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Abstract

We estimate a model for exchange rate dynamics when expectations present higher order beliefs. A

structural macro model for exchange rates is proposed where agents form their one-step-ahead predic-

tions under a Bayesian learning process and in which aggregation of their choices is considered into the

dynamics of exchange rates. Bayesian estimation of the structural parameters is implemented by using

survey data on heterogeneous forecasts and fundamentals. Results show that higher order beliefs are rel-

evant in building the subjective expectations’ process and this phenomenon is dependent on information

uncertainty. First, public information coordinates heterogeneous expectations of predictors leading to

overweighting of signals from specific fundamentals. Second, predictors mis-perceive them as the most

prevalent factors to form their forecasts, although the role of their own private assessments fades away.
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1. Introduction

Professional investors have specialized expertise in forecasting exchange rates. For instance, whether

you are a business or a trader, having an exchange rate forecast to guide your decision making can be

very important to minimize risks and maximize returns. Forecasting exchange rates is a rather difficult

task, especially for short run horizons (Meese and Rogoff, 1983). Recent studies based on heterogeneous

expectations appear to be a viable strategy to improve predictive abilities of exchange rates (Bacchetta

and Van Wincoop, 2006, 2013).

According to a structural model, our interest is to mimic the real process in the market where currency

forecasts are produced. In particular, we believe that one of the interesting points in explaining market

fluctuations is the role investors play in the exchange rate market. This paper therefore examines how

investors’ choices should be optimally designed on the basis of the relevant information in place. In our

model, the selection process first generates an informative private signal about exchange rates fluctuations.

This signal may be depicted as the investor’s ability to correctly interpret the real value of the fundamental

and it is simply based on the personal and subjective evaluation including opinions, rumors, economic

projections and market commentary. Moreover, investors observe a public signal, as sunspot, switching

their actions contingent on it. Such sunspot explanations are apparently intended as proxies for the true

higher order beliefs explanations. The optimal design in this environment thus depends on the agent’s

beliefs about economic fundamental, but also on other agents’ beliefs.

We model investors’ heterogeneity, and the interaction among them, nesting a micro-based learning

process into a standard macroeconomic framework with two countries. Each agent forms her expectation

by combining both public and private information. The aggregation of all agents’ choices is further

considered in the recursive dynamics of exchange rates at macro level. In the spirit of Morris and Shin

(2002), we first extend the learning process to a dynamic setup. This generalization allows to define a

structural time series model that closely mimics our theoretical insights. As a second step, we quantify

what is the relevant information investors use in taking their decisions and disentangle the effects of both

public and private signals. We also identify the weights that the information has in determining agents’

choices. Our third contribution is to evaluate the structural parameters of the model cast in a state-

space form using Bayesian techniques. Inference on expectations is based on a panel of survey data whose

relevant feature is to be heterogeneous among agents as well as on standard macroeconomic fundamentals.

In particular, our analysis builds on the micro-structure of exchange rate predictions with dispersed
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information on fundamentals, while we test its relevance on the aggregate macro-dynamics of the eur/usd

currency for the period ranging from 2006 to 2012. The information that traders optimally choose to

collect is determined by their intent to correctly codify changes in fundamentals as well as by their interest

to align their predictions with those of the others. A beauty contest framework in analogy to Keynes

(1936) is thus introduced as agents take into account other agent’s expectations when forming their own.1

A dynamic game of incomplete information is thus modeled to evaluate the role of higher order beliefs in

exchange rate predictions. In particular, a social learning process interchanges the amount of private and

public information effectively used by agents and relates the discrepancy between the two sources to the

role that higher order beliefs play in determining outcomes. We search whether a potential nexus exists

among the choices of market predictors. Then we identify the precise link guiding this micro-strategic

behavior to the aggregate macro dynamics. The choice of agents in the currency is consequently tested on

the basis of one-period ahead survey predictions provided by heterogeneous professional forecasters. The

estimation of structural parameters provides two main findings. First, individual predictions about future

values of the currency rely heavily on the role of higher order beliefs. We find that the value measuring

higher order beliefs in the decision process of predictors accounts for about 82 per cent. Secondly, public

information plays the most important role in determining individual forecasts, i.e., more than 75 per

cent, compared to private information. A fairly robust insight from our analysis show that, when forming

predictions, investors are heavily biased towards public information instead of focusing on their own

personal assessment. Information uncertainty and heterogeneity lead to overweighting signals of the

fundamental partially neglecting personal evaluation.

The remainder of this paper is as follows: Section 2 encompasses the relevant literature in the field,

while, section 3 introduces the theoretical set-up and equilibrium solutions both at micro and macro levels.

Section 4 presents the empirical estimation of the structural model, while some comments are proposed

on Section 5 about the posterior estimates and policy implications. Section 6 concludes.

1Throughout the paper, we use the terms ‘beauty contest’ or ‘higher order beliefs’ interchangeably. The term beauty
contest is due to Keynes’ famous claim that to form their demand for an asset, investors behave as individuals in a beauty
contest where people were asked to guess not the prettiest girl among those presented in the newspaper contest, but the girl
they thought that the majority would consider the prettiest. He suggests an analogy to financial markets claiming that agents
do not only try to generate forecasts to predict the future behavior of assets but also try to guess other market participants’
forecasts and the forecasts of forecasts of the others.
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2. Literature review

Modelling the behaviour of exchange rate has been one of the most challenging tasks demanding the

attention of economists in the last thirty years. Meese and Rogoff (1983) were the first to point out the

impossibility of structural and time series exchange rate models to outperform a random walk in terms of

forecasting ability. This discouraging result seemed partially overcome at least for long run predictions (1

to 3 years forecasts) with the use of cointegration analysis.2 Further the application of Taylor rule based-

fundamentals3 and of the informational value for order flow4 were considered the only possible solutions

to improve the quality of exchange rate forecasts over short horizons. Indeed forecasting methodology has

obtained better performance after the introduction of the micro-based structure in modelling exchange

rates. Several studies underline the role that the interactions among investors may have in explaining the

effective dynamics of exchange rates. This is possible by accounting for agents’ heterogeneity and their

evaluation on public and private information.5 For instance, O’Hara (1995) stressed how the regulation

of trading in exchange markets has important implications for the process of price formation and more

generally for all unobservable relevant characteristics. Furthermore, the utility-based new open economy

macroeconomic framework by Devereux and Engel (2002) or the rational expectations present value model

by Engel and West (2005) were proposed as different alternatives motivating the use of heterogeneous

information of agents in asset pricing models. More specifically for exchange rates, various contributions

of Bacchetta and Van Wincoop (2012) explored in various directions the implications of heterogeneity of

expectations in currency markets.

Our paper relates to the whole fast-growing literature on heterogeneity of expectations and higher

order beliefs. The most important contributions belong to a series of papers proposed by Bacchetta and

van Wincoop who have explored the implication of heterogeneity in expectations on different theoretical

2Mark (1995) and Chinn and Meese (1995) found a substantial improvement in forecasting exchange rates compared to
the random walk model, using an error correction term structure over horizons of 2-3 years. These results were nonetheless
criticized as time dependent by Faust et al. (2003) and Cheung et al. (2005). A rise in forecasting ability of the monetary
models was later ensured by the panel cointegration methods. Husted and MacDonald (1998) used Pedroni (1999) panel
cointegration test, while Groen (2005) showed outperformance of a random walk in a panel of three currencies for short
and long run. Nonetheless, Mark and Sul (2001) used a panel cointegration version of Mark’s paper over 17 currencies with
no statistical evidence of outperformance and a smaller forecasting error. Cerra and Saxena (2010) discovered a rise in the
predictive success in the long run using a large panel of currencies.

3See Molodtsova et al. (2008, 2011) and Molodtsova and Papell (2009).
4See Evans and Lyons (2005).
5Since the classical contribution of Harsanyi (1967) the rational behavior in such environments depends not only on

economic agents’ belief about fundamentals, but is also a function of beliefs of higher order, i.e., player’s beliefs about other
players’ beliefs about other players’ belief and so on.

