenalinna</td>
</tr>
<tr>
<td>isoprenalina (alias isoproterenolo)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cortisonici</th>
</tr>
</thead>
<tbody>
<tr>
<td>immuno-soppessori</td>
</tr>
<tr>
<td>anti-flogistici</td>
</tr>
<tr>
<td>sensibilizzanti agli adrenergici</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>antistaminici</th>
</tr>
</thead>
<tbody>
<tr>
<td>cromoglicato, nedocromil, ketotifene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>antagonisti e inibitori sintesi leucotrieni</th>
</tr>
</thead>
<tbody>
<tr>
<td>zafirlukast (blocca i recettori per i leucotrieni)</td>
</tr>
<tr>
<td>montelukast (blocca i recettori per i leucotrieni)</td>
</tr>
<tr>
<td>zileuton (inibitore della 5-lipo-ossigenasi)</td>
</tr>
</tbody>
</table>
9.2.3. **Reazioni allergiche di II tipo**

Le reazioni allergiche di I tipo sono caratterizzate da reazioni citotossiche auto-immuni

Il meccanismo comporta in genere
- la formazione di complessi farmaco-componente cellulare
- produzione di auto-anticorpi IgG o IgM
- attivazione del complemento
- lisi cellulare

Le manifestazioni cliniche più comuni sono:
- anemia emolitica
- lupus eritematoso
- porpora trombocitopenica

![Diagramma](image)

Figura 9.3. Ipersensibilità di II tipo
9.2.4. **Reazioni allergiche di III tipo**

- Le reazioni allergiche di III tipo sono caratterizzate da:
 - formazione di complessi farmaco-IgG, farmaco-IgM circolanti
 - attivazione complemento
 - aggregazione piastrinica
 - degranulazione mastociti
 - chemiotassi neutrofili
 - liberazione citochine da macrofagi

- Le malattie allergiche di III tipo assumono diversi aspetti clinici:
 - malattia da siero
 - vasculite
 - fenomeno di Arthus
 - artrite
 - febbre
 - eritema multiforme
 - necrolisi epidermica tossica (sindrome di Lyell)

- I farmaci più frequentemente implicati sono:
 - sulfonamidici
 - fenitoina (*alias* difenildantoina)
 - penicillina
9.2.5. **Reazioni allergiche di IV tipo**

Le reazioni allergiche IV tipo vengono anche definite ritardate perché richiedono almeno 24-48 h per comparire

Sono caratterizzate da
- attivazione di linfociti T e macrofaghi
- liberazione citochine
- gli anticorpi non hanno un ruolo determinante

es.: dermatite da contatto

Figura 9.5. Ipersensibilità di IV tipo

9.2.6. **Reazioni anafilattoïdi**

Sono dovute al rilascio degli stessi mediatori anafilassi ma attraverso un meccanismo diverso non immunitario

es.:
- aspirina, FANS
- oppioidi
- mezzi di contrasto
9.3. Alterazioni fisiologiche durante la gravidanza

Nella madre durante la gravidanza si instaurano una serie di modificazioni/adattamenti fisiologici che ne fanno un soggetto diverso dal punto di vista del trattamento farmacologico, anche ed oltre alla presenza del feto

- diminuzione della velocità di svuotamento gastrico
- aumento del volume plasmatico
- aumento dell’acqua totale del corpo
- aumento del tessuto adiposo
- diminuzione delle albumine plasmatiche
- diminuzione del legame con le proteine plasmatiche
- aumento del flusso renale
- aumento della velocità di filtrazione glomerulare
- aumento dell’eliminazione renale di proteine

Confronto del consumo di farmaci in gravidanza negli anni 1963 e 1982

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>donne che non assumono farmaci durante tutta la gravidanza</td>
<td>21.4%</td>
<td>62.5%</td>
</tr>
<tr>
<td>donne che non assumono farmaci durante il primo trimestre</td>
<td>75.2%</td>
<td>93.6%</td>
</tr>
<tr>
<td>donne che assumono farmaci durante la gravidanza senza il controllo del medico</td>
<td>64.4%</td>
<td>8.8%</td>
</tr>
</tbody>
</table>
9.4. **La distribuzione al feto: il caso della teratogenesi da talidomide**

9.4.1. **STORIA DELLA TALIDOMIDE**

- Il farmaco venne venduto tra la fine degli anni '50 e l'inizio degli anni '60 alle donne incinte per calmare il malessere e la nausea mattutina causate dalla gravidanza.
- La Chemie Grunental, verso la fine del 1957 informò i medici della commercializzazione del suo sedativo: la talidomide.
- La ditta combinò il farmaco con altri prodotti farmaceutici come l'aspirina, la fenacetina, il chinino ecc, tanto che i tedeschi assunsero talidomide per curare disturbi come raffreddore, tosse, influenza, nervosismo, nevralgie, emicrania ed asma.
- Nel 1958 la campagna pubblicitaria del “Contergan” assunse proporzioni massicce: 50 inserzioni sulle riviste mediche, 200.000 lettere inviate ai medici; 50.000 “circolari terapeutiche” furono inviate ai medici e ai farmacisti.
- Nella pubblicità della talidomide, in seguito commercializzata in più di 45 paesi, si sottolineava la completa atossicità del farmaco.
- Il 1 Agosto 1958 a 40.245 medici MG venne inviato uno studio del dottor Blasius.
- Nella lettera di accompagnamento la Chemie Grunental descriveva il Contergan come il miglior farmaco da somministrare alle gestanti e alle madri che allattano: farmaco che “non danneggia né la madre né il bambino”.
- Tali affermazioni si basavano sull’assenza della tossicità acuta della talidomide, ma già allora, e da tempo i farmacologi avevano constatato che una bassa tossicità acuta non era una garanzia che il farmaco continuasse ad essere innocuo quando assunto ripetutamente.
- Durante un congresso dei pediatri della Germania occidentale tenutosi a Dusseldorf il 18 novembre 1961 si parlò di una misteriosa esplosione di focomelia.
- A dicembre del 1961 The Lancet pubblicò una lettera di McBride che proponeva un possibile nesso di causalità fra alterazioni di sviluppo degli arti (focomelia) di bambini nati da madri che avevano assunto in gravidanza la talidomide ed il farmaco stesso.
- I malessere mattutini generalmente si presentano nel periodo di gestazione in cui avviene il differenziamento delle braccia.
9.4.2. **STORIA DELLA TALIDOMIDE II SECONDO IL PRIMO COMUNICATO DELLA DITTA PRODUTTRICE**

