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Abstract

We extend a well known differential oligopoly game to encompass the possibil-

ity for production to generate a negative environmental externality, regulated

through Pigouvian taxation and price caps. We show that, if the price cap

is set so as to fix the tolerable maximum amount of emissions, the result-

ing equilibrium investment in green R&D is indeed concave in the structure

of the industry. Our analysis appears to indicate that inverted-U-shaped

investment curves are generated by regulatory measures instead of being a

‘natural’ feature of firms’ decisions.
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1 Introduction

The departure point of the analysis illustrated in this paper lies at the in-

tersection between two different debates, one being centered upon the rela-

tion between competition and innovation, whose most recent development is

known as the Schumpeterian growth theory initiated by Aghion and Howitt

(1998), the other belonging to environmental economics and focussing on

the optimal design of policy instruments, such as environmental standards,

pollution rights and Pigouvian taxation, to stimulate firms’ investments in

abatement and/or replacement technologies (for an updated survey, see Lam-

bertini, 2013).

The acquired industrial organization approach to the bearings of market

power on the size and pace of technical progress can be traced back to the

indirect debate between Schumpeter (1934, 1942) and Arrow (1962) on the

so-called Schumpeterian hypothesis, which, in a nutshell, says that one should

expect to see an inverse relationship between innovation and market power

or market structure. Irrespective of the nature of innovation (either for cost

reductions or for the introduction of new products), a large theoretical lit-

erature attains either Schumpeterian or Arrovian conclusion (for exhaustive

accounts, see Tirole, 1988; and Reinganum, 1989).1 That is, partial equilib-

rium theoretical IO models systematically predict a monotone relationship,

in either direction.

The picture drastically changes as soon as one takes instead the stand-

point of modern growth theory. In particular, Aghion et al. (2005) stress

1See also Gilbert (2006), Vives (2008) and Schmutzler (2010) for add-on’s on this

discussion, where still the Schumpeter vs Arrow argument is unresolved.
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that empirical evidence shows a non-monotone relationship between industry

concentration (or, the intensity of market competition) and aggregate R&D

efforts: this takes the form of an inverted-U curve, at odds with all exist-

ing theoretical IO models; in the same paper, the authors provide a model

yielding indeed such a concave result, and fitting the data. A thorough dis-

cussion, accompanied by an exhaustive review of the related lively debate,

can be found in Aghion et al. (2013).

One could say that the inverted-U emerging from data says that Arrow is

right for small numbers, while Schumpeter is right thereafter. Alternatively,

on the same basis one could also say that neither Arrow nor Schumpeter can

match reality, if our interpretation of their respective views is that “competi-

tion (resp., monopoly) outperforms monopoly (resp., competition) along the

R&D dimension”. Be that as it may, there arises the need of constructing

models delivering a non-monotone relationship between some form of R&D

(for process, product or environmental-friendly innovations) and the number

of firms in the industry.

With this purpose in mind, here we extend a noncooperative differen-

tial game model dating back to Leitmann and Schmitendorf (1978) and

Feichtinger (1983) to describe an industry in which firms sell a homogeneous

good and accumulate capacity over time through costly investments; firms’

activities entail polluting emissions hindering welfare, and the government

adopts a Pigouvian taxation policy aimed at providing them with an incent-

ive to internalise the environmental externality and therefore undertake R&D

projects for pollution abatement. As in the original model, the mark-up is

exogenously fixed, and here is though of as an additional regulatory tool in
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the hands of the public authority.

Our main results can be outlined as follows. First, we show that there

exists a unique open-loop equilibrium which is subgame perfect and saddle-

point stable, for any pair of policy instruments. Then, taking again the

mark-up and tax rate as given, we prove that the aggregate green R&D

effort is monotonically increasing in the number of firms, which is a definitely

Arrovian result. Subsequently, we endogenise the regulatory toolkit, allowing

first the policy-maker to set that Pigouvian tax rate so as to maximise steady

state social welfare; in such a case, the aggregate R&D effort is strictly convex

in the number of firms. If optimal taxation is accompanied by a mark-up

tailored on industry structure so as to limit the overall volume of emissions,

then there emerges a general condition on the shape of the price regulation

scheme whereby the industry investment is indeed concave w.r.t. the number

of firms.