4



models and propose the so-called scapegoat theory of the disconnect between exchange rates and funda-

mentals. They suppose the existence of uncertainty in the market about the true source of exchange rate

fluctuations. When agents observe currency movements that are inconsistent with their expectations,

they search for an explanation to these unexpected changes. A weight, higher than average, is assigned to

some fundamentals taken as scapegoats. The heterogeneity is modelled looking at investors who receive

private signals about the persistence of shocks. They are not able to capture whether the fluctuation

on exchange rate is motivated by unobserved factors or simply by a weight, larger than expected one,

assigned to macro fundamentals. The latter could be interpreted as a scapegoat, so that the weights

attributed to them systematically change over time, thus determining parameter instability. Fratzscher

et al. (2012) develop an empirical test of this theory using as a proxy of scapegoat fundamentals, Con-

sensus Economics of London surveys of predictors. The predictors of this panel are asked to rate on a

quantitative scale the importance of six key variables (short-term interest rates, long-term interest rates,

growth, inflation, current account, equity flows) as drivers of the dynamics of the exchange rate. The

authors find that the inclusion of these expectations in the model of exchange rate determination im-

proves the power of the fundamentals in explaining currency movements.6 Bacchetta and Van Wincoop

(2006) focus instead on the role of order flow rather than macroeconomic characteristics of the market

and introduce a possible explanation for the empirical results verified by Evans and Lyons (2002), Payne

(2003), and Froot and Ramadorai (2005).7 Assuming that agents are risk averse with heterogeneous

information on the fundamental values, the authors show that due to the imperfect correlated signals

among investors, transitory shocks may continuously influence the dynamics of exchange rate. These

results originate from a counterbalance effect of risk aversion and uncertainty of information. On one

side, the risk-sharing impact is justified since traders must be compensated for the extra risk assumed

as a consequence of their actions. On the other side, the uncertainty of information matters since in-

6In the short run the heterogeneity in the individual evaluation may lead to overrate the random macroeconomic funda-
mental.

7Evans and Lyons (2002) exploit data pertaining to bilateral transactions among FX dealers via Reuters Dealing 2000-1
electronic trading system. They follow Meese and Rogoff (1983)’s methodology to investigate the out of sample forecasting
ability of their linear model. Unfortunately, they do not take into account potential issue of simultaneity bias emerging when
exchange rate movements cause order flow. In order to evaluate the possible feed-back effects of exchange rates on order flow,
an alternative methodology was suggested by Payne (2003). He elaborates a V AR model estimating information on the size
of transactions. This methodology allows for a more precise estimation of the information provided by the order flow. Froot
and Ramadorai (2005) extend the framework of Payne (2003) considering inflation and interest rate differentials alongside
order flow and excess returns. They also estimate long-run effects of international flows on exchange rates and their relation
to fundamentals proposing a decomposition of permanent and transitory components of asset returns.
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vestors may confuse an appreciation or depreciation of the exchange rate caused by a liquidity shock

with that induced by information on fundamentals. Therefore, if this mix-up concerns information that

becomes public in the relative distant future, the impact of order flow on exchange rates is amplified by

the infinite regress of investors’ individual beliefs. Given the observed prices and quantities, they learn,

not only the fundamental values of foreign currencies, but also the other investors’ forecasts. The social

learning process further disorientates about the informational role that liquidity and fundamental shocks

may assume, thus extending the impact of order flow on exchange rates.8 In particular Bacchetta and

Van Wincoop (2013) hypothesize a heterogeneous information structure with public and private signals

received by forecast market predictors. Each agent needs to keep into account the average expectation of

other market participants about the next t− periods exchange rates, when forming her expectation. The

difference existing between the expectations about the others’ expectations and the actual fundamental,

difficult to perceive in the short run, generates the observed wedge between the actual dynamics of the

rate and the fundamentals in the long run.

As regards instead the social learning structure of our model, our attention is devoted to a recent

literature which tries to understand whether public information improves the effectiveness of policies and

is beneficial to markets since it reduces asymmetric information. This framework was mainly popularized

by Morris and Shin (2002) and perfectly explains the dynamics of coordination among agents. When

coordination incentives are not very strong in the society, higher precision on public information could be

in principle welfare-improving. When agents have higher incentives to coordinate, more weight is given

to the public signal relative to the private one in the choice of equilibrium actions. Thus it is possible

that a potential overreaction to the public signal cancels out the impact of private information. Under

certain conditions, this means that a public announcement may destabilize markets, reduce efficiency due

to their impacts on higher-order beliefs and can be detrimental for the welfare of agents. This approach

has been used as a static representation of many settings with incomplete information and strategic

interaction including financial markets (Allen et al., 2006), business cycle models (Angeletos and La’O,

2009; Myatt and Wallace, 2014a), investment decisions (Angeletos et al., 2012; Myatt and Wallace, 2012),

price adjustment with monopolistic competition (Myatt and Wallace, 2014b; Woodford, 2002).

Finally for what involves the heterogeneity of survey predictions, there exists an extensive empirical

8Note that if the private signal involves imminent shifts in fundamentals, this effect is practically thinned down. Intuitively,
when private signal concerns next period realizations of fundamentals, there is no need to extract any information from other
investors’ forecasts since they will share information on fundamentals in a short time.
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literature on rationality and inefficiency of predictions. The seminal paper in this field is Ito (1990)

which tests individual biases and idiosyncratic effects for a set of disaggregate expectations about the

1−, 3− and 6−month-ahead JY/US rate from the JCIF survey over the period 1985 − 1987 finding

substantial heterogeneity among predictors.9 Similar results can be confirmed by Elliott and Ito (1999)

and Benassy-Quere et al. (2003). MacDonald and Ian (1996) replicate Ito’s test for 3− and 12−month-

ahead estimates of the BP/usd, DM/usd and JY/usd rates from the 1989-1992 and find significant evidence

of heterogeneous expectations. Extending the Consensus data set to 1995, Chionis and MacDonald (1997)

confirm the presence of individual effects for predictors. Mitchell and Pearce (2007) conducted a thorough

analysis of unbiasedness and success rate of predictions along with tests for heterogeneity and strategic

forecasting, finding systematic heterogeneity in predictions.10

3. Theoretical Model

The macroeconomic model is a standard two-country monetary model identified by the following basic

relationships. Define Et as the nominal exchange rate between home and foreign countries, where Pt is

the level of home prices and P ∗t is the level of prices in the foreign country.11 We assume that Purchasing

Power Parity (PPP ) holds,

Et =
Pt
P ∗t

, (1)

implying that the exchange rate at which two currencies trade equals the price levels of the two countries.

Rearranging this expression in log terms, we get:

pt = p∗t + st (2)

where pt and p∗t are, respectively, the log of home and foreign price level, while st is the log of real

exchange rate between home and foreign country, i.e., st = log(Et). The second building block of the

9This literature stems from the recent availability of individual survey-predictions of exchange rates. Previously, a long
strand of literature has studied inefficiency and irrationality of exchange rates forecasts. Dominguez (1986) tests the efficiency
of foreign exchange market showing that predictors systematically fail in forecasting in the magnitude and the direction of
exchange rates movements. Avraham et al. (1987) test the same hypothesis in a high inflationary Israel of the eighties
rejecting the notion of rationality of exchange rate expectations. Cavaglia et al. (1993) find that exchange rates forecasts
in the EMS are biased. Chinn and Frankel (1994) propose a test rejecting the hypothesis of efficiency and unbiasedness of
exchange rate predictions.

10For a complete review of the tests about heterogeneity hypothesis using disaggregated survey expectations of professional
forecasters, see Jongen et al. (2008).

11The starred superscripts usually indicate the variables for foreign country.
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model is determined by the money demand for each country, proportional to nominal income.12

The money demand, Md
t , increases to hold money for transactional purposes and is negatively related

to interest rate. Let us denote Lt as the negative function of it. It refers to the negative opportunity cost

of holding money, instead of an interest-earning asset paying i, e.g., it = − logLt. Long run equilibrium in

the money market is achieved when the real money supply, determined by the central bank and indicated

by Mt, is equal to the real demand for money balances, i.e., when Mt = Md
t . We assume that there is no

a-priori differences in the structure of the two countries such that φ and α are equal among them. The

money market equilibrium relationship for the two countries at time t is therefore:

Mt

Pt
= Y φ

t L
α
t (i) (3)

M∗t
P ∗t

= Y ∗φt Lαt (i∗) (4)

Rewriting both expressions in log terms,

mt − pt = φyt − αit (5)

m∗t − p∗t = φy∗t − αi∗t (6)

where yt is the log of real output. Finally, the uncovered interest rate parity (UIP ) plus deviations hold.

Interest rate returns in both countries are equal after controlling for the expected depreciation of home

country, namely

Et(st+1 − st) = it − i∗t + ψt (7)

where ψt stands exactly for observed deviations from UIP .13 Since UIP condition is based on rational

expectations and risk neutrality, deviations from UIP can be interpreted either as an expectational error

or a risk premium associated with liquidity or hedge trade.14 We can rewrite the variables on fundamentals

12We assume for simplicity the same functional form for the demand of each country:

Md
t

Pt
= Y φt L

α
t (i);

M∗d
t

P ∗
t

= Y φ∗t Lαt (i∗)

13The UIP deviation has been tested in the literature by a series of empirical contributions. See James et al. (2012) for a
complete review.