The tragedy - the story in West Germany ([contergan.grunenthal.Die Tragedie](#))

Contergan, the brand name of a sleeping pill manufactured by Grüenthal GmbH, caused the greatest tragedy in the history of the German pharmaceutical industry. In the late 1950s and early 1960s, approximately 5,000 children in West Germany were born with deformities. Approximately 2,800 thalidomide victims live in Germany today. Around 12,000 children were born with some kind of disability due to damage caused by thalidomide. Countless more miscarriages, which weren't recorded as caused by thalidomide, mean we can't assess correctly the true scale of the disaster. Estimates put the number of children affected at around 20,000. Even this doesn't take account of the families of the children affected.

The active drug substance in Contergan was thalidomide. Grüenthal obtained a patent for thalidomide in West Germany in 1954. At that time, the standards required for the development of a medicine were very different to the way they are today. Specific legal requirements for the protection of patients such as apply today did not exist then in West Germany. The principle of self-monitoring applied instead.

Contergan was available over the counter in West German pharmacies from 1957 onward. The active drug substance, thalidomide, was an effective sedative and helped to induce sleep. It appeared to be exceptionally well tolerated, was not habit-forming, and had little potential for misuse for suicidal purposes. The advertisements for the product reflected the contemporary state of knowledge among the expert community: "A moment replete with natural harmony makes us wish the seconds would expand. But it usually remains no more than a moment and a fleeting desire, because the restlessness once useful to the mind dominates us and causes us to roam. Contergan gives peace and sleep. This harmless medicine does not burden the liver metabolism, affects neither blood pressure nor circulation, and is well tolerated even by sensitive patients. Sleep and peace: Contergan, Contergan forte"

Two different side effects were reported for thalidomide in the following years. The first was nerve damage in the hands and feet (polyneuropathy), often in the elderly. Grüenthal received the first such reports in October 1959. After reviewing and verifying this side effect, Grüenthal revised the package leaflet in 1961 and applied for prescription-only status for thalidomide in May 1961. Then, on 16 November 1961, the Hamburg paediatrician Dr. Widukind Lenz voiced his suspicion that an increase in deformities in unborn children were related to thalidomide. The same suspicion was expressed a short time later by the Australian gynaecologist Dr. William G. McBride. Grüenthal reacted promptly and withdrew the drug from the market within 12 days. In accordance with industry practice at that time, a letter was sent to doctors, pharmacists and hospitals in West Germany informing them of the withdrawal and reports of the side effects.

It was not until 1962, after market recall, that scientists succeeded in demonstrating the teratogenicity (propensity to cause birth defects) of the active drug substance thalidomide in animal studies in white New Zealand rabbits. This effect is demonstrated in only some animals and breeds. For example, some other breeds of rabbit do not reveal the effect.
Lo sviluppo e la focomelia

Figura 9.7. Periodi critici di sviluppo delle varie strutture anatomiche dell'uomo
La racemizzazione della talidomide avviene spontaneamente a pH fisiologico. La forma D (con effetto sedativo) viene racemizzata a forma L (con effetto teratogeno).

![Figura 9.8. Stereo chimica della talidomide](image-url)
9.4.3. **Foetal alcohol spectrum disorders (FASDs)**

I foetal alcohol spectrum disorders (FASDs) sono difetti del neonato dovuti al consumo di alcool durante la gravidanza.

I FASDs comprendono diverse patologie quali:
- **Partial Foetal Alcohol Syndrome (PFAS)**
- **Alcohol-Related Neurodevelopmental Disorder (ARND)**
- **Alcohol-Related Birth Defects (ARBD)**
- **Foetal Alcohol Effect (FAE)**

9.5. *Sindrome del bambino grigio* 🚨

La sindrome del bambino grigio (anche chiamata *Grey syndrome*) è un raro ma grave effetto collaterale che si verifica nei neonati (specie se prematuri) a seguito della somministrazione endovenosa del farmaco antibiotico cloramfenicolo.

La sindrome del bambino grigio è dovuta ad una mancanza delle reazioni di glucuronazione nel neonato, che porta all'accumulo di metaboliti tossici del cloramfenicolo.

Due sono i meccanismi fisiopatologici possibilmente implicati nello sviluppo della sindrome del bambino grigio:

- il sistema enzimatico UDP-glucuronil transferasi nei neonati (specie se prematuri) è scarsamente presente: deve essere indotto dai substrati (bilirubina, etc.) ed è perciò incapace di metabolizzare un improvviso sovraccarico di farmaco

- insufficiente escrezione renale del farmaco non coniugato
9.6. **Principali fonti utilizzate**

Siti web

- bookbing.org_thalidomide visitato il 24/10/2012 accessibile il 21/03/2013
- contergan.grunenthal_Die_Tragedie visitato il 24/10/2012 accessibile il 21/03/2013
- university_of_bristol_school_of_chemistry visitato il 24/10/2012 accessibile il 21/03/2013
Finito di comporre in Rimini nel mese di aprile 2013