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Abstract

The problem of instrument proliferation and its consequences (over-
fitting of the endogenous explanatory variables, biased IV and GMM es-
timators, weakening of the power of the overidentification tests) are well
known. This paper introduces a statistical method to reduce the instru-
ment count. The principal component analysis (PCA) is applied on the
instrument matrix, and the PCA scores are used as instruments for the
panel generalized method-of-moments (GMM) estimation. This strategy
is implemented through the new command pca2.
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1 Introduction

The generalized method-of-moments (GMM) estimator, in the Arellano
and Bond [1991], Arellano and Bover [1995] and Blundell and Bond [1998]
formulations, has gained a leading role among the dynamic panel data (DPD)
estimators, mainly due to its flexibility and to the few assumptions about the
data generating process it requires. In addition, the availability of lags of
the endogenous variables provides many instrumental variables (IVs) directly
exploitable for GMM estimation.

However, the estimation of DPD models by GMM with many instruments
has its own drawbacks. Already in the seminal work of Sargan [1958] it was
stressed that, in the context of IV estimation, the marginal improvements from
an increase in the number of instruments beyond three are generally small
whereas they can negatively affect the consistency of the estimates and the
reliability of specification tests. Since then, the potential distortions in param-
eter estimates when the instrument count gets larger have been further ex-
tensively investigated in the literature (Kiviet [1995], Andersen and Sorensen
[1996], Ziliak [1997] among others).

In particular, instrument proliferation is intrinsic in GMM estimation of
DPD models when all the lags of the endogenous explanatory variables are
exploited, as the number of moment conditions increases with T and with
the dimension of the vector of endogenous regressors. While, in principle,
the availability of a wider set of conditions should improve efficiency (Dage-
nais and Dagenais [1997]), the bias due to overfitting is quite severe as the
number of moment conditions expands, outweighting the gains in efficiency
(Bekker [1994], Newey and Smith [2004], Ziliak [1997]). Such trade-off be-
tween bias and efficiency is exacerbated by the weak instruments problem
(Bound et al.[1995], Staiger and Stock [1997]) and by the correlation between
the sample moments and the estimated optimal weighting matrix, as sampling
errors are magnified in the weighting matrix (Altonji and Segal [1994]). Poor
estimates of the variance/covariance matrix of the moments lower the power
of the specification tests such as the Sargan/Hansen test for overidentifying
restrictions, that suffers from a severe under-rejection problem (Sargan [1958],
Andersen and Sorensen [1996], Bowsher [2002]).

Overall, such evidence supports the importance of properly addressing in-
struments proliferation, although this problem is often overlooked in empir-
ical analyses; indeed only seldom empirical strategies such as lag truncation
and collapse (Roodman [2009a]) are used to reduce the number of moment
conditions. This reduction is especially required when the number of IVs is
small with respect to the cross-sectional dimension of the panel (Alvarez and
Arellano [2003]).

Our aim in this paper is to tackle the issue of instrument proliferation
by providing a statistically grounded and directly implementable procedure
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that reduces the instrument count. In line with Doran and Schmidt (2005)
who propose an eigenvalue-eigenvector decomposition of the GMM weight-
ing matrix in order to reduce its dimension, we advocate the use of principal
components analysis (PCA) of the instruments matrix as a way to shrink the
available instruments into a set of linear combinations of the original variables
(the scores of the PCA). The weights used in such orthogonal combinations
follow from the main features of the data and reflect the contribution of each
variable to the total observed variability.

We label this strategy “principal components instrumental variables reduc-
tion” (PCIVR). PCIVR comes out as a complementary tool with respect to lag
truncation and collapse, which impose a priori restrictions not tailored on the
data. Instead the approach we propose here provides a flexible statistical rule
for the selection of non redundant instruments that adjusts to the empirical
problem at hand and reflects the specific features of the data1.

Our procedure extends the set of tools available to the researcher to reduce
the instrument count, as it embraces a different perspective with respect to the
existing strategies. It should be recalled that lag truncation assumes that the
relevant information is only conveyed by the most recent (usually one or two)
available lags of the endogenous variables, while the collapsing of the instru-
ments matrix assumes specific dynamics in the data. As such assumptions can
not be tested a priori, in order to identify potential critical aspects related to
the issue at hand, we believe that it is highly advisable to compare the GMM
estimates obtained with lag truncation and collapsing with those provided by
PCIVR, where the information from the whole instruments set is exploited in
order the select the lags that contribute most to the total variability. Given
that none of the count reduction strategies mentioned above can be shown
to be superior to the others in every situation, further robustness analysis is
recommended in this context. This robustness checks can now be easily done
through the new pca2 command, that directly implements PCIVR by means
of an .ado file.

Thanks to its flexibility, the command pca2 adds useful features to the
Stata command pca. It is straightforwardly applicable in Stata to any type of
dataset (cross-section, time series and panel), and automates, through specific
options, alternative ways to extract the principal components and to select
those to be retained for the computation of the PCA.

The rest of the paper is organised as follows. Section 2 summarises the
main methodological underpinnings of the strategy we present: section 2.1
reviews the GMM estimation of DPD models and section 2.2 describes the
extraction of principal components from a matrix of instruments. Section 3
details the syntax of the pca2 and its options by also providing some empirical

1A first sketch of a PCA-based reduction of GMM IVs can be found in Mehrhoff [2009], while
the pca option in the user-written xtabond2 (Roodman [2009b]) command provides a first appli-
cation within Stata.
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examples. Section 4 carries out a guided example of robustness analysis in the
context of published research on the determinants of the discretionary fiscal
policy in the Euro area Countries.