14This factor is necessary since information heterogeneity generates a deviation from UIP. This hypothesis is different from
the standard rational expectations structure where the perfect knowledge of investor’s behavior eliminates any deviation
from UIP with a non-arbitrage condition. Note that the deviation from UIP can also be explained with the presence of
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as ft = mt − m∗t − φ(yt − y∗t ) and define λ = α/(1 + α). By putting together conditions (5), (6) and

(7) and using PPP (eq. 2), a first-order difference equation with a familiar solution for the dynamics the

exchange rate can be easily derived:

st = (1− λ)

ft + Et
∞∑
j=1

λjft+j

− λ
ψt + Et

∞∑
j=1

λjψt+j

 , (8)

where the exchange rate depends on the path of the current and expected fundamentals, the UIP condition

and deviations ψt. A general solution of this equation under the hypothesis that agents share the public

information and perfectly know the model of the economy implies that expectations about the future

values of fundamentals and deviations are homogeneous.15

A more sophisticated and realistic information structure generalizes the common expectations frame-

work to include information heterogeneity as proposed by Bacchetta and Van Wincoop (2006, 2013).

Heterogeneity implies that agents may have private trading needs due to liquidity or hedge trade that can

generate demand for foreign bond influencing the exchange rate, as indicated by the term Et
∑∞

j=1 λ
jψt+j .

We hypothesize that trading needs expressed by ψ are unrelated to expectations about future fundamental

macroeconomic variables and make the simplifying assumption that ψt is an i.i.d. process with variance

σ2ψ. We thus assume that ft is a linear combination of two random walk processes f1 and f2, and then

the general process for the fundamental is a random walk as well, ft+1 = ft + εft+1 with the variance of

εft+1 being σ2f . Substituting equations (2), (5), (6) into (7), we obtain a new equation for the dynamics of

the exchange rate:

st = λĒtst+1 + (1− λ)ft − λψt, (9)

where the role played by heterogeneous expectations is clearly identified by the term Ētst+1. The current

value of the rate thus depends on next period expectations of the other predictors. This is true when new

information about fundamentals alters expectations on the future value of the exchange rate. Without

loss of generality, we assume that each investor at time t captures a private signal about the fundamental

at time t + 1. In a more general perspective, private signals may involve infinite periods ahead for n

predictors. In this case we would observe an infinite system where the exchange rate at time t depends

information on fundamentals enclosed in order flow as in Evans (2010) and Chinn and Moore (2011). We abstract from a
specific modeling of this factor and consider it an unknown stochastic process in the empirical analysis.

15For the functional form of the solution in case of rational expectations, see Bacchetta and Van Wincoop (2012).
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on the fundamental at time t and the average expectation at t of the fundamental at time t + 1 and so

on (Bacchetta and Van Wincoop, 2006).16

In our model, however, heterogeneous one step ahead expectation for each time period is the appro-

priate model to perform an empirical analysis based on actual data. In the rest of this section, first we

describe a social learning model about the choices of professional forecasters, then we integrate it in the

standard macro monetary economic model described above.

3.1. Social learning on exchange rates

Let us suppose a two-period economy populated by a finite series of predictors, n = {1, ..., N}. In

period t, each agent i observes noisy private and public signals about the exchange rate st which belongs

to a set Ψ : s ∈ Ψ and evolves according to the stochastic process:

st = st−1 + γt where γt ∼ N(0, σ2γ) and precision ρs ≡ σ−2γ (10)

where the shock γt occurring at the beginning of period t is normally distributed with mean 0, variance

σ2γ , and precision ρs ≡ σ−2γ . After the realization of a shock, each agent i receives a common public signal

about the fundamental ft as a function of the exchange rate:

ft = st + ηt ηt ∼ N(0, σ2η) and precision ρf ≡ 1/σ2η (11)

and a private personal signal:

xit = st + εit εit ∼ N(0, σ2ε ) and precision ρxi ≡ 1/σ2ε . (12)

So while information on the fundamental ft is common knowledge among agents, the private signal xit

is idiosyncratic to agent i and not observed by the other predictors. The common posterior about st,

taking into account public information, is therefore normally distributed with mean E[st|ft] =
ρsst−1+ρfft

ρs+ρf

and precision ρ[st|ft] = ρs + ρf . For notational simplicity, we denote the mean and the precision of the

posterior distribution, respectively as ỹt = E[st|ft] and ρỹ = ρ[st|ft].

Private posteriors are defined by mean E[st|ft, xit] =
ρỹ ỹt+ρxixit
ρỹ+ρxi

and precision ρ[st|ft, xit] = ρỹ + ρxi .

The weight of public signal in the Bayesian projection of s on the information set Hi(t) = {ft;xit} is

16See Townsend (1983).
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αỹ =
ρỹ

ρỹ+ρxi
, while the weight of the private one is αxi =

ρxi
ρỹ+ρxi

. The posterior mean for each agent i is

then derived, i.e., Ei(st) = αxixit + αỹỹt.

Let eit = Eit(st+1) ∈ R denote the predictor i’s expected evaluation on exchange rates, while ēt ≡∫
j ejtdj and σ2e ≡

∫
j [eit − ēt]

2dj are respectively the mean and the dispersion of investor’s expected

evaluations in the economy. Each predictor’s preferences are explicitly characterized by the following

concave increasing function:

U(eit, ēt, σ
2
e , st). (13)

As general as possible, we assume that the dispersion σe has only a second-order non strategic effect, i.e.,

Ueσ = UKσ = Usσ = 0, while Uσ(eit, ēt, 0, st) = 0, ∀eit; ēt; st. Under perfect information on the exchange

rate st, due to symmetry (eit = ēt = st, ∀i), the best response is given by the unique equilibrium

characteristics where predictors’ choice exactly coincides with her expectation. In the case of imperfect

information instead optimality requires that for any (xit, ft), the predictor’s choice eit = eit(xit; ft; ρỹ; ρxi)

is such that:

E[Ue(ei, ē, σ
2
e , s)|xit; ft; ρỹ; ρxi ] = 0, ∀i, t. (14)

In the case of a finite number of investors (as in Marinovic et al., 2011), individual’s expected utility

assumes the following form:17

U(eit, ēt, σ
2
e , st) = −(1− δ)(eit − st)2 − δ(eit − ēt)2. (15)

The first component is a quadratic loss in the distance between the optimal choice ei and the fundamental

st, while the second component is a quadratic loss in the distance between the choice eit and the average

ēt. Each predictor wants to minimize the expected distance between their evaluation and the average.

The parameter δ ∈ (0, 1) is a scalar that parametrizes the intensity of the coordination motive, i.e., the

importance that agent i assigns to the expectations of the other predictors of the market.

More intuitively, eq. (15) describes the predictor’s process in terms of the decision between two incen-

tives. They constitute the reward rule judging agent’s forecast success. The first incentive induces the

agent to anchor his/her predictions on the fundamentals. It relies on the distance between the actual spot

and the action of the agent and represents the cost of the forecast error, i.e., the cost of making a mistake

17See appendix AppendixA for the case of a continuum of investors.
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with respect to the fundamental. Due to the second incentive, instead, predictors guess the opponents’

beliefs because it expresses the cost of distancing from the prediction of the consensus. This is the factor

associated with the presence of higher order beliefs and whose weight is expressed by the parameter δ.

The quadratic specification of the utility function ensures the linearity of the predictors’ best responses

and the efficient allocations. Solving for eit, we obtain that:

eit(xi; f ; ρỹ; ρxi) = (1− δ)Ei[st|xit; ft; ρỹ; ρxi ] + δE[ēt|xit; ft; ρỹ; ρxi ] (16)

which can be rewritten as:

eit(xi; f ; ρỹ; ρxi) = (1− δ)Ei[st|xit; ft; ρỹ; ρxi ] + δ
eit
n

+ δEi[e−it|xit; ft; ρỹ; ρxi ] (17)

where Ei[e−it|xit; ft; ρỹ; ρxi ] = E[( e1t+...+ei−1t+ei+1t+...ent
n )|xit; ft; ρỹ; ρxi ]. In the unique equilibrium with

heterogeneous information, each individual i 6= j at time t follows a linear strategy eit = et(xt; ft; ρỹ; ρxi)

with:

et(x; f ; ρỹ; ρxi) = ϕxxt + ϕỹỹt (18)

where ỹt = E[st|ft] =
ρsst−1+ρfft

ρs+ρf
. According to this strategy, the predictor’s expectation about the other

(n− 1) agents is linear in (st; ft) and is given by:

Ei[e−it|xit; ft; ρỹ; ρxi ] = Ei[ϕxx−it + ϕỹỹt] (19)

= ϕxEi[st + ε−it] + ϕỹỹt

= ϕxEi[st] + ϕỹỹt.