The remainder of the paper is organised as follows. The setup is laid

out in section 2, while the equilibrium analysis is in section 3. Section 4

illustrate the design of policy tools and its consequences on aggregate R&D

efforts. Concluding remarks are in section 5.

2 The game

As anticipated in the introduction, here we extend the model introduced by

Leitmann and Schmitendorf (1978) and further investigated by Feichtinger

(1983), to allow for the presence of an environmental externality and green

R&D investments. In the remainder, we will label this framework as the ‘LSF
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model’ for brevity. The market exists over t ∈ [0,∞) , and, as in Dragone et

al. (2010), it is served by N ≥ 1 a priori symmetric firms with individual

capacity xi (t) ≥ 0.2 Given a fixed profit margin p ≥ 0, the instantaneous

profit of firm i is

πi(t) = pxi (t)−
u2i (t)

2
− γki(t)−

k2i (t)

2
− τsi, (1)

where γ > 0 is a parameter. Capacity xi(t) changes according to

ẋi(t) = ui(t)− δxi(t), (2)

where ui(t) is the investment of firm i at time t. si(t) and ki(t) denote the

firm’s polluting emissions and R&D effort respectively, and τ is the tax rate.

The emissions of a firm follow the dynamics

ṡi(t) = xi(t)− zki − h
�

j �=i

kj − ηsi(t) (3)

where z is a positive parameter; parameter h ∈ [0, z) measures the spillover

effect received from rivals’ R&D activity.

The total instantaneous volume of emissions at the industry level is S(t) =
�N

i=1 si(t). Therefore the social welfare function at any time can be defined

as

SW (t) =
N�

i=1

πi (t) + CS (t)− S (t) + τ
N�

i=1

si (t) . (4)

Each firm has two control variables, investment in capacity ui(t) and

investment in green R&D ki(t). The policy maker has two instruments, the

2In the original formulation of the model, xi (t) is firm i’s sales volume, and ui (t)

its advertising investment. However, one can think of these variables as representing,

respectively, installed capacity (with each firm selling at full capacity at any time) and the

instantaneous investment to increase it.
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Pigouvian tax rate τ (which may be usefully thought of as incorporating

the price of emission rights) and the regulated mark-up p. To avoid time

inconsistency issues, we consider the policy menu applied onto the steady

state only. The structure of the model identifies a linear state game (it

wouldn’t be so if either the policy were function of the state or the demand

function were endogenously determined). Therefore, the open-loop solution

is subgame perfect, respecting the original LSF formulation.

3 Equilibrium analysis

Firm i’s (i = 1, . . . , N) current-value Hamiltonian (from now on we suppress

the time argument)3

Hi(s,x,k,u) = πi + λiiẋi +
�

j �=i

λijẋj + µiiṡi +
�

j �=i

µij ṡj (5)

generates the following first order conditions (inner solution) for firm i’s

(i = 1, . . . ,N) controls

∂Hi

∂ui
= λii − ui = 0 (6)

∂Hi

∂ki
= −γ − ki − zµii − h

�

j �=i

µij = 0 (7)

3In this respect, a remark is in order: note that, in general, the objective functional πi

has to be multiplied by the general multiplier λ0 to allow for the abnormal case (see e.g.

Leitmann (1981)). However, in the current model that abnormal case can be ruled out as

can be readily shown.
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Thus we obtain the following optimal controls of firm i (i = 1, . . . , N)

u∗i = λii

k∗i = −γ − zµii − h
�

j �=i

µij . (8)

Furthermore, each firm i obtains the following dynamic equations for the

costates (i, j = 1, . . . , N , i �= j)

λ̇ii = (ρ+ δ)λii − p− µii −
�

j �=i

µijv

λ̇ij = (ρ+ δ)λij −
�

j �=i

µij

µ̇ii = (ρ+ η)µii + τ

µ̇ij = (ρ+ η)µij . (9)

In order to characterize the optimal long run solution of the system we

have to derive the equilibria of the above defined system of differential equa-

tions (i.e. state and costate equations of all firms). In this model the equi-

librium is unique. For the adjoint variables we obtain (i, j = 1, . . . ,N , i �= j)