2 The methodological framework

2.1 GMM estimation of DPD models

Consider the general two-way error component DPD model:

yit = αyit−1 + β′xi,t + φt + υit , υit = ηi + εit, (1)

where i = 1, .., N, t = 1, .., T, x is a m-dimensional vector of potentially en-
dogenous or predetermined regressors, the φt are the time effects, the ηi are
the individual effects and εit is a zero-mean idiosyncratic error, allowed to
be heteroskedastic but not serially correlated. The standard assumptions are:
E[ηi]=E[εit]=E[ηiεit]=0 and predetermined initial conditions E[yi1εit]=0.

The Arellano-Bond and Arellano-Bover/Blundell-Bond estimators are lin-
ear GMM estimators for the model in (1) in first differences (DIF GMM) or
in levels (LEV GMM) or both (SYS GMM); the instrument matrix Z includes
the lagged values of the endogenous variables. The columns of Z correspond
respectively to two different sets of meaningful moment conditions.

The Arellano-Bond DIF GMM estimator exploits the following moment
conditions for the equation (1) in first differences:

E[(Zi
dif)′∆υi] = E[(Zi,t−l

dif)′∆υit] = 0 for t ≥ 3, l ≥ 2. (2)

where l denotes the lag depth.
The Blundell-Bond SYS GMM estimator also exploits the additional non-

redundant orthogonality conditions for the equation (1) in levels:2

E[(Zi
lev)′υi] = E[(Zis

lev)′υiT ] = 0 for s = 2, ..., T − 1. (3)

Since DPD GMM uses lags of the explanatory variables as IVs, “the phe-
nomenon of moment condition proliferation is far from being a theoretical
construct and arises in a natural way in many empirical econometric settings”
(Han and Phillips [2006, p. 149]). The dimension of the GMM-type instru-
ment matrix grows as the number of time periods and endogenous regressors
expands.

2The LEV GMM estimation considers, for each endogenous variable, time period and lag
distance, all the available lags of the first differences as instrument for the equation in levels
because they are non redundant.
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2.2 Extracting principal components from the matrix of in-
struments

The adoption of PCA or factor analysis to extract a small number of factors
from a large set of variables has become popular in macroeconometrics, the
forecasting being the main field of application. Stock and Watson [2002] prove
consistency of the factors as the number of original variables gets sufficiently
large, so that the principal components are estimated precisely enough to be
used as data instead of the original variables in subsequent regressions. Kloek
and Mennes [1960] and Amemiya [1966] first propose the use of principal
components in the IV estimation. Important recent contributions, among the
others, are Kapetanios and Marcellino [2010], Groen and Kapetanios [2009]
and Bai and Ng [2010]3.

The issue of instruments proliferation can be addressed by extracting the
principal components from the instrument matrix Z. The aim of PCIVR is to
re-express the information conveyed by highly correlated variables in terms of
a set of optimal orthogonal linear combinations of the original variables and
then to retain a smaller number of them.

In detail, defined Z as the general p-columns4 GMM-style instrument ma-
trix, we extract p eigenvalues λ1, λ2, ..., λp ≥ 0 from the correlation or covari-
ance matrix of Z, ordered from the largest to the smallest, and derive the
corresponding eigenvectors (principal components) u1, u2, ..., up. Our new in-
struments will be the scores from PCA that are defined as:

sk = Zuk for k = 1, 2, ..., p. (4)

If we write Z = [z1 ... zj ... zp] with zj being the jth column of the instru-
ment matrix, the score sk corresponding to the kth component can be rewritten
as:

sk = uk1z1 + ... + ukjzj + ... + ukpzp (5)

where ukj is the jth element of the principal component uk. Defined the matrix
of PCA loadings as V = [u1 ...uk ... up] and the matrix of PCA scores as
S, we have that S = ZV. Instead of the moment conditions in (2), we will
therefore exploit the following restrictions in GMM DIF:

E[(Sdif)′∆υ] = E[(ZdifV)′∆υ] = 0. (6)

Similarly, in the GMM SYS we will also exploit the additional orthogonality
conditions

E[(Slev)′υ] = E[(ZlevV)′υ] = 0. (7)
3A review of the literature on Factor-IV and Factor-GMM estimations is in the introduction of

Kapetanios and Marcellino [2010].
4The matrix Z has p columns that can either be the lags -in levels, first-differences or both- of a

single variable taken separately from the others or they can be the lags -in levels, first-differences
or both- of more variables considered together. All these possibilities are directly implementable
using the pca2 command.
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Since the aim of the PCIVR is the reduction of the dimension of the instru-
ments matrix, a criterion to select the scores to be retained has to be adopted.
The idea is retaining only (m + 1) ≤ q < p principal components, where m is
the number of endogenous regressors other than the lagged dependent vari-
able; as a consequence, only the q corresponding score vectors will form the
new transformed instrument matrix in both (6) and (7).

One possibility is to retain the q principal components corresponding to
eigenvalues above the average of the eigenvalues (Average criterion); alterna-
tively, one may keep those accounting for a given percentage of the variance
of the data, generally 70% to 90% (Variability criterion).

The number of moment restrictions resulting from the PCIVR depends on
the nature of the data at hand. If q < (m + 1), the equation of interest is not
identified. This can happen for instance when the variables are highly per-
sistent (near unit root processes): in this case, the PCA is driven by spurious
trends and too few principal components are retained.

3 pca2 command: syntax

The user-written command pca2 implements the PCIVR procedure pre-
sented above: in a unique step, it extracts the principal components from the
variables in the varlist according to the preferences specified through its op-
tions; then it computes the scores corresponding to the principal components
retained on the basis of the selection criterion chosen by the researcher. These
scores can be used in any IV/GMM estimation command in Stata in place of
the original IVs.

The extraction of principal components through the pca2 command ex-
ploits the Stata pca command. Its innovative feature consists of augmenting
the pca2 command with specific options for the creation of GMM-style IVs, for
the selection of principal components and for the computation of the scores.