Plugging this expression into predictor’s i best response,

eit = (1− δ)Ei[st|xit; ft; ρỹ; ρxi ] + δ
eit
n

+ δ
n− 1

n
Ei[e−it|xit; ft; ρỹ; ρxi ], (20)

and substituting the posterior mean of st, i.e., Ei(st) = αxixit + αỹỹt, it follows that:

eit = (1− %+ %ϕx)

[
ρxi

ρỹ + ρxi
xit +

ρỹ
ρỹ + ρxi

ỹt

]
+ %ϕỹỹt. (21)
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The coefficients (ϕx;ϕỹ) for the optimal linear strategy must satisfy:

ϕx =
(1− %)ρxi

(1− %)ρxi + ρỹ
and ϕỹ =

ρỹ
(1− %)ρxi + ρỹ

(22)

as the unique solution of the system, with % = nδ−δ
n−δ . The solution of the social learning game relies on

the individual expectation about next period exchange rate such that:

Eit(st+1) = ϕxxit + ϕyỹt, (23)

where the sensitivity of the predictor’s expectations to exchange rates is driven by two factors. First,

as discussed above, the weight of the beauty contest factor, i.e., δ, identifies the importance assigned

to the expectations of other predictors. Note that when δ = 0, the best response is given by eit =

E[st|xit; m̃t; ρỹ; ρxi ] so that a predictor’s optimal choice coincides with personal expectation. Higher

values of δ induces the agent to take mainly into account public sources of information when making own

prediction. Second, the sensitivity of predictor’s expectations to the exchange rate depends on the quality

of private and public signal in terms of precision. We learn that higher order beliefs places a greater

weight to the public signal compared to the private one (Morris and Shin, 2002). Agents put less weight

on their own private signal because the public signal acts as a coordinating device in order to predict the

actions of others. Using the individual solution of the social learning game as from eq. (23), we aggregate

individual predictions among the n investors, such that:

Ētst+1 = ϕxx̄t + ϕyỹt, (24)

by substituting it in eq.( 9),

st = λ(ϕxx̄t + ϕỹỹ) + (1− λ)ft − λψt. (25)

Knowing that ỹt = E[st|ft] =
ρsst−1+ρfft

ρs+ρf
and rearranging, we get:

st = (1− λ+ λτ2ϕỹ)ft + λϕxx̄t + λτ1ϕỹst−1 − λψt, (26)

with τ1 = ρs
ρs+ρf

and τ2 =
ρf

ρs+ρf
that can be reduced to

st = β1ft + β2x̄t + β3st−1 + β4ψt, (27)
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where β1 = (1 − λ + λτ2ϕỹ), β2 = λϕx, β3 = λτ1ϕỹ and β4 = −λ. The first term indicates the role of

fundamentals in the determination of exchange rate, the second term indicates the role of the strategic

interaction of higher order beliefs, the third term represents the role of persistence, the fourth term finally

figures out the role of liquidity trade.

4. Empirical Model

4.1. Methods and Data

According to the exchange rate model à la Bacchetta and Van Wincoop (2006) and introducing a

strategic mechanism of interaction as in Ottaviani and Sørensen (2006), we can frame the structural link

between the micro and the macro components of our setting as follows:

st = β1ft + β2x̄t + β3st−1 + β4ψt + εs,t (28)

ft = α0 + α1f1,t + α2f2,t + εf,t (29)

f1,t = φ01 + φ11f1,t−1 + φ12f2,t−1 + εf1,t (30)

f2,t = φ02 + φ21f1,t−1 + φ22f2,t−1 + εf2,t (31)

ỹt =
ρf

ρf + ρs
ft +

(
1−

ρf
ρf + ρs

)
st−1 (32)

ψt = ρψψt−1 + εψ,t (33)

Eit[st+1] = ϕỹỹt + ϕxxi,t, i = 1, . . . , N (34)

xi,t = xi,t−1 + εxi,t, i = 1, . . . , N (35)

where both the macro dynamics of exchange rates and the structural parameters of the micro behaviour

are described. The shocks εt = (εs,t, εf,t, εf1,t, εf2,t, εψ,t, εxi,t), i = 1, . . . , N are all Gaussian with mean

zero and standard deviation, respectively, σs, σf , σf1 , σf2 , σψ and, σxi,t, whereas N is the number of agents

that make predictions on exchange rates.

It is worth noting that eq. (28) corresponds to the structural definition of the exchange rates given in

(27), where the coefficients βi are functions of the structural parameters. Equations (32) and (34) mimic

the learning process defined in Section 3.1. In particular, eq. (32) describes the set of public information

in the market due to a combination of past observations on exchange rates and the current value of the

fundamental. In turn, eq. (34) identifies the mechanism forming individual expectation as the mixed effect

14



of private and public information, weighted respectively by ϕx = (1−%)ρx
(1−%)ρx+(ρs+ρf )

and ϕỹ =
ρf+ρs

(1−%)ρx+(ρs+ρf )

with % = δ(N−1)
N−δ .

We define the dynamics of the fundamentals ft, f1,t, f2,t and the private information flows xi,t. The

fundamental ft is assumed to be a linear combination of two observable factors fi,t with i = 1, 2, plus an

error term. In particular, fi,t are random walks18 and influence directly st and ỹt, while, ψt is a sequence

of IID shocks, i.e., we set ρψ = 0 to be consistent with the theoretical setup defined in Section 3. The

individual sets of private information, xi,t, are unobservable variables with a random-walk structure. This

assumption could be in principle relaxed although it is reasonable in this setup due to the non-stationary

nature of the exchange rates, their expectations and most of the determinants (Engel and West, 2005).

The model defined in (28-35) can be rewritten in compact form as

Γ0xt = cx + Γ1xt−1 + Γεεt (36)

and in particular xt = (st, ft, f1,t, f2,t, ỹt, ψt,Eit, xi,t), i = 1, . . . , N, while Γ0,Γ1 and Γε are appropriate

square matrices of parameters that define the system (28-35). By pre-multiplying eq. (36) with Γ−10 we

get

xt = Θc + Θxxt−1 + Θεεt. (37)

Some of the variables described through eq. (36) are potentially unobservable. For our empirical analysis,

we consider as observables the expectations Eit[st+1] which are represented by our dataset on heteroge-

neous survey forecasts concerning the actual exchange rates and the two fundamentals fi,t, i = 1, 2, that

is, ŷt = (ŝt, f̂j,t, Êit[st+1]), with j = 1, 2 and i = 1, . . . , N .19 We evaluate the expectation for N = 15

institutions which represent the most influential companies providing predictions for exchange rates in

the whole market.20

Data on expectations have been obtained from Foreign Exchange Consensus Forecasts (FECF ). In

the survey, Consensus Forecast of London, panelists are asked to forecast spot rates for the use against

the euro on the second Monday of every month. They are almost 250; and around 40 on average per each

publication are identified individually with their names.

18In our theoretical framework, this hypothesis is necessary to derive eq.(9). We set φ11 = φ22 = 1 and φ21 = φ12 = 0.
19We use the symbolˆto distinguish observed from theoretical variables.
20For details about the exchange rate dealing and how this affects the market concentration in the foreign exchange

predictions, see AppendixD.
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We refer to individual forecast as the forecast within the panel components whose identity is explicitly

indicated in the publication. In particular we focus on one-month-ahead forecasts from January 2006

to June 2012. Since the number and the identity of forecasters are not constant, we manage a database

implementing a conservative approach. First we collect the predictions of the institutions that appeared at

least once among the individual forecasts in the time span. Then, we assemble all available forecasts, while

recording a missing value when the predictor was either absent in the panel for that month publication

or when the company prediction for the month was indicated as ‘na’. Consequently we obtain individual

predictions for 15 institutions as described in AppendixD.

Macroeconomic variables have been downloaded from Datastream. According to Fratzscher et al.

(2012), monthly spot exchange rates on usd to euro have been computed by averaging over the month

daily observations from December 2005 to August 2012.

Related to the macroeconomic model in Section 3, fundamentals are f1,t = mt−m∗t and f2,t = yt−y∗t .