λ̂ii =
1

ρ+ δ

�
p−

vτ

ρ+ η

�

λ̂ij = 0

µ̂ii =
−τ

ρ+ η

µ̂ij = 0 (10)

Inserting into (8) yields the following equilibrium controls (i = 1, . . . , N)

û∗i =
1

ρ+ δ

�
p−

τ

ρ+ η

�

k̂∗i =
zτ

ρ+ η
− γ (11)
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Using these expressions for the state equations we obtain (i = 1, . . . ,N)

x̂i =
1

δ(ρ+ δ)

�
p−

τ

ρ+ η

�

ŝi =
1

η

� 1

δ(ρ+ δ)

�
p−

τ

ρ+ η

�
−
� zτ

ρ+ η
− γ

�
(z + h(n− 1))

�
. (12)

Since all firms are assumed to be a priori symmetric, we define the steady

state values as û := ûi, k̂ := k̂i, x̂ := x̂i and ŝ := ŝi. Due to the economic

meaning of the model, we have to assume that the controls and the states are

non-negative for all t ∈ [0,∞). The following Lemma provides assumptions

such that the non-negativity is fulfilled in equilibrium.

Lemma 1 The state and control variables of every player i (i = 1, . . . ,N)

are non-negative if the following assumptions on the parameters are fulfilled

p(ρ+ η) ≥ τ ≥
γ(ρ+ η)

z
(A1)

1

h

� 1

δ(ρ+ δ)

�
p−

1τ

ρ+ η

�� zτ

ρ+ η
− γ

�−1
− z
�
+ 1 ≥ n (A2)

Condition (A1) guarantees non-negativity of the controls (see (11)). Non-

negativity of x̂i is implied by (A1) and that of ŝi by (A2). The analysis of

the Jacobian matrix of the system shows that

Proposition 2 The unique equilibrium (x̂, ŝ, û∗, k̂∗) is a saddle point.

From the adjoint equations it is easy to show that µij(t) = λij(t) = 0. Due

to the structure of the system it is possible to derive an analytical expression
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of the stable path, i.e.

xi(t) = x̂+ (xi0 − x̂)e−δt

si(t) = ŝ− (xi0 − x̂)
1

η + δ
(e−δt − e−ηt) + (si0 − ŝ)e−ηt

µii(t) = µ̂ii

λii(t) = λ̂ii (13)

Now we are able to define a sufficient assumption that the controls and the

states are positive for all t ∈ [0,∞).

Lemma 3 Let (A1) and (A2) hold. Then the following assumption is suffi-

cient to ensure that all controls and states be positive over the whole planning

horizon.

xi0 ≤ x̂, si0 ≤ ŝ, δ ≤ η.

Proof: u∗i (t) > 0 and ki(t) > 0 are trivial by the signs of the adjoint variables;

xi(t) > 0 is implied by xi0 ≤ x̂. According to δ ≤ η, the second term of the

expression for si(t) is always positive. The sum of the first and the third

term of si(t) is positive because of si0 ≤ ŝ.

The foregoing analysis has a seemingly not-so-intriguing ancillary implic-

ation:

Corollary 4 Since K∗ = Nk∗ is everywhere increasing in N for all τ >

(η + ρ) γ/z, the behaviour of aggregate R&D is Arrovian for any given Pigouvian

policy allowing for a positive investment.

However, there is more to it, which can be shown to emerge as soon as

one admits the reasonable possibility for regulation to enter the picture along
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two dimensions: one is obviously τ , as is usually the case in environmental

economics, the other is p, which is a specific feature of the present model.

Here, the mark-up is fixed, and this fact can be interpreted as a consequence

of a price cap imposed by a public authority. The research question we are

about to assess in the following section is the following: is the portfolio of

policy instruments {p, τ} going to modify the apparently monotone behaviour

of aggregate R&D efforts K∗ outlined in Corollary 4? And, if so, in what

direction?