The syntax of pca2 is
pca2 varlist [if exp] [in range] [, nt(timevar | panelvar timevar)
variance(#) avg covariance prefix(string) see gmmliv(# | # #)
gmmdiv(# | # #) lagsl(varlistl, ll(# | # #)) lagsd(varlistd, ll(# | # #))
togvar togld retain ].

Time-series and panel data must be tsset before using pca2. See [TS] tsset

for more information. pca2 does not allow time-series operators in the varlist;
in order to use lags of the variables in the varlist, they need to be generated
using Stata time-series operators before applying the pca2 command (see help
tsvarlist).
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3.1 pca2: options

nt(timevar | panelvar timevar) is required in time-series and panel data
in order to create GMM-style instruments and to apply PCA on them. If
this option is omitted, the dataset is treated as a cross-section and all the
observations would be pooled.

variance(#) allows to apply the "variance criterion" (default criterion) i.e.
only those principal components that account for at least the chosen percent-
age of the variability in the original data are retained for the computation of
the scores. The number defining the percentage must be an integer greater
than 0 and lower or equal to 100. The default is # = 90.

avg selects the principal components to be kept for score computation ac-
cording to the "average criterion", i.e. only those eigenvectors whose corre-
sponding eigenvalues are above the average of the eigenvalues are retained.
Note that when the options avg is chosen, pca2 also computes the scores ac-
cording to the default 90% "variance criterion" and saves both of them in the
dataset: the scores obtained according to the two criteria can thus be com-
pared.

covariance performs PCA of the covariance matrix; default is to perform
PCA on the correlation matrix (see help pca).

prefix(string) specifies the prefix for the name of the scores generated
by the pca2 command corresponding to the retained principal components. If
you write e.g. prefix(sys) you will obtain _sysvarscore∗ and _sysavgscore∗.
This option is particularly useful when the pca2 command is repeated many
times on the same dataset in order to create different scores from different
instrument sets, eventually also according to different criteria. The default
prefix is _BM which retains the scores with labels such as _BMvarscore∗ and
_BMavgscore∗.

see asks Stata to display the outcome of the PCA.
gmmliv(# | # #) generates the GMM-style instruments in levels (for the

equations in first-differences) for all the variables included in the pca2 varlist.
If only one argument is specified, e.g. gmmliv(k), all the available lags from
t− k back to the initial observation for each variable in the varlist of the pca2

command are used. If two arguments are specified, e.g. gmmliv(k1 k2) with
k1 ≤ k2, the lags from t− k1 to t− k2 are considered. The PCA is done on all
the specified GMM-style lags in levels of each variable taken separately. If the
option togvar (full description below) is also added, the PCA is performed
on all the generated GMM-style lags in levels of all the variables in the varlist
considered together. With this option the lag structure is the same for each
variable.

gmmdiv(# | # #) generates the GMM-style instruments in first-differences
(for the equations in levels) for all the variables included in the pca2 varlist.
If only one argument is specified, e.g. gmmdiv(k), all the available lags from
t− k back to the initial observation for each variable in the varlist of the pca2
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command are used. If two arguments are specified, e.g. gmmdiv(k1 k2) with
k1 ≤ k2, the lags from t − k1 to t − k2 are considered. The PCA is done
on all the specified GMM-style lags in first-differences of each variable taken
separately. If the option togvar (full description below) is also added, the
PCA is performed on all the generated GMM-style lags in first-differences of
all the variables in the varlist considered together. With this option the lag
structure is the same for each variable.

lagsl(varlistl, ll(# | # #)) generates the GMM-style instruments in lev-
els for a specific varlistl. It is a more flexible alternative to the gmmliv() option,
as it allows for a different lag structure of each variable. The option lagsl()

may be used more than once: different lag structures may thus be defined for
the variables in each varlistl. The sub-option ll specifies the lag structure of
the variables in each varlistl: if only one argument is specified, e.g. ll(k), all
the available lags from t− k back to the initial observation for each variable
in the varlistl are used. If two arguments are specified, e.g. ll(k1 k2) with
k1 ≤ k2, the lags from t − k1 to t − k2 are considered. The PCA is done on
all the specified GMM-style lags in levels of each variable taken separately.
If the option togvar (full description below) is also added, the PCA is per-
formed on all the generated GMM-style lags in levels of all the variables in
the varlistl considered together. Such option can not be used with the option
gmml(), while it is allowed together with either the option lagsd() or with the
option gmmd(). When used alone or with the option lagsd() the number of
variables in both varlistl and varlistd must be at least equal to the number of
the variables in the varlist of the pca2 command. Only when associated with
the option gmmd(), the lagsl() option can have fewer variables than those
included in the varlist of the pca2 command.

lagsd(varlistd, ll(# | # #)) generates the GMM-style instruments in first-
differences for a specific varlistd. It is a more flexible alternative to the gmmdiv()
option, as it allows for a different lag structure of each variable. The option
lagsd() may be used more than once: different lag structures may thus be
defined for the variables in each varlistd. The sub-option ll specifies the lag
structure of the variables in each varlistd: if only one argument is specified,
e.g. ll(k), all the available lags from t− k back to the initial observation for
each variable in the varlistd are used. If two arguments are specified, e.g. ll(k1
k2) with k1 ≤ k2, the lags from t− k1 to t− k2 are considered. The PCA is
done on all the specified GMM-style lags in first-differences of each variable
taken separately. If the option togvar (full description below) is also added,
the PCA is performed on all the generated GMM-style lags in first-differences
of all the variables in the varlistd considered together. Such option can not be
used with the option gmmd(), while it is allowed together with either the op-
tion lagsl() or with the option gmml(). When used alone or with the option
lagsl() the number of variables in both varlistl and varlistd must be at least
equal to the number of the variables in the varlist of the pca2 command. Only
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when associated with the option gmml(), the lagsd() option can have fewer
variables than those included in the varlist of the pca2 command.