In particular f1,t is the difference of the logarithms of the money supply measured by the variable M2

for usd and euro at a monthly frequency; whereas f2,t is the difference of the logarithm of the GDP of

USA and euro area. Quarterly data on GDP have been disaggregated to a monthly frequency using the

methodology described by Proietti (2006). On the basis of Golinelli and Parigi (2008), we used as leading

indicators, long term interest rates (per cent per annum), harmonized unemployment rate, retail trade

and industrial production.21

We thus consider the following measurement equations to link our theoretical model to the real-world

economy:

ŷt = Sxt (38)

where S is a selection matrix that links the actual data set to the macroeconomic structure. Equations

(37-38) represent a linear and Gaussian state-space system for which the likelihood can be computed in

closed form through the Kalman filter. In particular, eq. (37) relies on the latent structure of the model,

or transition equation, while (38) is the so called measurement equation. It is worth noting that our

database on subjective forecasts is affected by missing values. This is not a relevant problem, since the

Kalman filter predicts missing data and allows for the computation of the likelihood function in a natural

way (see Koopman et al., 1999 for a treatment on this point).

21See AppendixD for details on data for macroeconomic variables.
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In order to deal with non-stationary observed data on exchange rates, it is appropriate to use first

differences. To take into account this transformation, it is easy to redefine the model as follows

∆ŷt ≡


∆ŝt

∆f̂1,t

∆f̂2,t

∆Êit[st+1]

+


st − st−1

f1,t − f1,t−1

f2,t − f2,t−1

Eit[st+1]− Eit−1[st]

+


0

0

0

γi


, i = 1, . . . , N

(39)

where γi are Gaussian measurement errors with standard deviation σEi that might affect the observables.

Notice that in eq. (39) we also include the lags of the observed variables which are not specified in the

vector xt. To fix the problem it is possible to generalize the vector of the variables of the model as follows

x̃t = (st, ft, f1,t, f2,t, ỹt, ψt,Eit[st+1], xi,t, st−1, f1,t−1, f2,t−1,Eit−1[st]) , i = 1, . . . , 15 (40)

to finally obtain the reduced form which reads

∆ŷt = S̃x̃t + γ̃t

x̃t = Θ̃c + Θ̃xx̃t−1 + Θ̃εε̃t. (41)

4.2. Prior distributions and inferential methods

Our main goal is to jointly estimate the structural and the reduced form parameters. Our first interest

is to capture the effect of higher order beliefs on the dynamics of the rate. This is identified by the weight

δ in the decision process of the individual predictor. Our second task is to measure the role of private

and public informations to determine the actual expectation. We need to explore the coefficients ϕx and

ϕỹ obtained from (22).

In the theoretical model of Section 3, we show that the coefficient ϕx measures the relevance of

private information in the formation process of expectations, while, ϕỹ indicates the relevance of public

information. There is also an influence of the value of δ on the dimensions of ϕx and ϕỹ. The higher the

value of δ, the greater the weight associated to the public signal with respect to the private one.

We recur to Bayesian estimation methods here, and in particular to Markov chain Monte Carlo

algorithms (MCMC), which have proved to be successful in the empirical macroeconomic literature

(Kim and Pagan, 1995; Canova, 2007). This task can be easily handled using a Random Walk Metropolis
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Hastings algorithm.22 All of the computations in this paper are based on software written using the Ox c©

7.0 language of Doornik (2001) combined with the state space library ssfpack of Koopman et al. (1999).

Our prior choices on the parameters are summarized in Tables 1 to 3. Overall, we considered prior

densities that match the domain of the structural parameters. In particular, we select a prior distribution

for the delta parameter equal to 0.5 (and standard deviation 0.1), consequently assigning an equal weight

to the two incentives present in the decision function of our predictors (eq. 15).

A priori, we assume that public and private informations play the same role when agents form their

own expectations, i.e., without forcing the model to privilege some sources of information. This guess is

consistent with the hypothesis that ϕx and ϕỹ are equal. Since these weights depend on the precision

coefficients ρf , ρs and ρx, we need to find prior distributions for them and at least on average, set

ϕx = ϕỹ = 0.5. To obtain this result, we set the prior distributions for ρf and ρs as Gamma with mean

1 and standard deviation 0.1, whereas ρx is still Gamma, but with larger expected value, namely, 4 and

standard deviation 0.4.23

The discount factor λ is a Beta variable with mean 0.5 and standard deviation 0.1. Furthermore,

we assume a weakly informative prior for α1 and α2 that are both Gaussian with mean 0 and rather

large variance with respect to the mean, i.e., 1. Finally the standard deviations of the shocks, including

standard deviations of the measurement errors, are rather dispersed, and in particular their standard

deviations are quite large with respect to the corresponding expected values. They are Inverse Gamma

with mean 0.6 and standard deviation 0.2.

5. Posterior estimates and Policy Implications

Posterior estimates have been obtained by running again the MCMC algorithm for 200.000 iterations

with a burn-in of 10.000. That is an adequate choice to remove the dependence on the initial conditions.

As usual in macro-econometrics (see An and Schorfheide, 2007), initial conditions have been obtained by

maximizing the posterior mode for the parameters. Results are reported in Table 1 to 3.

In particular, table 1 and figure 1 include posterior estimates of the structural relevant parameters,

namely posterior averages and credibility intervals, whereas Figure 1 displays prior versus posterior com-

parisons.

22See Robert and Casella (1999, ch. 6-7) for a general treatment on MCMC algorithms and Monte Carlo methods in
general

23An extensive sensitivity analysis suggests that posterior estimates of ϕx and ϕỹ are robust with respect to this choice.

18



Table 1: Posterior computation (MCMC) - Structural parameters

Posterior distribution Prior information

Parameter value Mean 95% Cred. Int. Mean S.E. Type

p(β1|ŷ) β1 = 1− λ+ λϕỹ
ρf

ρf+ρs
0.2302 [0.170, 0.301]

p(β2|ŷ) β2 = λϕx 0.6489 [0.559, 0.724]
p(β3|ŷ) β3 = λϕỹ

ρs
ρf+ρs

0.1209 [0.070, 0.177]

p(β4|ŷ) β4 = −λ -0.8561 [-0.916, -0.779]
p(α1|ŷ) 0.0842 [-0.716, 0.851] 0 1 Normal
p(α2|ŷ) -2.5237 [-3.724, -1.289] 0 1 Normal
p(ρf |ŷ) 0.8764 [0.706, 1.070] 1 0.1 Gamma
p(ρs|ŷ) 1.2342 [1.029, 1.454] 1 0.1 Gamma
p(ρx|ŷ) 3.618 [2.910, 4.394] 4 0.4 Gamma

p(ϕx|ŷ) ϕx = (1−%)ρx
(1−%)ρx+(ρs+ρf )

0.2412 [0.148, 0.352]

p(ϕỹ|ŷ) ϕỹ =
ρf+ρs

(1−%)ρx+(ρs+ρf )
0.7588 [0.648, 0.852]

p(σs|ŷ) 1.019 [0.468, 1.455] 0.6 0.16 Inv. Gamma
p(σf |ŷ) 9.2763 [6.986, 12.625] 0.6 0.16 Inv. Gamma
p(σf1|ŷ) 0.5854 [0.503, 0.683] 0.6 0.16 Inv. Gamma
p(σf2|ŷ) 0.9472 [0.812, 1.116] 0.6 0.16 Inv. Gamma
p(σφ|ŷ) 0.8621 [0.408, 1.588] 0.6 0.16 Inv. Gamma
p(λ|ŷ) 0.8561 [0.779, 0.916] 0.5 0.1 Beta
p(δ|ŷ) 0.8202 [0.694, 0.902] 0.5 0.1 Beta

The first interesting result relates to the value of the coefficient δ. A sensitive shift to the right of

the posterior is observed in the comparison with its prior distribution confirming the important role of

the beauty contest in the predictor’s evaluation process. Individuals assign more weight than expected

(82%) of interpreting correctly the other predictors’ beliefs and a smaller weight (18%) to the cost of

making forecast error with respect to the fundamental. The rational incentives of predictors are therefore

distorted. The value worth of the consensus is definitely higher than the option of making the right choice

on the basis of their own private information.

The result is relevant, not only for the correct comprehension of the micro-behavior of predictors, but

also because it helps to explain the persistent presence of some inefficiencies in predictions markets. This

is confirmed by a long strand of literature on the inefficiency of survey expectations for exchange rates

(Cavaglia et al., 1993; Ito, 1990; Frankel and Froot, 1990; MacDonald and Ian, 1996; Mitchell and Pearce,

2007; Pancotto et al., 2014).

Higher cost in the wrong choice on the consensus’s evaluation leads to an optimization process with

apparently odd conclusions. Predictors may in principle persist in incorrect predictions compared to
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Figure 1: Prior vs. Posterior distributions of the structural parameters

the actual market realization since their choice is in line with what they expect the consensus will do.