4 Environmental policy and aggregate invest-

ment

The bearings of p and τ on aggregate R&D incentives can be appreciated

by addressing the issue in the following terms. It is already known (see

Benchekroun and Long, 1998, 2002, inter alia) that there exists a level of

Pigouvian taxation driving the industry to the first best which would be

obtained under social planning. Call this tax rate τSP (p,N). This tax rate

must maximise the steady state level of the social welfare function, defined

as

SW ∗ (τ ) = Nπ∗ (τ ) + CS∗ (τ)−N (1− τ ) s∗ (τ ) (14)

where

CS∗ (τ) =
(a− p)Nx∗ (τ)

2
(15)

is consumer surplus, calculated postulating the existence of a linear and

decreasing market demand function �p = a−Nx∗ in which a > 0 is consumers’
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reservation price; indeed, �p is the price that would prevail if the mark-up were
unregulated. Moreover, (14) accounts for the additional fact that the revenue

produced by Pigouvian taxation, Nτs∗ (τ) , is redistributed to consumers as

a windfall.

Then, τSP (p,N) can be easily calculated by solving the necessary condi-

tion ∂SW ∗ (τ) /∂τ = 0, satisfied by the unique tax rate:4

τSP (p,N) =
(η + ρ)

�
p (δ − ρ) η − (δ + ρ) (aη − 2) + 2δ (δ + ρ)2 (z + h (N − 1)) z

	

2δη
�
1 + 2c (δ + ρ)2 z2

	 .

(16)

Now observe that

∂K∗


τSP (p,N)

�

∂N
= 0 in n = max {1, �n} , (17)

�n = 2δγη2 + 4cδ (δ + ρ)2 (γη + h− z) + p (ρ− δ) η + (δ + ρ) (aη − 2)

4hδ (δ + ρ)2 z
,

and
∂2K∗



τSP (p,N)

�

∂N2
=

2h (δ + ρ)2 z2

η
�
1 + (δ + ρ)2 z2

	 > 0, (18)

showing that, if �n ≥ 2, then in correspondence of �n the aggregate R&D
level K∗



τSP (p,N)

�
is indeed being minimised. Hence, in this scenario no

inverted-U may arise (at most, if �n is admissible, a U-shaped curve obtains),
since:

Lemma 5 If p is given, the equilibrium aggregate R&D effort is convex in

N .
4The second order condition is satisfied, as

∂2SW ∗ (τ)

∂τ2
= −

N
�
1 + (δ + ρ)2 z2

�

(δ + ρ)2 (η + ρ)2
< 0

always.
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On the basis of the above Lemma, it seems that Pigouvian taxation is

in itself insufficient to deliver an inverted-U R&D curve: the opposite shape

does in fact appear if �n ≥ 2 (if so, then for a limited number of firms the

Schumpeterian hypothesis is confirmed, while for sufficiently large number of

firms the Arrovian position prevails).

What if p is set by the government for some purpose? Suppose first that a

public agency is in charge of regulating the mark-up of this industry having

in mind objectives such as the entry process or consumer surplus, and let

p = p (N) , so that the mark-up is a function of industry structure.

Now use τSP (p,N) to calculate

sign

�
∂2K∗

∂N2


= sign

�
4δh (δ + ρ)2 z + η (δ − ρ) [2p′ (N) + np′′ (N)]

�
(19)

where p′ (N) ≡ ∂p (N) /∂N and p′′ (N) ≡ ∂2p (N) /∂N 2. Condition (19)

implies:

Proposition 6 For all δ > ρ, 2p′ (N)+np′′ (N) < −4δh (δ + ρ)2 z/ [η (δ − ρ)]

yields an inverted-U R&D curve at the industry level. In absence of spillovers

(h = 0), a decreasing and at least quasi-concave price (i.e., p′ (N) < 0 and

p′′ (N) ≤ 0) suffices to ensure ∂2K∗/∂N 2 < 0.

For instance, one could think of a reasonable situation in which the mark-

up is a linear and decreasing function of the number of firms in the industry,

e.g., p (N) = α − βN, with α > βN and β > 0, which generates p′ (N) =

−β < 0 and p′′ (N) = 0. This, combined with h = 0 and any δ > ρ, makes

K∗ concave in N .

