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Abstract

Mode transformation effect inside a corrugated circular waveguide filled with gyrotropic mate-
rial, e.g., magnetoplasma or ferrite, is considered. The corrugation is in axial direction and the
depth of the corrugation is a quarter wave length forming a boundary condition equal to a hard
surface (HS). It is assumed that the material is slightly anisotropic and gyrotropic. This can be
achieved at certain frequency range with a proper axial magnetic field strength. The eigenwaves
are elliptically polarised hybrid-mode fields, which propagate with slightly different propagation
factors. This difference in propagation factors causes the mode transformation.

1 INTRODUCTION

The tuned corrugated waveguides are used in microwave applications where special kind of properties
for field propagation are needed, for example, in antenna horn feed [1]. In corrugated waveguide there
can propagate TE, TM and elliptically polarised fields, and in hard-surface waveguide also TEM
fields [2]. In this study the corrugation is in the axial direction, thus, forming the boundary condition
for hard-surface waveguide. Instead of corrugation, an alternative way to implement hard-surface is
to use dielectric layer loaded with thin conducting strips [3]. Time harmonic fields (depending on
t as ejωt) are considered and the propagating fields depend on z as e−jβz, where the propagation
factor β is a real number. A mode transformer for a HS waveguide has previously been studied in [4],
where chiral medium has been used. In this paper practically more interesting application example is
studied. The HS waveguide is filled with ferrite material biased with static magnetic field which is in
z-direction. Only a small gyrotropy is reguired. Schematic Figure 1 shows HS waveguide with some
notations used.

2 THEORY

The constitutive relations and material parameters for ferrite are

D = εE , B = [µtIt + µzuzuz − jµguz × I] ·H. (1)

µt = µo(1 +
ωoωm
ω2
o − ω2

), µz = µo, µg = µo
ωωm

ω2
o − ω2

(2)

where ωo = γBo is the Larmor precession frequency (Bo is the strength of the static magnetic flux den-
sity in z-direction), ωm = µoγMs, γ is the gyromagnetic ratio and Ms is the saturation magnetization
[5]. For magnetoplasma constitutive relations are of similar form i.e. one can use dyadic permittivity
model. In terms of theoretical analysis, these two media, ferrite and magnetoplasma, are quite similar
and can be obtained by duality from each other. In this study the focus is on ferrite material.

First step of the analysis is to find the propagating eigenfields depending on z as e−jβz and the
corresponding propagation factors. The electric and magnetic fields are written with transverse and
axial parts as E = e + Ezuz and H = h + Hzuz and are inserted into the Maxwell equations
∇×E = −jωB and ∇×H = jωD. Using the small gyrotropy assumption i.e., µg/µt small, and also
assuming that β is not very near kt, β < kt, elimination of transverse fields leads to
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where ηt =
√
µt/ε and kt = ω

√
µtε. The eigenfield solution for (3) and (4) is a field, for which it holds

Ez = αjηtHz (α =constant). Thus, longitudinal field functions Ez and Hz differ only by a scalar
factor. The special case µt ≈ µz = µ, which is achieved at higher frequency range ω >> ωo, leads to
α = ±1, i.e., (3) and (4) can be written as

∇2
t (Ez±) +

 k2 − β2
±

1∓ β±k
k2−β2

±

µg
µ

Ez± = 0 or briefly (∇2
t + k2

c±)Ez± = 0 (5)

The solutions Ez± = 1
2(Ez ∓ jηHz) are so-called wave-fields, often used with structures involving

chiral material and elliptically polarised eigenfields [6].Corresponding transverse fields are elliptically
polarised and the sign (±) indicates the handedness: + and − correspond to right- and left-handed
polarisations, respectively.

The solutions of the Helmholtz equation (5) in cylindrical coordinates are Bessel functions of the first
kind

Ez± = An±Jn(kc±ρ)ejnϕ (6)

The coefficients kc± are determined by the hard-surface boundary condition at ρ = a: [2]

uz ·E = 0 , uz ·H = 0 ⇒ Ez±|ρ=a = 0. (7)

Using this condition with equation (6) leads to the cut-off number solution kc± = kc = pns
a , where pns

are the zeros of the Bessel functions. From the dispersion relation

k2
c =

k2 − β2
±

1∓ β±k
k2−β2

±

µg
µ

, (8)

propagation factors can be solved, still assuming µg
µ small:

β± = βm ± βd =
β0

1− ( kβ0

µg
2µ)2

± β0

k
β0

µg
2µ

1− ( kβ0

µg
2µ)2

. (9)

where β0 =
√
k2 − k2

c .