When this incentive prevails, a potential bias at the aggregate level could be observed in forecasting

the exchange rates. A second relevant point is the role that public and private information have on

individual forecast. Our analysis is based on the coefficients ϕx and ϕỹ. Results suggest that public

information accounts for about 75 percent of the predictions, whereas just 25 percent depends on private

information. This is coherent with the previous result related to the weight associated with higher order

beliefs. The combination between higher order beliefs and information structure ensures rather a rational

behavior in the decision problem. When agents care more about the consensus prediction rather than

their own personal assessment, they reduce implicitly the importance of their private signal. Robustness

checks suggest that this phenomenon is always verified despite ex-ante values of parameters ϕx and ϕỹ

are assumed to be equal and independent by the precision of both signals. Although the precision of
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the private signal ρx is higher than the precisions of the public one, i.e., ρf and ρs, the role of higher

order beliefs is largely confirmed. Public information in a beauty contest environment, therefore, acts

as a coordinating device. This is a central result, firstly, proposed by Morris and Shin (2002). We

have intentionally integrated it in our framework to test its presence and intensity in the context of the

exchange rate market. Furthermore, it also furnishes a complementary result to the empirical test of

the scapegoat model of Bacchetta and Van Wincoop (2004) implemented by Fratzscher et al. (2012).

They discover that using survey predictions on fundamentals as proxies for scapegoat effects increases

the ability to explain exchange rate movements. Public information is, therefore, capable of capturing

changes in the actual dynamics of the rate. Our result is closely related to these points. First, we estimate

the intensity of beauty contests factor and, as theoretically predicted, we discover that the importance of

the role of higher order beliefs is associated to a greater weight assigned on public information. Second,

using the result of Fratzscher et al. (2012), we infer that public information that agents overrate can be

a distorted information. The predictors are rationally searching for fundamental information, but then

they end up in overweighting a public information that is not informative. This is clearly due on one side

to the presence of higher order beliefs and on the other side to the uncertainty that the heterogeneity of

expectations conveys. The fundamental is therefore transformed into a scapegoat in case of uncertainty

about the structural parameters. In particular, the high value of the variance of the fundamental, p(σf |ŷ)

(around 9) in table 1 suggests a coherence between the short term uncertainty suggested by Fratzscher

et al. (2012) and the one derived by the fundamental movements. This exactly generates the scapegoat

effect discussed by Bacchetta and Van Wincoop (2004).

5.1. Robustness checks and goodness-of-fit

In this section we evaluate the performance of our model against the data. First we compare our model

with a rational expectation dynamics. As a benchmark, we consider the rational expectation model that

closely mimics the dynamics defined in eq. (9). In particular we consider

st = λEt[st+1] + (1− λ)ft − λψt + εt, (42)

in which ft is described in eq. 29, while ψt is an independent and identically distributed sequence. Fur-

thermore, rational expectations are defined such that Et[st+1] = st + ηt, where ηt is a gaussian shock with

mean zero and constant variance. Rational expectation dynamics on exchange rates has been estimated
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through MCMC. In particular for each posterior draw of the parameters, we solved the rational expecta-

tion system using Sims (2002) and implementing it with the Ox package LiRE of Mavroeidis and Zwols

(2007). Then for each parameter, we simulated the one-step-ahead prediction of the rational expectation

dynamics. Figure 2 compares the average rational expectations trajectory and the average one from the

True exchange rates 
Survey’s average expectations 
Estimated rational expectations +/- 2 SE 
One-step-ahead predictions on exchange rates 
  2006 2007 2008 2009 2010 2011 2012
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Figure 2: Actual exchange rates (green line), average from the survey (red line) together with an estimate of the rational
expectation on exchange rates Et[st+1] (blue line) and the one-step-ahead prediction on st (black line).

survey.24 Figure 2 still points out the predicted average expectations. They differ substantially from the

observed ones and it emerges that predicted exchange rates do not replicate at all the dynamics of actual

exchange rates.

This empirical evidence can be considered as a symptom that rational expectations fail in providing

24Here rational expectations has been computed as the average trajectory compared to the posterior draws of the model’s
parameters.
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a good fit to actual data. This is the reason why using survey data appears to be a viable strategy to

provide a better description of actual exchange rates. As a second exercise, we thus compute the predicted

exchange rates and their returns, see figure 3 displaying one-step-ahead prediction for them.
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Figure 3: Upper panel: Actual exchange rates (red line) vs. predicted exchange rates (blue line) together with 95% credibility
bands. Lower panel: Actual exchange rates returns (red line) vs. predicted exchange rates returns (blue line) together with
95% credibility bands.

In this case, actual data are replicated quite accurately by the model. Indeed, more than 70% of

actual exchange rates fall in the 95% credibility interval. In particular predicted estimates provide a good

proxy for the trending behavior of the true data.

We also investigate the role of measurement errors in the model. We thus compare the model with

measurement errors together with the estimated model. We evaluate the goodness-of-fit through the

marginal likelihood estimated as the harmonic means of the likelihood function evaluated for each posterior

draw of the parameter vector (see An and Schorfheide, 2007 for this point). The log-marginal likelihoods
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for the model with and without measurement errors are respectively -2349.2 and the -2359.7, which imply

a Bayes factor of about e10 in favor of the former model. This evidence suggests a strong rejection of the

model with no measurement errors.

To study the dynamic interactions between the variables in level of the system, it is useful to analyze

how exchange rates react to structural shocks. This assessment is illustrated in figure 4. We show the

impulse response functions (IRFs, hereafter) of exchange rates due to positive economic shocks, related

to exchange rates, fundamentals, liquidity and private information. For each shock, the impulse-response

functions are shown along with the 95 percent credible intervals. Despite the non-stationary nature in

the dynamics of the model, impulse response functions can still be computed (Lütkepohl, 2005, ch. 6.7).
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Figure 4: Impulse Response Functions and the 95% credible intervals

In the graphs of figure 4, red line relies on the IRF, while the grey band is the 95% credible interval for

the IRF. In the top left panel we observe how a shock to exchange rates affects the overall dynamics of the

rate for a short period, dying out at the end of the period. The same happens for the shock to the linear
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combination of the two fundamentals (top right panel), which as well affects the dynamics of the rate

and then fades away. This is coherent with the standard monetary model with flexible prices where an

anticipated monetary shock affect the exchange rate only temporarily. In the bottom left panel we observe

that a shock to liquidity generates a substantial effect on the exchange rate dynamics - coherently with

Evans and Lyons (2002) - but this effect is absorbed with time because of the choice to model liquidity

as a white noise. The increase in the role of private information is observed in the last graph of figure4,

particularly in the short run, although the results are not statistically significant.

Finally, we also computed the forecast error variance decomposition (FEVD) for the returns on ex-

change rates. To compute the FEVD we exploited the cointegration relationships of the system to derive

its MA representation of ∆xt.
25 This representation has been obtained through the Smith-McMillan

factorization of the polynomial matrix associated to the model as proposed in Engle and Yoo (1991).

Our analysis suggests that the shocks on fundamentals is the primary factor on explaining ∆st.

In particular fundamentals explain about 90% of the variance in returns. Shocks on exchange rates

explain about 6% of the variability whereas liquidity appear to be less relevant and counts for about 3%.

Apparently, private informations are not relevant for forecasting purposes. On the other hand, figure 2

suggests that rational expectations by themselves provide poor one-step-ahead predictions. These findings

suggests that fundamentals represent the most important device to forecast exchange rates. However

excluding the learning process from the model may cause troubles due to some form of mis-specification

of the exchange rates dynamics that leads to an unprecise estimate of the model’s parameters. Even this

results thus provide evidence in favor of our specification versus the standard rational expectation model.

Furthermore, to predict returns on exchange rates, measurement errors play no roles at all.

6. Conclusions

The paper tends to investigate the process leading to the dynamics of exchange rates. Expectations

are formed using a social learning game where agents exploit jointly public and private information using a

learning scheme according to Morris and Shin (2002). Our first goal was to verify whether a mechanism of

higher order beliefs takes place and its connection with the scapegoat theory of exchange rates (Bacchetta

and Van Wincoop, 2004). Our second task was to quantify through a structural time series model the

connections between public and private informations and their role in building expectations. Results show

25See AppendixC for some technical details.
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that higher order beliefs are relevant in forming agent’s expectations. Furthermore, public information

plays a crucial role as a coordination device to generate expectations among agents on the basis of their

forecasting abilities. As a side result, we also noticed that rational expectations appear to provide poor

one-step-ahead predictions for exchange rates.

