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Abstract: The balanced semiconductor solid-state equations as derived in [1] are efficiently coupled to
Yee’s FDTD model for Maxwell’s electromagnetic equations. The resulting algorithm has capabilities of
accurate and effective time-domain simulation of both passive and active devices, which can be used in
wireless devices. A novel method that correlates the CFL requirements of the electromagnetic and the
device simulator is presented and its application further enhances the numerical stability of the new
numerical technique even for sub-micron devices. The discretization problems of a fully adaptive
implementation are also discussed in detail.

I. Introduction
The accurate design and optimization of state-of-the-art wireless devices requires a simulator that can
model both active and passive devices. Various solid-state models exist for these types of devices [1] and
have been previously integrated with electromagnetic simulators (EMS), such as FDTD [2, 3, 4]. However,
most of the prior implantations of this coupling have been limited in application due to the fact that the
application of the CFL conditions [1] and stability requirements for the two models yields disparate time
steps often with several orders of magnitude difference [2, 3]. The active device simulator (DS) has the
smallest time and space stepping. The use of these values for the whole simulator makes the computational
and memory requirements prohibitive for modeling an active device with integrated passives in a package.
One alternative approach includes the lumped-element model of the device, but that method requires a
priori knowledge of the device performance [5]. The novel approach proposed in this paper involves the
development of a fully adaptive scheme in time- and space-domain that allows for the simultaneous time-
domain simulation of the devices using different time and space discretization steps for the two sets of
equations depending on the local details and the field variations.

II. Balanced Carrier Solid-State Equations
Accurate Prediction models for packaged wireless circuits requires the development of a global simulator
including both electromagnetic and solid-state equations. Most of these approaches involve the
simultaneous solution of the Maxwell’s equations and of the balanced equation model [1, 4] that can be
written in terms of the majority carrier density n, velocity dv
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n : Carrier Concentration w : Carrier Energy DN : Majority Carrier Density

dv
r

: Carrier Velocity ϕ : Electric Potential in : Intrinsic Carrier Concentration
*m : Carrier Effective Mass E

r
: Electric Field Bk : Boltzmann’s Constant

q : Electron Charge T : Temp (°Kelvin) k : Thermal Conductivity
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The discretization of the Equations (1)-(4) is accomplished using forward Euler for the time derivative and
central differencing method for the spatial derivatives. As an example, Eq. (1) can be written as
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where n
iu)xi,tn(u =∆∆ is used. The discretized equations are imposed on the grid proposed in [2, 3] that

places the scalar quantities ( w,n ) at the nodal points and the vector quantities ( E,vd

rr
) at the mid-cell

points as illustrated in Fig. 1.

III. Stability of the Novel Coupled Algorithm
The cell size of the EMS model is limited by the maximum frequency, fmax, of the excitation for a basic Yee
FDTD model and is usually smaller than one-tenth the wavelength. In the balanced solid-state system, the
Debye Length limits the spatial step to maintain acceptable numerical accuracy, and is also usually less
than one-tenth the Debye Length. Specifically, the spatial discretization of the solid-state equations
involves determining the Debye Length of the semiconductor, which can be calculated using Eq. (8), and is
only a function of the doping level and other material characteristics [6, 8]. The time step is a function of
the average carrier velocity and the spatial step to comply with the CFL condition (7) for stability and
minimizing numerical dispersion.

pυ = Phase velocity in EMS; CFL condition for the EMS is
EMS
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Therefore, the device simulator space step is an independent variable and a prime candidate for adaptive
stepping. Fig. 2 shows a possible implementation of the adaptive gridding with the cell size as a function
of the doping level. The cell size is at a minimum in the heavily doped section, and increases as the doping
decreases, until it reaches a maximum in the intrinsic region. The implementation of an adaptive gridding
scheme helps to reduce the number of cells required for a stable and accurate simulation. Memory and
computation savings for the device simulator varies directly with respect to the doping profile.

IV. Space and Time Discretization
Discretizing an example device highlights the main difficulties in coupling the two systems: time and space
step disparity. A sample Silicon device has the following properties: heavily doped 1018cm-3, large applied
electric field, and an EMS excitation with fmax = 10GHz. The DS cell size is 10-8m as shown in Fig 3, and
the EMS space step is approximately 10-4m as shown in Fig 4. The spatial discrepancy can be managed by
limiting the size of the devices simulated. For the given device, the DS time step is 10-14s, as presented in
Fig 5, and the EMS time step is 10-11s, for a difference in magnitude of 103. Fig 5 shows the relationship of
∆tDS to the CFL (7) and drift velocity (9). The cell size (∆xDS) is determined by the Debye Length (8), and is
primarily dependent on the carrier concentration. The time step is dependent upon the drift velocity and
varies inversely to the applied electric field, as seen in Fig 5. The figure presents a set of parametric curves
showing relation ship of the electric field varying from 10-3 V/m, 10-2 V/m, to 107 V/m and the space and
time discretization.

The time step imbalance poses a significant problem that must be solved. Selecting the smallest time step
of the systems would cause an unreasonable growth in the execution time and greater numerical dispersion.
Choosing independent time steps for the systems makes the increase in required computational
requirements manageable and keeps the small time steps localized to the device, but makes effective
coupling difficult. The imbalance causes the change in the electromagnetic excitation for the device to be
extremely localized in time and induces a shock into the system. This shock is non-physical and must be
smoothed. This is accomplished by dividing the large electromagnetic time step into many smaller time



steps appropriate for the semiconductor model effectively smoothing the step excitation to a continuous
function, as illustrated in Fig 6.

Calculating the semiconductor time step, with the small signal applied, becomes slightly more complex.
The system is simulating both the DC biasing and the small signal effects on the device. If the CFL
condition is violated, the results are erroneous. The applied voltage becomes the sum of ACV + DCV = TotalV .
This result is applied to Eq. (7) and (9) to calculate the new drift velocity and time step.
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V. Conclusion
The novel approach proposed in this paper involves the development of a fully adaptive scheme in the
time- and space-domains. This method provides for a time-domain simulation of active and passive
devices, using two systems of equations that are dependent on the local details and field variations.
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dv : Drift Velocity

oµ : Carrier Mobility

satv : Saturation Velocity

β : Carrier Type (1: holes, 2 electrons)

Figure 1. Grid Setup for Device Simulator
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Figure 3. DS Cell Size vs. Carrier Concentration
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Figure 4. EMS: Cell Size vs. Frequency

Figure 6. EMS to DS Excitation Smoothing

Figure 2. Adaptive gridding for cell size vs. doping levels
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