3 MODE TRANSFORMING EFFECT

The polarisation properties of fields are considered in a circular hard-surface waveguide filled with
slightly gyrotropic medium. Assuming k

β0

µg
2µ << 1, the propagation factors can be further approxi-

mated from (9) as

β± = β0 ±
kµg
2µ

, (10)

Taking all the spatial dimensions into account, the + and − waves are

Ez±(ρ, ϕ, z) = An±Jn(kcρ)ejnϕe−jβ±z =
1
2

[ Ez(ρ, ϕ, z)∓ jηHz(ρ, ϕ, z) ] (11)



and the total longitudinal electric and magnetic fields, due to + and − waves, are

Ez = Ez+ + Ez− = Jn(kcρ)ejnϕ [(An+ +An−) cos(kµg2µ z)− j(An+ −An−) sin(kµg2µ z)]e
−jβ0z (12)

Hz = (Ez+−Ez−)
−jη = j

ηJn(kcρ)ejnϕ [(An+ −An−) cos(kµg2µ z)− j(An+ +An−) sin(kµg2µ z)]e
−jβ0z (13)

Let us assume that a TM-mode incident field is coming from the non-gyrotropic HS waveguide section
(z < 0). Thus, at the medium-interface z = 0 (see Figure 1), magnetic field Hz = 0. From (13) it
follows that An+ = An−, which leads to axial fields along the gyrotropic waveguide section:

Ez(ρ, ϕ, z) = 2An+Jn(kcρ)ejnϕe−jβ0z cos(
kµg
2µ

z), (14)

Hz(ρ, ϕ, z) =
2An+

η
Jn(kcρ)ejnϕe−jβ0z sin(

kµg
2µ

z). (15)

It is seen that just after z = 0, along the ferrite filled waveguide section, Ez starts to decrease and Hz

starts to increase. At distance z = d = πµ
µgk

, Ez = 0 and Hz 6= 0. Thus, TM mode has changed to TE
mode, which propagates after the gyrotropic section without change. The field configuration after the
transformation section satisfies the boundary condition for magnetic conductor. The transformation
between TM and TE modes is a dual transformation. The hard-surface waveguide can support fields
which satisfy either perfect electric conductor or perfect magnetic conductor boundary conditions. In
this example it was assumed that the different waveguide sections are well matched i.e. containing
properly chosen media.

Assume a ferrite material with εr = 8, B0 = 0.03 T and relatively low saturation magnetization
µ0Ms = 0.1 T, i.e., ωm = 2π · 2.8GHz (typical value is µ0Ms = 0.2 T, i.e., ωm = 2π · 5.6GHz [5]).
The special case, µt ≈ µz = µ0 and µg small, is obtained e.g. at f = 35 GHz. Using formulas (2)
one obtains µt/µz = 0.998 ≈ 1 and µg/µz = 0.080. Assuming mode with pns = p01 = 2.405 and core
radius a = 0.0017 m, propagation factors are approximately β± = β0 ± kµg

2µ ≈ (1.51 ± 0.08)1031/m.
The length of the gyrotropic section, to change from TM to TE, is now d ≈ 0.019 m.

4 IMPEDANCE TRANSFORMER

The wave impedance transforming effect can be studied by considering the transverse fields. The exact
transverse fields in a gyrotropic waveguide are

h =
1

A2 +B2
[ jβ(A∇tHz −Buz ×∇tHz) + jωε(Auz ×∇tEz +B∇tEz) ] (16)

e =
1
jωε

[−jβuz × h− uz ×∇tHz] , A = β2 − k2, B = jk2µg
µ

(17)

If µg
µ is very small and β is not near k, β < k, the gyrotropic factor B << A, i.e., B ≈ 0. If also

k
β0

µg
2µ is small enough, the approximation β = β± ≈ β0 can be done with the factors affecting field

amplitudes. These approximations lead to expressions

e = −j β0

k2
c

∇tEz + j
kη

k2
c

uz ×∇tHz, h = −j β0

k2
c

∇tHz − j
k

k2
cη

uz ×∇tEz (18)

The wave impedance Z is the relation between the transverse fields as

e = −Z · (uz × h) (19)

Following the example in the previous section, at z = 0, there exists only axial electric field component
Ez and the wave impedance dyadic is Z = η β0

k It. This is a TM impedance. After the distance d = πµ
µgk

,

there exists only axial magnetic field, and the corresponding impedance dyadic is Z = η k
β0
It which is



a TE impedance. At other points inside the waveguide section, 0 < z < d, there is a hybrid mode, a
combination of TE and TM fields. The impedance dyadic is

Z(z) = η
β0kIt − k2

c
2 sin

(
kµg
µ z

)
uz × I

k2 cos2
(
kµg
2µ z

)
+ β2

0 sin2
(
kµg
2µ z

) (20)

In principle, with a proper length of a ferrite filled HS waveguide a hybrid mode field can be changed
to TE or TM field. Also the impedance is transformed correspondingly. This kind of waveguide
element can be used for matching between different kind of waveguides.

5 CONCLUSION

In a non-gyrotropic HS waveguide TE and TM modes are propagating. Using a gyrotopic HS waveguide
section of a proper length, TM-mode can be transformed to TE, and vice versa. Also, the impedances
are changed and the gyrotropic HS waveguide works as an impedance transformer. One application is a
matching element between a circular metal-wall waveguide and an open dielectric waveguide/antenna.
In this study circular waveguide was considered. Similar transformer can be implemented by using
rectangular waveguide as well.
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Figure 1. HS waveguide filled with gyrotropic material and TM/TE-transformer.
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