Table 2: Posterior computation (MCMC) - Other parameters

Posterior distribution Prior information

Mean 95% Cred. Int. Mean S.E. Type
p(σx1 |ŷ) 0.6314 [0.395, 1.081] 0.6 0.16 Inv. Gamma
p(σx2 |ŷ) 0.6096 [0.393, 0.972] 0.6 0.16 Inv. Gamma
p(σx3 |ŷ) 0.6044 [0.375, 0.975] 0.6 0.16 Inv. Gamma
p(σx4 |ŷ) 0.6098 [0.392, 0.977] 0.6 0.16 Inv. Gamma
p(σx5 |ŷ) 0.6467 [0.393, 1.104] 0.6 0.16 Inv. Gamma
p(σx6 |ŷ) 0.5871 [0.376, 0.958] 0.6 0.16 Inv. Gamma
p(σx7 |ŷ) 0.5902 [0.372, 1.125] 0.6 0.16 Inv. Gamma
p(σx8 |ŷ) 0.6077 [0.371, 1.104] 0.6 0.16 Inv. Gamma
p(σx9 |ŷ) 0.5806 [0.372, 0.934] 0.6 0.16 Inv. Gamma
p(σx10 |ŷ) 0.6039 [0.386, 0.963] 0.6 0.16 Inv. Gamma
p(σx11 |ŷ) 0.6247 [0.381, 1.017] 0.6 0.16 Inv. Gamma
p(σx12 |ŷ) 0.6142 [0.380, 1.056] 0.6 0.16 Inv. Gamma
p(σx13 |ŷ) 0.5919 [0.391, 0.913] 0.6 0.16 Inv. Gamma
p(σx14 |ŷ) 0.6243 [0.404, 0.983] 0.6 0.16 Inv. Gamma
p(σx15 |ŷ) 0.6564 [0.406, 1.183] 0.6 0.16 Inv. Gamma

Table 3: Posterior computation (MCMC) - Measurement Errors

Posterior distribution Prior information

Mean 95% Cred. Int. Mean S.E. Type
p(σE1 |ŷ) 1.4055 [1.170, 1.686] 0.6 0.16 Inv. Gamma
p(σE2 |ŷ) 1.7511 [1.386, 2.204] 0.6 0.16 Inv. Gamma
p(σE3 |ŷ) 2.5709 [2.162, 3.071] 0.6 0.16 Inv. Gamma
p(σE4 |ŷ) 3.9357 [3.343, 4.640] 0.6 0.16 Inv. Gamma
p(σE5 |ŷ) 0.867 [0.604, 1.218] 0.6 0.16 Inv. Gamma
p(σE6 |ŷ) 3.3454 [2.844, 3.961] 0.6 0.16 Inv. Gamma
p(σE7 |ŷ) 2.8154 [2.346, 3.380] 0.6 0.16 Inv. Gamma
p(σE8 |ŷ) 1.5442 [1.293, 1.841] 0.6 0.16 Inv. Gamma
p(σE9 |ŷ) 2.6808 [2.277, 3.157] 0.6 0.16 Inv. Gamma
p(σE10 |ŷ) 1.9843 [1.693, 2.337] 0.6 0.16 Inv. Gamma
p(σE11 |ŷ) 2.9299 [2.456, 3.525] 0.6 0.16 Inv. Gamma
p(σE12 |ŷ) 2.9091 [2.450, 3.444] 0.6 0.16 Inv. Gamma
p(σE13 |ŷ) 2.5205 [2.148, 2.969] 0.6 0.16 Inv. Gamma
p(σE14 |ŷ) 2.9644 [2.542, 3.491] 0.6 0.16 Inv. Gamma
p(σE15 |ŷ) 1.687 [1.410, 2.014] 0.6 0.16 Inv. Gamma
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AppendixA. Continuous case

Let us assume now a continuum of agents in the society. As before each predictor’s preferences are

generically characterized by:

U(eit, ēt, σ
2
e , st) (A.1)

We have verified the existence of a (unique) linear equilibrium strategy expressed by eq. 22 in case of

a finite numbers of investors. Here we show that the linear equilibrium is also unique in the continuous

case. The best response of investor−i is:

eit(xi; f ; ρỹ; ρxi) = (1− δ)Ei[st|xit; ft; ρỹ; ρxi ] + δEi
∫
ejdj|xit; ft; ρỹ; ρxi ] (A.2)

To make the notation as simple as possible, let us denote Ei[.|xit; ft; ρỹ; ρxi ] = Ei[.]. We can start

iterating forward such that:

eit = (1− δ)Ei[st] + δEi
[
(1− δ)

∫
Ej [st+1]dj + δ

∫
Ej [ēt]dj

]
= (1− δ)Ei[st] + δ(1− δ)EiĒ[st+1] + δ2Eit

∫
Ej [ēt]dj

=
...

= (1− δ)Ei[st] + δ(1− δ)EiĒtst+1 + δ2(1− δ)EiĒ(2)
t st+1 + ...

Ētst+1 is the average expectations operator given by:

Ē[·] ≡
∫

Ej [·]dj

Ē(k)
t [·] ≡

∫
EjĒ(k−1)[·]dj = ĒtĒt(k−1)[·]

where Ē(k)[·] denote the average expectation of order k. We get the optimal action of any agent as a

simple geometric sum of higher order beliefs:

eit = (1− δ)
∑∞

k=0
δkEi[Ē

(k)
t st+1] (A.3)
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Thus higher level of δ implicitly reveals a greater importance of the weight assigned to the higher order

beliefs. To check if the infinite sum is bounded, we need to solve for Ei[Ē(k)st+1]. Since the investor−i’s

expected value of st is given by eq. 23, i.e.,

Eit(st+1) = ϕxxit + ϕyỹt

while the average expectation across predictors is equal to 24, i.e.,

Ētst+1 = ϕxx̄t + ϕyỹt

We can rewrite the expectation of Ētst+1 for each investor−i as:

EitĒtst+1 = ϕxEit[x̄t+1] + ϕyỹt

= ϕxEit[st+1 + εit+1] + ϕyỹt

Then since εit+1 ∼ N(0, σ2ε ) and due to symmetry (s̄t+1 = st+1, ∀i), we easily rewrite:

EitĒtst+1 = ϕxEit[st+1] + ϕyỹt

= ϕx (ϕxxit + ϕyỹt) + ϕyỹt =

= ϕ2
xxit + ϕ2

yỹt

this implies that the average expectation of Ētst+1 is given by:

Ē(2)
t st+1 = ĒtĒtst+1 = ϕ2

xx̄t + ϕ2
yỹt

Iterating the procedure for any k,

Ē(k)
t st+1 = ϕkxx̄t + ϕky ỹt

EitĒ
(k)
t st+1 = ϕk+1

x xit + ϕk+1
y ỹt (A.4)
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Now substituting eq. (A.4) to eq. (A.3), we obtain that:

eit = (1− δ)
∞∑
k=0

δk
(
ϕk+1
x xit + ϕk+1

y ỹt

)
=

(1− δ)
1− δϕx

ϕxxit +

(
1− (1− δ)

1− δϕx

)
ϕyỹt

while simplifying,

eit =
(1− %)ρxi

(1− %)ρxi + ρỹ
xit +

ρỹ
(1− %)ρxi + ρỹ

ỹt

which is exactly the linear equilibrium in a continuum of agents.

AppendixB. MCMC algorithm

The intuition behind MCMC is to build a Markov chain transition kernel starting from a given ini-

tial point and with limiting invariant distribution equal to the posterior distribution of the interested

quantities. Under suitable conditions (seeRobert and Casella, 1999, chap. 6-7), such a transition ker-

nel converges in distribution to the target posterior density p(θ|y). This Markov chain trajectories are

obtained through simulations on the basis of two-steps procedure. First, a new movement is proposed

by simulating the new position from a proposal distribution, and second, this move is accepted or re-

jected according to some suitable probabilities that depend on the likelihood function and on the prior

distribution of the parameters p(θ). In a nutshell, given a starting value for the parameter’s vector θ(0),

we simulate trajectories of the Markov chain {θ(j), j = 1, . . . , n} whose draws converge to the posterior

distribution. Once convergence is achieved, inference can be based on the generated serially dependent

sample simulated from the posterior. More precisely, estimates of the posterior means Ep(θ|y)[θ] are

obtained by averaging over the realization of the chains, i.e., θ̂ = n−1
∑n

j=1 θ
(j). To account for serial

correlation induced by the Markovian nature of this procedure, we estimate the numerical standard error

of the sample posterior mean using the approach implemented, for instance, by Kim et al. (1998). In this

application, θ are the structural parameters of the model including, amongst others λ, δ, ρxi , ρf and ρs.