togvar specifies that the PCA is performed on the matrix that includes all
the variables in the varlist and not on each variable separately. E.g. the syntax
pca2 x z, togvar implies that the PCA is performed jointly on the variables
x and z. This option needs to be specified in order to apply the PCA to GMM-
style lags of more than one variable taken together instead of the lags of each
variable taken separately. For example, pca2 x z, gmml(2) togvar implies
that the principal components are extracted from the matrix that includes all
the available lags in levels from t− 2 backward of the variables x and z.

togld specifies that, once that instruments in levels and first-differences are
generated, the PCA is applied to the matrix that includes all these instruments
together for each variable in the varlist of the pca2. If the option togld is used
together with the option togvar, the principal components are extracted from
the matrix that includes all the lags in first-differences and in levels of all the
variables in the varlist.

retain adds the generated GMM-style instrumental variables as new vari-
ables in the dataset. These IVs are named _GMMLvarnameperiodlag; for
example _GMMLn1978L2 stands for the t − 2 observation in levels for the
variable n in the year t = 1978.

For a description of the full set of options accepted by the pca2 command,
type help pca2.

3.2 The use of the pca2 command: an example

We illustrate the command pca2 through an empirical example based on
the abdata.dta dataset used in Arellano and Bond [1991] and Blundell and
Bond [1998].

We estimate the Blundell and Bond [1998] model, a simple autoregressive
distributed lags model of labor demand:

nit = αnit−1 + β0wit + β1wit−1 + γ0kit + γ1kit−1 + ηi + φt + νit (8)

where nit, wit and kit are the log of employment, the log of the real product
wage and the log of the capital stock in firm i in year t, respectively. The
sample is an unbalanced panel of 140 UK listed manufacturing companies
with between 7 and 9 annual observations over the period 1976-1984.

First, we replicate the original DIFF GMM results in column 3 of Table 4 in
Blundell and Bond [1998]; then, we estimate the same model by DIFF GMM
estimates exploiting the set of IVs resulting from the PCA.

To do so, we run the command:

pca2 n w k, nt(id year) gmml(2) retain avg.
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This syntax generates the GMM-style instruments in levels for each of the n,
w and k variables. These variables are labeled _GMML∗ and will be used
as instruments for equation (8) in first-differences. In this case, the option
gmml(2) specifies the same lag structure for all the variables and the IVs are
generated from lag t− 2 up to the last lag available. By specifying the option
retain, the _GMML∗ instruments are added as new variables in the dataset.

Then, the principal components are separately extracted for each variable
from its own lags; next, the principal components are retained according to
both selection criteria (i.e. the default "variance criterion" and the "average
criterion"), as the option avg is used; the corresponding scores are then saved
in the dataset as new variables labelled _BM_var∗ and _BM_avg∗, where var
and avg refers to the selection criterion.

As shown right below, the output of the pca2 command reports informa-
tion about the lag structure of the GMM-style IVs and summary statistics for
the extraction of the principal components.

. use http://fmwww.bc.edu/ec-p/data/macro/abdata.dta, clear

. xtset id year

. quietly tab year, gen(tauyear)

. pca2 n w k, nt(id year) gmml(2) retain avg

General description of the dataset

panel variable: id (unbalanced)

time variable: year, 1976 to 1984

delta: 1 unit

The prefix is: _BM_

You are creating GMM-style IVs in levels for a panel

_____ variable: n _____

Lag selection in GMML(): from t-2 to the last available lag

_____ variable: w _____

Lag selection in GMML(): from t-2 to the last available lag

_____ variable: k _____

Lag selection in GMML(): from t-2 to the last available lag

_____ PCA LEV VAR BY VAR: n

You are applying PCA to GMM-style LEV lags of one or more than one variable,

keeping the variables separated with the same lags structure

_________ Some information about PCA of IV in levels for n __________

Trace of the matrix: 28

By default percentage of selected variability to be explained: 90%

Percentage of variance explained by the variability criterion: 92.943733%

Number of retained scores according to the variability criterion: 8

Percentage of variance explained by the average criterion: 86.399506%

Number of retained scores according to the average criterion: 6

_____ PCA LEV VAR BY VAR: w

You are applying PCA to GMM-style LEV lags of one or more than one variable,

keeping the variables separated with the same lags structure
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_________ Some information about PCA of IV in levels for w __________

Trace of the matrix: 28

Percentage of variance explained by the variability criterion: 90.305677%

Number of retained scores according to the variability criterion: 7

Percentage of variance explained by the average criterion: 87.588082%

Number of retained scores according to the average criterion: 6

_____ PCA LEV VAR BY VAR: k

You are applying PCA to GMM-style LEV lags of one or more than one variable,

keeping the variables separated with the same lags structure

_________ Some information about PCA of IV in levels for k __________

Trace of the matrix: 28

Percentage of variance explained by the variability criterion: 90.223503%

Number of retained scores according to the variability criterion: 7

Percentage of variance explained by the average criterion: 86.652737%

Number of retained scores according to the average criterion: 6

In order to get the original DIFF GMM estimates for the model in (8), we
can use the user written xtabond2 command (see Roodman [2009b]) with its
native syntax:

quietly xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9, //

iv(tauyear3-tauyear9, eq(diff)) gmm(n, lag(2 .) eq(diff)) //

gmm(w, lag(2 .) eq(diff)) gmm(k, lag(2 .) eq(diff)) //

h(2) nolev robust nod.

However, in order to illustrate how to exploit the instrumental variables ob-
tained through the pca2 command, in this case the _GMML∗ IVs just added
to the dataset, we can reproduce the same estimates by typing:

xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9, //

iv(tauyear3-tauyear9, eq(diff)) iv(_GMML_n_*, eq(diff) pass) //

iv(_GMML_w_*, eq(diff) pass) iv(_GMML_k_*, eq(diff) pass) //

h(2) nolev robust nod

where the new variables are used as traditional IVs through the option ivstyle.
The output of the two commands is exactly the same. The output of the sec-
ond command above is reported here.