An alternative way of modelling the role of price regulation rests on con-

sidering that, in general, τSP (p,N) - although maximising steady state social
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welfare - does not ensure the minimization of the externality or the attain-

ment of any given cap S̄ targeted by the public agency in charge of the

environmental policy.

If indeed the government wants to reduce emissions to zero, it must set

the regulated price at the level solving Ns∗ = S̄, which is

pSP


S̄
�
=
2S̄δ2η2 (1 + ς2) +N [2 + 2δ (h (N − 1) + z) (2ς − δΦ)− aηΨ]

ηN [1− δz ((δ + 3ρ) z + h (N − 1) (ρ− δ) z)]
(20)

where ς ≡ (δ + ρ) z, and

Φ ≡ γη + [γη − h (N − 1)− z] ς2;

Ψ ≡ 1 + δς [h (N − 1) + z] .
(21)

This delivers

K∗


τSP



pSP



S̄
�
,N
�
, pSP



S̄
��
=

�
δη2 (δ − ρ) S̄ − η



az + γ + 2δγ (δ + ρ) z2

�
N+

2z (1 + zδ (δ + ρ) (z + h (N − 1)))N ] / (22)

η [1 + zδ (z (δ + 3ρ)− h (N − 1) (δ − ρ))] .

From (22), we see that if h = 0, then

K∗


τSP



pSP



S̄
�
,N
�
, pSP



S̄
����

h=0
=

�
S̄zδη2 (δ − ρ) + 2Nz



1 + δ (δ + ρ) z2

�
− (23)

Nη


az + γ



1 + 2z2δ (δ + ρ)

��	
/
�
η


1 + δz2 (δ + 3ρ)

�	
,

which is necessarily monotone in N . In particular:
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Proposition 7 In the special case in which technological spillovers are ab-

sent, take

S̄ > max

�
0,

N [η (az + γ (1 + 2z2δ (δ + ρ)))− 2z (1 + z2δ (δ + ρ))]

zδ (δ − ρ) η2



to ensure K∗ (·)|h=0 > 0. Then,

∂ K∗ (·)|h=0
∂N

=
2z (1 + z2δ (δ + ρ))− η (az + γ (1 + 2z2δ (δ + ρ)))

η (1 + z2δ (δ + 3ρ))
≷ 0

for all

η ≶ �η ≡ 2z (1 + z2δ (δ + ρ))

az + γ (1 + 2z2δ (δ + ρ))
.

The above Proposition says that, if the individual firm’s abatement cap-

ability is unaffected by the rivals’, the behaviour of aggregate green R&D as

N changes is Arrovian (resp., Schumpeterian) if the environment’s recycling

rate is sufficiently low (resp., high). I.e., it is as if the industry were comple-

menting the natural absorption activities if the latter are not particurlarly

effective (which corresponds to the Arrovian case), and conversely (which

instead correspond to the Schumpeterian case).

Looking at (22), and taking into account the special case outlined above,

one can hardly infer a well-defined behaviour - let alone a monotone one -

of the aggregate R&D effort in the regulated setting. More specifically, it

is plausible that variations in industry structure do generate any plausible

variations in (22), including non-monotone ones. Indeed, numerical simula-

tions can be performed to show the emergence of an inverted-U curve for

admissible constellations of parameter values. For instance, fixing

a = 150; h = 1/10; z = 2/5; S̄ = 3× 104;
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Figure 1: Inverted-U-shaped aggregated investment curve

δ = 2/3; γ = 3/2; η = 2; ρ = 1/10, (24)

aggregate R&D steady state investment K∗


τSP



pSP



S̄
�
, N
�
, pSP



S̄
��
can

be drawn as in Figure 1, where the concavity of industry effort emerges clearly

and K∗


τSP



pSP



S̄
�
, N
�
,SP


S̄
��
is maximised at N ≃ 822.

Something more can be said about the effects of the size of the population

of firms. Concerning the supply side, we have

k∗


τSP



pSP



S̄
�
, N
�
,SP


S̄
��
= 0 at N ≃ 7348

x∗


τSP



pSP



S̄
�
, N
�
,SP


S̄
��
= 0 at N ≃ 7497

(25)

which implies that there exists a non-negligible range ofN, namely, (7349, 7389)

in which the individual R&D effort drops to zero but firms still produce and

sell to consumers. As instead to the welfare performance of this industry, one
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can check that SW ∗


τSP



pSP



S̄
�
,N
�
,SP


S̄
��
is maximised at N ≃ 3522.