In the MCMC literature, there are many different ways to make a step from the Markov chain. Our

inferential procedure is based on a Random Walk Metropolis-Hastings algorithm, that has been proved to

be effective in the DSGE framework (An and Schorfheide, 2007), and in which the proposal distribution
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depends uniquely on the current state of the chain at time j, i.e., q(θ|θ(j)). Once parameters are updated,

the exact likelihood function is evaluated through the Kalman filter to eqs. (37) -(39)

We thus propose through the random-walk step new values for these parameters and then we compute

the reduced form to evaluate the exact likelihood.

The procedure can be summarized as follows

MCMC algorithm

• Initialize the chain at θ(0)

• At step j = 1, . . . , n

– Update θ in block through a random walk Metropolis-Hastings scheme

θ∗ ∼ q(θ|θ(j−1));

– Compute L(y|θ∗) through Kalman filter;

– Compute the acceptance probability α(θ(j−1),θ∗) defined as

α(θ(j−1),θ∗) =
p(θ∗)L(y|θ∗)q(θ(j−1)|θ∗)

p(θ(j−1))L(y|θ(j−1))q(θ∗|θ(j−1))

– Draw u from an U(0, 1) random variable. If α(θ(j−1),θ∗) ≤ u

∗ Then θ(j) = θ∗;

∗ Else θ(j) = θ(j−1);

• j = j + 1

AppendixC. Forecast Error Variance Decomposition for ∆xt

To obtain the FEVD for the observed data, we recur to the following MA representation of the

economic system. The reduced form model is

xt = Θxxt−1 + εt, E[εtε
′
t] = ΘεΘ

′
ε
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or, using a polynomial notation with lag operator L,

Θx(L)xt = εt.

In particular some of the processes involved are random walks. In the following, n is the dimension of xt

whereas n− r is the number of random walks.

By looking at the rank of Θx, we observe that for all the posterior parameters from the MCMC

algorithm, there exist r cointegration relationships, then an MA representation of ∆xt exists. Consider

that,

Θx(L) =

 (1− L)In−r 0n−r,r

−Ar,n−rL I − LBr,r


Following Engle and Yoo (1991), the autoregressive polynomial can be factorized as Θx(L) = U(L)M(L)V (L),

to disentangle the stationary from the non-stationary part of the model. In particular we get

Θx(L) =

 In−r 0n−r,r

0r,n−r Ir,r

 (1− L)In−r 0n−r,r

0r,n−r Ir,r

 In−r 0n−r,r

−Ar,n−rL I − LBr,r


and the corresponding matrix

V =

 In−r 0n−r,r

Ar,n−rL Br,r


Some tedious algebra allows to get

∆xt =

 In−r 0n−r,r∑∞
i=1 Θ

(i)
21L

i
∑∞

i=1 Θ
(i)
22L

i(1− L)

 εt
in which Θ

(i)
21 and Θ

(i)
22 are respectively the lower left and right blocks of V i.

AppendixD. Foreign exchange Consensus Survey data

On the second Monday of every month, Foreign Exchange Consensus Forecasts (FECF) asks their

panelists to forecast spot rates for the use against the euro over a range of time horizons. Each panelist

provides a series of forecasts with different maturities: one that refers to the next month, one to the next
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quarter, one to the next year and one to the next two years. Panelists are almost 250, and around 40 per

each publication on average are identified individually with their names. Nonetheless, FECF reports in the

publication the Consensus forecast which is the mean of all forecasts received by the company, including

those panelists whose names are not explicitly indicated. The forecasts of the panelists are polled into an

average forecast that is reported as well, and is defined in the publication as Other Forecasters. Let us

refer to the individual forecasts as the forecasts of the components of the panel whose identity is explicitly

indicated in the publication.26

The companies in the poll are indicated with their names in the publication and listed in descending

order of their 1 year percentage change estimates. Consequently, the order in which the panelists appear

in the list may change every month. The composition of the panelists whose names appear explicitly

is not always the same. There are institutions that provide predictions in almost every publication in

the time span considered, while some others provide a lower frequency. There are also cases in which

the company is present in the list but the forecast is not provided. This is indicated with the label na

in the value for the forecast.27. The names of the companies included in our database are presented in

Table D.4.

Forex trading shows a very fast modernization in the last years fundamentally based on electronic

trading leading to a complete restructuring of forex market. Large banks have the necessary resources

to develop sophisticated proprietary trading platforms through which satisfy their own customers. They

also provide trading service to smaller banks, which have mostly withdrawn from the market due to the

high costs associated with the investment in these platforms. Small banks have nonetheless maintained

their ability to provide liquidity to their customers using the proprietary platforms of the large banks

but under their names. This procedure is called white labeling and is certainly efficient for the market

functioning, although it has driven a concentration of market information. In this case large banks can

observe directly small banks’ trading flows and extract from these data possibly relevant information. The

concentration driven by the phenomenon of white labeling is striking since the three larger bank trading

platforms account for 70% of the total market share.28

26We refer to Consensus forecasts and Other forecasters indicating the same group of forecasters in the publication as
previously described.

27When we created our database we considered both the lack of a prediction of the company for that month and of the
presence of the company in the list as NA

28See James et al. (2012), page 30, about the Euromoney FX Survey, where the list of all the institutions with a trading
platform is reported.
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Table D.4: Predictions of individual forecasters: missing observations in absolute value and percentage on the total number
of observations in the sample. Last column: companies with proprietary trading platforms (Euromoney FX survey).

n missing % on total white label

Bank.of.Tokio.Mitsubushi 1 1
Barclays.Capital 31 40 yes
BNP.Paribas 7 9
BoA.Merril.Linch 4 5
Citygroup 47 60 yes
Commerzbank 4 5
Deutsche.Bank.Research 18 23 yes
General.Motors 0 0
HSBC 1 1 yes
IHS.Global.Insight 0 0
JPMorgan 10 13 yes
Oxford.Economics 7 9
Royal.Bank.of.Canada 0 0
UBS 3 4 yes
WestLB 3 4

Other variables are reported in the same panel where forecasts are indicated, i.e., the annual percentage

change of the consensus rate and the discount (or premium) of the survey consensus forecast with respect

to the spot rate at the date of the forecast. In the same page, the FECF presents data on Current

Account Balances in usd and consensus forecast on current account balances for major countries of the

euro area.29 Country risk indicators are also reported for information to the subscribers: current account

and budget balance (in % of GDP) for the current year and the prediction for the next year; public

debt of the preceding year (in % of GDP) and sovereign debt ratings of both Moody’s and S&P. Two

figures are presented to the readers: in the first, the usd per euro exchange rate together with usd less

euro 3 Month interest rate futures differential contracts(as of the end of the following quarter). In the

second, the Yen/euro cross rate to explore currency linkages with the japanese currency. The yen per usd

exchange rate is the only other currency for which the prediction of the panelists appears in detail in the

publication every month.

AppendixD.1. Data availability and database construction

We study monthly forecasts of the usd against the euro exchange rate for a period ranging from

January 2006 to June 2012, which amounts to 78 monthly predictions over this time span. As previously

29In detail: Germany, France, Italy, Austria, Belgium, Finland, Greece, Ireland, Netherlands, Portugal, Spain, and Euro
zone.
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mentioned, the number and the identity of forecasters is not constant so we had to build a database using

the information of the individual forecast in a constructive way. We implemented a conservative approach.

We collected the predictions of the institutions that appeared at least once among the individual forecasts

in the time span considered. Then, we collected all available forecasts and recorded a missing value the

occurrence when the predictor was either non present in the panel for that month publication or when the

company prediction for the month was indicated as ‘na’. Consequently we obtained individual predictions

for 15 institutions:

AppendixD.2. Data on fundamentals

The data source for all macro data is Datastream.

Spot exchange rate data:

We collected data to euro exchange rate at daily frequency from december 2005 to august 2012. To obtain

a monthly series for the exchange rate we implemented the choices of Fratzscher et al. (2012). We use

nominal bilateral exchange rate changes vis-a-vis the reference currency, in the benchmark specification

using changes over the past month. Since we know the exact day when the surveys were conducted, these

exchange rate changes are calculated relative to the exchange rate of the previous business day.

GDP: data on GDP are at quarterly frequency. We need to disaggregate them in order to have a

monthly frequency that matches the survey frequency. To obtain the monthly data we use the following

macroeconomic indicators following Golinelli and Parigi: Long term interest rate (per cent per annum),

harmonized unemployment rate; Retail trade; Industrial production. For the money supply the difference

of the log of M2 for US $ and euro (frequency).
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