Dynamic panel-data estimation, one-step difference GMM

------------------------------------------------------------------------------

Group variable: id Number of obs = 751

Time variable : year Number of groups = 140

Number of instruments = 91 Obs per group: min = 5

Wald chi2(12) = 1163.33 avg = 5.36

Prob > chi2 = 0.000 max = 7

------------------------------------------------------------------------------

| Robust

n | Coef. Std. Err. z P>|z| [95% Conf. Interval]

11



-------------+----------------------------------------------------------------

n |

L1. | .7074701 .0841788 8.40 0.000 .5424827 .8724576

|

w |

--. | -.7087965 .117102 -6.05 0.000 -.9383122 -.4792809

L1. | .5000149 .1113282 4.49 0.000 .2818157 .7182141

|

k |

--. | .4659776 .101044 4.61 0.000 .267935 .6640203

L1. | -.2151309 .0858525 -2.51 0.012 -.3833987 -.0468631

|

tauyear3 | .0057636 .0166077 0.35 0.729 -.0267868 .038314

tauyear4 | .0136366 .0193748 0.70 0.482 -.0243374 .0516106

tauyear5 | -.0071557 .0213479 -0.34 0.737 -.0489969 .0346855

tauyear6 | -.0340692 .0264327 -1.29 0.197 -.0858763 .0177379

tauyear7 | -.0059175 .0272325 -0.22 0.828 -.0592922 .0474573

tauyear8 | .0187213 .0288529 0.65 0.516 -.0378294 .075272

tauyear9 | .0352279 .0331578 1.06 0.288 -.0297603 .1002161

------------------------------------------------------------------------------

Instruments for first differences equation

Standard

_GMML_k_1978L2 _GMML_k_1979L2 _GMML_k_1979L3 _GMML_k_1980L2 _GMML_k_1980L3

(output omitted)

_GMML_n_1984L6 _GMML_n_1984L7 _GMML_n_1984L8

D.(tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9)

------------------------------------------------------------------------------

Arellano-Bond test for AR(1) in first differences: z = -5.60 Pr > z = 0.000

Arellano-Bond test for AR(2) in first differences: z = -0.14 Pr > z = 0.891

------------------------------------------------------------------------------

Sargan test of overid. restrictions: chi2(79) = 125.19 Prob > chi2 = 0.001

(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(79) = 88.80 Prob > chi2 = 0.211

(Robust, but weakened by many instruments.)

We now estimate the model in equation (8) by DIFF GMM on the set of
instruments that results from PCIVR. The pca2 run above saves the PCA scores
_BM_varscoreDIF∗ and _BM_avgscoreDIF∗ as new variables in the dataset.
Therefore, we can get the estimates on the new set of instruments by using,
for example, the variables _BM_var∗ in xtabond2 as new instruments instead
of the standard ones as follows:

xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9, //

iv(tauyear3-tauyear9, eq(diff)) iv(_BM_var*n*, eq(diff) pass) //

iv(_BM_var*w*, eq(diff) pass) iv(_BM_var*k*, eq(diff) pass) //

h(2) nolev robust nod.

The estimation results are presented below.
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Dynamic panel-data estimation, one-step difference GMM

------------------------------------------------------------------------------

Group variable: id Number of obs = 751

Time variable : year Number of groups = 140

Number of instruments = 29 Obs per group: min = 5

Wald chi2(12) = 1146.02 avg = 5.36

Prob > chi2 = 0.000 max = 7

------------------------------------------------------------------------------

| Robust

n | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

n |

L1. | .8021886 .1255146 6.39 0.000 .5561845 1.048193

|

w |

--. | -.8621674 .2094745 -4.12 0.000 -1.27273 -.4516048

L1. | .2224614 .2941419 0.76 0.449 -.3540461 .798969

|

k |

--. | .5783907 .2253891 2.57 0.010 .1366362 1.020145

L1. | -.4108413 .1947894 -2.11 0.035 -.7926216 -.029061

|

tauyear3 | -.0202252 .0272124 -0.74 0.457 -.0735604 .03311

tauyear4 | -.0114123 .0355594 -0.32 0.748 -.0811074 .0582829

tauyear5 | -.0209936 .0374262 -0.56 0.575 -.0943475 .0523603

tauyear6 | -.034543 .049461 -0.70 0.485 -.1314848 .0623988

tauyear7 | .0148526 .0524715 0.28 0.777 -.0879897 .1176949

tauyear8 | .0556274 .0447092 1.24 0.213 -.032001 .1432558

tauyear9 | .0688565 .0555122 1.24 0.215 -.0399454 .1776584

------------------------------------------------------------------------------

Instruments for first differences equation

Standard

_BM_varscoreLEVkN1 _BM_varscoreLEVkN2 _BM_varscoreLEVkN3

(output omitted)

_BM_varscoreLEVnN7 _BM_varscoreLEVnN8

D.(tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9)

------------------------------------------------------------------------------

Arellano-Bond test for AR(1) in first differences: z = -3.41 Pr > z = 0.001

Arellano-Bond test for AR(2) in first differences: z = -0.61 Pr > z = 0.544

------------------------------------------------------------------------------

Sargan test of overid. restrictions: chi2(17) = 32.49 Prob > chi2 = 0.013

(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(17) = 23.43 Prob > chi2 = 0.136

(Robust, but weakened by many instruments.)

As the aim of the PCIVR is the reduction in the instrument count, as ex-
pected the Hansen test has 79 degrees of freedom in the standard DIF GMM
estimates, while they fall to 17 when the score relative to the principal com-
ponents are extracted according to the variance criterion.