This result (at least in the numerical example based on the above values)

illustrates a situation in which consumer surplus matters more than the en-

vironmental externality, so that the industry structure that maximises wel-

fare is a lot more fragmented than that maximising the aggregate volume of

green R&D.

The inverted-U is relatively stable with respect to the model parameters.

However, the level and the position of the curve differs. Table 1 summarizes

the dependence. The first collumn includes the effect on the peak, the second

collumn the effect on the level of the curve and the third one links the whole

effect to a one of the five graphs in figure 2, where the qualitative effect on

the inverted-U shape is illustrated.

effect on the peak effect of curve level

ρ move to the right ambiguous: increase for low N , top left panel

decrease for high N

η move to the right ambiguous: decrease for low N , top right panel

increase for high N

γ no / marginal increase middle left panel

a no / marginal increase middle left panel

z move to the left decrease middle right panel

S̄ move to the right decrease low panel

δ move to the right decrease low panel

h move to the left decrease middle right panel

Table 1: Dependence of the inverted-U curve on the model parameters
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for the corresponding increasing parameter)
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4.1 Discussion

Concerning the concavity of K∗


τSP



pSP



S̄
�
,N
�
,SP


S̄
��
with respect to

N, the foregoing analysis seems to imply that the arising of inverted-U curves

is the consequence of the pressure of regulatory policy (possibly, as is the

case in our model, of the adoption of multiple tools at the same time, to

pursue different although - in some way - related objectives). This could

be a plausible explanation for the lack of analogous outcomes in the vast

literature discussing the bearings of industry structure on aggregate R&D,

that has been produced so far in IO.

The acquired wisdom on the matter, delivering monotone predictions in

one way or the other, can be quickly summarised as follows. The Schum-

peterian hypothesis claims that market power is the driver of innovation,

and therefore monopoly should be expected to stand out as the market form

producing the highest R&D incentives. This argument rests on the so-called

efficiency effect, whereby a monopolist can at least replicate the behaviour

of any oligopolistic or perfectly competitive industry. Adhering to this view,

one should expect to observe aggregate R&D to decrease monotonically in

the number of firms. The opposite perspective is based on Arrow’s replace-

ment effect, whereby a monopolist has a lower incentive to innovate than

a competitive industry (or any oligopoly in between) because, even if the

innovation is patentable, the monopolist’s benefit reduces to replace itself by

acquiring the patent, while a smaller firm operating initially under much less

favourable conditions might gain monopoly power by getting to the patent

office before any of its rivals does.5 The large subsequent literature has al-

5A full account of this discussion is in Tirole (1988, ch. 10) and Reinganum (1989).
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ternatively confirmed one view or the other, with the exception of Aghion et

al. (2005), where the only available model showing a non-monotone result

accompanies an empirical evidence with analogous properties. It is worth

stressing that most, if not all of this literature relies on theoretical models

where policy instruments are either absent ot taken as exogenously given.

How can we justify or interpret the arising of a concave aggregate R&D

effort in the presented model? The source of this effect must be found in some

aspect that the previous literature has overlooked, such that the outcome is

a non-monotone mixture of Arrow’s replacement effect appearing first, to be

replaced by Schumpeter’s efficiency effect. The present model has several

special features. First of all, a patent system is left out of the picture.

Additionally (i) individual efforts spill over to rivals; and (ii) innovation is

green, which amounts to saying that R&D is spurred by emission taxation.

That is, we are treating a particular type of investment which would be

altogether nil without an equally specific policy. Yet, Pigouvian taxation per

se is not an explanation of the arising of an inverted-U curve, as we know

from Corollary 4 and Lemma 5. In particular, the latter would imply a U-

shaped curve, not the opposite. Hence, the responsibility of our result must

be imputed to the remaining policy instrument, the regulated price pSP


S̄
�
.