So far we have focused on the syntax for the use of GMM-style instruments
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and PCA scores in the DIFF GMM estimation. In addition to that, we can also
use the pca2 to create IVs and PCA scores to be used in SYS GMM5; we can
thus replicate the results in column 4 of Table 4 in Blundell and Bond [1998]
and get SYS GMM estimates with the PCA scores as instruments.

The syntax

pca2 n w k, nt(id year) gmml(2) gmmd(1 1) retain avg

creates both the instruments in levels from t − 2 up to the last lag avail-
able and first-differences for the first available lag. The IVs in levels, i.e. the
_GMML∗variables, and the instruments in first-differences, i.e. the _GMMD∗

variables, are included in the dataset as new variables. The PCA is run
on the instruments in first-differences and on the instruments in levels for
each variable separately; the scores relative to the retained principal compo-
nents (_BM_varscoreDIF∗ and _BM_avgscoreDIF∗, _BM_varscoreLEV∗ and
_BM_avgscoreLEV∗) are also added to the dataset.

(output omitted)

Following the same line of reasoning, we can get the standard SYS GMM
estimates by using the xtabond2 with the _GMMD∗ and _GMML∗ variables
as instruments through the command:

xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9, ///

iv(tauyear3-tauyear9, eq(both)) iv(_GMML_n_*, eq(diff) pass) ///

iv(_GMML_w_*, eq(diff) pass) iv(_GMML_k_*, eq(diff) pass) ///

iv(_GMMD_n_*L1, eq(lev)) iv(_GMMD_w_*L1, eq(lev)) ///

iv(_GMMD_k_*L1, eq(lev)) h(1) robust nod.

The corresponding output is reported below.

Dynamic panel-data estimation, one-step system GMM

------------------------------------------------------------------------------

Group variable: id Number of obs = 891

Time variable : year Number of groups = 140

Number of instruments = 113 Obs per group: min = 6

Wald chi2(12) = 4147.85 avg = 6.36

Prob > chi2 = 0.000 max = 8

------------------------------------------------------------------------------

| Robust

n | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

n |

L1. | .8108394 .0579982 13.98 0.000 .6971649 .9245138

|

w |

5In order to run the pca2 command more than once and to add GMM style IVs and PCA
scores, the researcher is required to drop from the dataset the variables previously created by the
command pca2: this can be done by typing, for example, drop _BM* GMM*.
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--. | -.7945394 .0971517 -8.18 0.000 -.9849532 -.6041257

L1. | .55012 .151645 3.63 0.000 .2529012 .8473388

|

k |

--. | .4285055 .0763361 5.61 0.000 .2788895 .5781215

L1. | -.2802184 .0776689 -3.61 0.000 -.4324466 -.1279903

|

tauyear3 | .0077488 .0200664 0.39 0.699 -.0315806 .0470781

tauyear4 | .020829 .0236973 0.88 0.379 -.025617 .0672749

tauyear5 | -.0002589 .0252166 -0.01 0.992 -.0496826 .0491648

tauyear6 | -.0271456 .02961 -0.92 0.359 -.0851801 .030889

tauyear7 | .0012306 .026954 0.05 0.964 -.0515983 .0540596

tauyear8 | .014436 .0254967 0.57 0.571 -.0355367 .0644087

tauyear9 | .0003278 .0307739 0.01 0.992 -.059988 .0606436

_cons | 1.006162 .430149 2.34 0.019 .1630853 1.849238

------------------------------------------------------------------------------

Instruments for first differences equation

Standard

_GMML_k_1978L2 _GMML_k_1979L2 _GMML_k_1979L3 _GMML_k_1980L2 _GMML_k_1980L3

(output omitted)

D.(tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9)

Instruments for levels equation

Standard

_GMMD_k_1978L1 _GMMD_k_1979L1 _GMMD_k_1980L1 _GMMD_k_1981L1 _GMMD_k_1982L1

(output omitted)

tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9

_cons

------------------------------------------------------------------------------

Arellano-Bond test for AR(1) in first differences: z = -6.49 Pr > z = 0.000

Arellano-Bond test for AR(2) in first differences: z = -0.08 Pr > z = 0.934

------------------------------------------------------------------------------

Sargan test of overid. restrictions: chi2(100) = 113.34 Prob > chi2 = 0.171

(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(100) = 115.73 Prob > chi2 = 0.135

(Robust, but weakened by many instruments.)

Similarly, we can get the SYS GMM estimates with the set of PCA scores
from PCIVR (_BM_varscoreDIF∗ and _BM_avgscoreDIF∗, _BM_varscoreLEV∗

and _BM_avgscoreLEV∗) as follows:

xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9, ///

iv(_BM_varscoreLEVn*, eq(diff) pass) iv(_BM_varscoreLEVw*, eq(diff) pass) ///

iv(_BM_varscoreLEVk*, eq(diff) pass) iv(_BM_varscoreDIFn*, eq(lev) pass) ///

iv(_BM_varscoreDIFw*, eq(lev) pass) iv(_BM_varscoreDIFk*, eq(lev) pass) ///

iv(tauyear3-tauyear9, eq(both)) h(1) robust nod.

Dynamic panel-data estimation, one-step system GMM

------------------------------------------------------------------------------
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Group variable: id Number of obs = 891

Time variable : year Number of groups = 140

Number of instruments = 51 Obs per group: min = 6

Wald chi2(12) = 5587.27 avg = 6.36

Prob > chi2 = 0.000 max = 8

------------------------------------------------------------------------------

| Robust

n | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

n |

L1. | .9016193 .0477017 18.90 0.000 .8081257 .995113

|

w |

--. | -.742429 .1542546 -4.81 0.000 -1.044763 -.4400956

L1. | .4643432 .1950932 2.38 0.017 .0819675 .8467189

|

k |

--. | .53362 .096368 5.54 0.000 .3447423 .7224978

L1. | -.4411184 .1025934 -4.30 0.000 -.6421978 -.240039

|

tauyear3 | -.0025501 .0226948 -0.11 0.911 -.0470312 .041931

tauyear4 | .0129266 .0272024 0.48 0.635 -.0403891 .0662423

tauyear5 | .0004112 .0272325 0.02 0.988 -.0529634 .0537858

tauyear6 | -.0197377 .0340792 -0.58 0.562 -.0865317 .0470564

tauyear7 | .0179079 .0346922 0.52 0.606 -.0500877 .0859034

tauyear8 | .0328657 .0278118 1.18 0.237 -.0216443 .0873758

tauyear9 | .0287 .0339306 0.85 0.398 -.0378027 .0952028

_cons | .9899051 .3951924 2.50 0.012 .2153422 1.764468

------------------------------------------------------------------------------

Instruments for first differences equation

Standard

_BM_varscoreLEVkN1 _BM_varscoreLEVkN2 _BM_varscoreLEVkN3

(output omitted)

D.(tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9)

Instruments for levels equation

Standard

_BM_varscoreDIFkN1 _BM_varscoreDIFkN2 _BM_varscoreDIFkN3

(output omitted)

tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9

_cons

------------------------------------------------------------------------------

Arellano-Bond test for AR(1) in first differences: z = -5.56 Pr > z = 0.000

Arellano-Bond test for AR(2) in first differences: z = -0.27 Pr > z = 0.785

------------------------------------------------------------------------------

Sargan test of overid. restrictions: chi2(38) = 57.54 Prob > chi2 = 0.022

(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(38) = 57.60 Prob > chi2 = 0.022

(Robust, but weakened by many instruments.)

Even in this case, we observe a drop in the degrees of freedom of the
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Hansen test that fall from 100 in the standard SYS GMM estimates to 38 when
the scores relative to the principal components are extracted according to the
variance criterion.

To further clarify the syntax and the options, we provide additional exam-
ples for the creation of instrumental variables and scores.

The syntax

pca2 n w k, nt(id year) lagsl(n, ll(2)) lagsl(w k, ll(3))

creates PCA scores according to the variance criterion (90%) for each variable
taken separately: the principal components are extracted both from the set of
instruments in levels for n, which includes lags from t− 2 up to the last lag
available, and from the two sets of instruments in levels respectively for w and
k that include lags from t− 3 up to the last lag available.

The syntax

pca2 n w k, nt(id year) gmmd(2) lagsl(n w k, ll(2 3))

applies the PCA on the sets of instruments in first-differences from t− 2
up to the last lag available for each variable taken separately and on the set of
instruments in levels from t− 2 to t− 3 for each variable.

The syntax

pca2 n w k, nt(id year) lagsd(n w k, ll(2)) gmml(2) togvar togld var(80) avg

run the PCA on the set of instruments that includes the lags of interest both in
levels and in first differences of all the variables taken together. The principal
components are retained according to both the average and the variance (80%)
criteria.

It is worth noticing that the syntax

pca2 n w k

pools all the observations and runs the PCA on the 3-columns matrix of n, w
and k. It retains the principal components according to the variance criterion.
The difference with respect to the syntax pca n w k is that the pca2 also se-
lects the principal components to be retained and computes the corresponding
scores without the need of additional command lines.

4 pca2 at work: an application to the estimation of
a fiscal policy rule

In this section we illustrate more in detail the empirical implications and
the operational advantages of the proposed procedure by applying it to the
estimation of fiscal policy rules, as discussed in the paper by Golinelli and
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Momigliano [2009] - GM henceforth6. In their work, the authors assess the
robustness of the estimates of a fiscal policy rule on a panel of eleven Eu-
rozone Countries over the post-Maastricht period (i.e. 1994-2008) by using
alternative model specifications and exploiting data from different sources
(European Commission, IMF, and OECD) and data vintages (latest available
and real time data). Of main interest here, GM run a number of alternative re-
gressions to estimate the parameters of the rule by SYS GMM and provide ex-
tensive motivations for their choice which comes out as the most appropriate
in this framework, in line with well established indications in the literature7.
However, we have stressed in previous sections that, when the cross-sectional
dimension is smaller than the time dimension, there is the risk of getting bi-
ased estimates in case of a high number of over-identifying restrictions. Since
the GM’s dataset spans over N=11 and T=15, their analysis lacks of robustness
checks with respect the number of orthogonality conditions exploited by the
SYS GMM.

In this section we estimate the discretionary policy rule reported in GM
[2009, p. 45]:

∆CAPBit = µi + τt + β1GAPi,t−1 + β2CAPBi,t−1 + β3DEBTi,t−1 + εit (9)

where the dependent variable is the change in the cyclically adjusted primary
borrowing on potential GDP measured with the latest available data (i.e. the
best measure over time of the fiscal policy stance). The explanatory variables
are the output gap (GAP), that accounts for the economic cycle, the cyclically
adjusted primary borrowing (CAPB) and the debt (DEBT) as ratios on poten-
tial GDP, the latter two capturing the fiscal initial conditions. The explanatory
variables are specified in t− 1 and measured with real time data (i.e. the in-
formation available at the time when the fiscal policy is set). Finally, µi are
Country fixed effects, τt are time fixed effects and εit are random policy shocks
assumed to be i.i.d.

Table (1) reports estimates for equation (9) under alternative specifications
of the over-identifying restrictions exploited by SYS GMM. We first estimate
the model including all the available lags (col. 1); we then reduce the instru-
ment set by lag-truncation (col. 2 and 3) and collapse (col. 4); finally, we
exploit as new IVs the scores from PCIVR on the full set of instruments (col.
5), on the truncated set (col. 6) and on all lags of all the endogenous variables
considered together (col. 7).

In particular, the estimates reported in the first column follow the same ap-
proach as in GM and are obtained by instrumenting all the explanatory vari-
ables with all the available lags as in GM (Table 3, column 5, "OECD-HP")8.