From (11), we have that the aggregate effort is

K∗ = N

�
zτ

ρ+ η
− γ

�
(26)

In (26) we can plug τ = τSP (p,N) from (16); however, τSP (p,N) being

linear and increasing in N, this yields a convex relationship between K∗ and

N. Therefore, the source of the inverted-U curve is not Pigouvian taxation.

What creates it is the additional policy measure regulating price, i.e., pSP


S̄
�
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from (20), using which we can rewrite (26) as follows:

K∗ = N

�
zτ (p (N) , N)

ρ+ η
− γ

�
(27)

Now observe that

∂K∗

∂N
=

z [τ +N (∂τ/∂n+ ∂τ/∂p · ∂p/∂n)]

ρ+ η
− γ (28)

and

∂2K∗

∂N2
=

z

�
2

�
∂τ

∂n
+

∂τ

∂p

∂p

∂n

�
+N

�
∂2τ

∂n2
+ 2

∂2τ

∂n∂p

∂p

∂n
+

∂2τ

∂p2

�
∂p

∂n

�2
+

∂2p

∂n2
∂τ

∂p

��

ρ+ η
(29)

Setting (28) equal to zero, we obtain

∂τ

∂n
=

γ (η + ρ)− z (τ +N · ∂τ/∂p · ∂p/∂n)

Nz
(30)

This can be substituted into (29), which can also be further simplified us-

ing additional pieces of information that we can draw from expression (16),

whereby
∂2τ

∂n2
=

∂2τ

∂n∂p
=

∂2τ

∂p2
= 0. (31)

Hence, (29) simplifies as follows:

∂2K∗

∂N2
=
2 [γ (η + ρ)− zτ ] + zN2 · ∂τ/∂p · ∂2p/∂n2

N (ρ+ η)
(32)

Observing (32), we may note that

γ (η + ρ)− zτ = − (η + ρ) k∗ < 0 (33)

and ∂τ/∂p ≷ 0 for all δ ≷ ρ - which again can be easily deduced from (16).

Accordingly, we may take a final step and rewrite (32) in a more intuitive

form:
∂2K∗

∂N2
=

zN2 · ∂τ/∂p · ∂2p/∂n2 − 2 (η + ρ) k∗

N (ρ+ η)
(34)
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which is negative for all

k∗ > max

�
zN2 · ∂τ/∂p · ∂2p/∂n2

2 (η + ρ)
, 0


. (35)

If we confine our attention to the parameter region defined by δ > ρ, which

is what we have done to generate the inverted-U curve appearing in Figure

1 - then ∂τ/∂p > 0; therefore, in this range ∂2p/∂n2 < 0 suffices to ensure

that K∗ is indeed concave w.r.t. N for all k∗ > 0.

Having said that, two natural questions arises, namely, (i) should we

conclude that it is altogether impossible to reproduce the same result if reg-

ulation is assumed away in differential games investigating some form of

R&D for either process or product innovation? The few existing examples

(see Cellini and Lambertini, 2002, 2009, for instance)6 indeed yield mono-

tone outcomes, but are by no means general; (ii) shall we deem the usual

assumption of a linear market demand responsible for monotone outcomes?

In fact, empirical research (Hausman, 1981; Varian, 1982, 1990, inter alia)

has shown that most markets are characterised by non linear demand func-

tions, which are best approximated by isoelastic curves. These extensions

are left for future research.

5 Concluding remarks

We have characterised green R&D incentives for firms operating in an in-

dustry where production pollutes the environment the government regulates

6One could also address in the same spirit other dynamic models whose focus is on the

investment in advertising to expand the demand level or goodwill stock, as in Cellini and

Lambertini (2003a,b) and the references therein.
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the mark up and adopts a Pigouvian tax policy to decrease emissions and

stimulate the introduction of clean technologies. The model delivers a thus

far rare result, in the form of an inverted-U aggregate R&D expenditure at

equilibrium. The implication of our analysis seems to be that the empirical

evidence concerning the emergence of inverted-U curves is a consequence of

some form of regulation that modifies the aggregate behaviour of the in-

dustry as compared to the predictions of theoretical models where regulation

is either totally exogenous or just assumed away. Whether ours is a special

(and fortunate) case or instead an indication of some general rule previously

overlooked, is a question left for future research.
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