6We are grateful to the authors for kindly providing us with their data
7The empirical analysis exploits the user-written Stata command xtabond2.
8These estimates do not perfectly match those in GM as here the DEBT is not considered as

strictly exogenous.
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These outcomes are in line with GM’s ones: overall, the authors interpret their
evidence as indicating that the fiscal initial conditions do affect policy choices,
while the counter-cyclicality of fiscal policies comes out to be only slightly sig-
nificant. It is worth noticing that in column 1 the number of over-identifying
restrictions (152) is very close to the number of observations (165) and that the
p-value of the Sargan test is almost 0.7: in the light of Sargan’s caveats and
of the discussion of the previous sections, we argue that the outcome of the
test for over-identifying restrictions may be weakened by the high instrument
count with respect to the number of observations.

In order to assess the robustness of GM findings, columns 2 to 7 of Table 1
report estimates where the number of over-identifying restrictions is reduced
adopting alternative approaches.

More precisely, in column 2 the lag depth of the instruments is truncated
to include only the lags for t-2 and t-3; in column 3 only the lags for t-2 are
considered. Finally, the estimates in column 4 exploit a collapsed instrument
matrix. Not surprisingly, the p-values of the Sargan test decrease with the in-
strument count, but this drop is also associated to substantial changes in the
overall picture that emerges from the original GM estimates and from those
in column 1 of Table 1. Quite strikingly, the two most frequently used ap-
proaches to reduce the instrument count contrast the GM findings in opposite
directions. Indeed, the lag-truncation leads to estimates that strengthen the
evidence of a-cyclicality of the fiscal policy, as the GAP parameter is not sig-
nificant; the collapse of the instruments matrix gives not significant coefficient
estimates for the DEBT, while the GAP parameter reaches a significance level
of 10% and appears to some extent supportive of the counter-cyclicality of
fiscal policies.

Such mixed evidence substantiates our concerns over the importance of
introducing more compelling robustness checks in the cases when the instru-
ment count is high and needs to be reduced.

To investigate the issue further, the last three columns in Table 1 report
results for the estimating equation when the IVs count is reduced using the
PCIVR strategy, as implemented through the pca2 command. In column 5
the SYS GMM estimator exploits as IVs the PCA scores relative to the prin-
cipal components of the matrix that includes all the available lags, retained
according to the average criterion; this strategy is less parsimonious than the
collapsing in terms of number of moment restrictions and it provides results
that are in line with those obtained on the whole instrument set. In column
6 the principal components to be retained according to the average criterion
for the computation of the scores are extracted from the instruments matrix
that includes only the lags relative to t− 2 and t− 3. It is also interesting to
remark that the number of degrees of freedom of the Sargan test is larger than
that obtained from the collapsing. In order to reduce the instrument count
to a number in line with that of the collapse, in the estimates of column 7

19



the principal components are extracted from both the instrument matrix that
includes all the lags in levels of all the variables taken together and from that
with all the IVs in first-differences9.

Overall, the empirical exercise performed in this section conveys impor-
tant empirical indications. First, we see that the estimates on the sets of in-
struments obtained through the pca2 command are in line with the findings
of columns (1)-(3), providing at the same time a lower instrument count and
a higher reliability of the Sargan test which is consistently characterised by a
lower p-value. The results provided here corroborate the idea that the PCIVR,
being a purely statistical way to tackle the issue of the excess of counts, has
the advantage of doing that without imposing heavy (and somewhat arbi-
trary) restrictions on the data structure. This feature emerges in particular
from column 7, whose outcome closely mirrors the one in column 1 but is
now obtained with a number of over-identifying restrictions that is only one-
third compared to the former one.

Finally, with respect to the policy implications of the GM study, we have
shown that estimates based on collapsed instruments would have changed the
view over the determinants of the policy rules, as the stock of debt is found as
non significant in contrast with the significant coefficient across all the others
specifications. Thanks to the newly implemented pca2 procedure, we have
been able to show that this shift is not directly driven by the reduction in the
number of IVs (also carried out by lag-truncation and PCIVR) but it is rather
due to the restrictions imposed on the instrument matrix.

9This is done by specifying the option togvar for the pca2 command. The data and the .do

file with the commands to replicate Table 1 are provided as complementary material.
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Table 1: Estimation of a fiscal policy rule

Dependent variable: ∆CAPB
(1) (2) (3) (4) (5) (6) (7)

Variable all lags lags 2-3 lag 2 collapse PCIVR all PCIVR col PCIVR tog
L.CAPB coeff

sd
t

L.DEBT coeff
sd
t

L.GAP coeff
sd
t

Constant coeff
sd
t

-0.317 -0.306 -0.303 -0.382 -0.318 -0.306 -0.334
0.058 0.06 0.064 0.089 0.062 0.067 0.08
-5.43 -5.12 -4.72 -4.3 -5.13 -4.6 -4.15
0.017 0.016 0.014 0.017 0.014 0.014 0.021
0.004 0.005 0.005 0.017 0.005 0.006 0.009

3.91 3.41 2.76 0.96 2.73 2.58 2.38
0.146 0.131 0.128 0.238 0.16 0.097 0.21
0.096 0.099 0.107 0.137 0.1 0.114 0.146

1.52 1.32 1.2 1.74 1.6 0.85 1.44
-0.757 -0.635 -0.532 -0.703 -0.496 -0.556 -1.03
0.454 0.46 0.485 1.221 0.478 0.512 0.694
-1.67 -1.38 -1.1 -0.58 -1.04 -1.09 -1.48

NxT 165 165 165 165 165 165 165
N 11 11 11 11 11 11 11
T 15 15 15 15 15 15 15
Sargan test:
degr. of fr. 152 132 87 48 117 83 46
P value 0.6928 0.6246 0.1612 0.2276 0.2691 0.2048 0.1451
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