REEB GRAPHS OF SURFACES ARE STABLE UNDER FUNCTION
PERTURBATIONS

B. DI FABIO AND C. LANDI

ABSTRACT. Reeb graphs are combinatorial signatures that capture ghaperties from
the perspective of a chosen function. One of the most impogaastions is whether
Reeb graphs are robust against function perturbationsritagioccur because of noise and
approximation errors in the data acquisition process. kwirk we tackle the problem of
stability providing an editing distance between Reeb gsaglorientable surfaces in terms
of the cost necessary to transform one graph into anothedibyperations. Our main
result is that changes in the functions, measured by the maxinoum, imply not greater
changes in this distance, yielding the stability propertgier function perturbations.

INTRODUCTION

In shape comparison, a widely used scheme is to measure gbiendarity between
signatures associated with each shape rather than matohsstiiaectly [16, 13, 22].

Reeb graphs are signatures describing shapes from topalagid geometrical perspec-
tives. In this framework, shapes are modeled as spdaasdowed with scalar functions
f. The role off is to explore geometrical properties of the spXceThe Reeb graph of
f : X — R is obtained by shrinking each connected component of a$etalff to a single
point [17].

Reeb graphs have been used as an effective tool for shapgsianahd description
tasks since [21, 20]. The Reeb graph has a number of chasticethat make it useful
as a search key for 3D objects. First, a Reeb graph alwayssten$ a one-dimensional
graph structure and does not have any higher dimension auengmsuch as the degenerate
surface that can occur in a medial axis. Second, by definiaduihction appropriately, it
is possible to construct a Reeb graph that is invariant twstation and rotation, or even
more complicate isometries of the shape.

One of the most important questions is whether Reeb graghobust against pertur-
bations that may occur because of noise and approximationseén the data acquisition
process. Heuristics have been developed so that the Regabtgras out to be resistant to
connectivity changes caused by simplification, subdivisind remesh, and robust against
noise and certain changes due to deformation [8, 3].

In this paper we tackle the robustness problem for Reeb grapim a theoretical point
of view. The main idea is to generalize to the case of surfdeetechniques developed in
[5] to prove the stability of Reeb graphs of curves againstfion perturbations. Indeed
the case of surfaces appears as the most interesting arpplicitions of the Reeb graph
as a shape descriptor.

To this end, we introduce a combinatorial dissimilarity sa®, called arditing dis-
tance between Reeb graphs of surfaces in terms of the cost negeesaansform one
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graph into another by edit operations. The editing distdanngs out to have all the prop-
erties of a pseudometric. Our main result is that changd®ifunctions, measured by the
supremum norm, imply not greater changes in this editintadee, yielding the stability

property under function perturbations.

In the literature, some other comparison methodologies baen proposed to compare
Reeb graphs and estimate the similarity of the shapes teddny Reeb graph.

In [8] the authors propose a Multiresolutional Reeb GraplR@®) based on geodesic
distance. Similarity between 3D shapes is calculated usicoprse-to-fine strategy while
preserving the topological consistency of the graph stinestto provide a fast and efficient
estimation of similarity and correspondence between shape

In [3] the authors discuss a method for measuring the siityiland recognizing sub-
part correspondences of 3D shapes, based on the synergiyraétaisal descriptor, like the
Extended Reeb Graph, with a geometric descriptor, like ipddharmonics.

Only recently the problem of Reeb graph stability has beeestigated from the theo-
retical point of view.

In [5] an editing distance between Reeb graphs of curvesvesdlavith Morse functions
is introduced and shown to yield stability. Importantlysdiee the combinatorial nature
of this distance, it coincides with the natural pseudoadise between shapes [6], thus
showing the maximal discriminative power for this sort aftdinces.

The work in [2] about a stable distance for merge trees is @dstinent to the stability
problem for Reeb graphs: merge trees are known to deterroimtewr trees, that are Reeb
graphs for simple domains.

Recently a functional distortion distance between Reephlygaas been proposed in the
preprint [1], with proven stable and discriminative. Thadtional distortion distance is
intrinsically continuous, whereas the editing distancgwapose is combinatorial.

Outline. The paper is organized as follows. In Section 1 we recall #sdyproperties of
labeled Reeb graphs of orientable surfaces. In Section Zfisecthe editing deformations
between labeled Reeb graphs, and show that through a finjtesee of these deforma-
tions we can always transform a Reeb graph into another. dtidde3 we associate a cost
with each type of editing deformation and define the editirsiathce as the infimum cost
we have to bear to transform one graph into another. Evént&#ction 4 illustrates the
robustness of Reeb graphs with respect to the editing distan

1. LABELED REEB GRAPHS OF ORIENTABLE SURFACES

Hereafter,.# denotes a connected, closed (i.e. compact and without lboyndri-
entable, smooth surface of genysand.# the set ofC* real functions on# .

For f € ., we denote by (f) the set of its critical points. Ip € K(f), then the real
numberf (p) is called acritical valueof f, and the sefqe .# : q< f~1(f(p))} is called
acritical level of f. Otherwise, ifp € .# \ K(f), then f(p) is called aregular value
Moreover, a critical poinp is callednon-degeneraté the Hessian matrix off at p is
non-singular. Théndexof a non-degenerate critical poiptof f is the dimension of the
largest subspace of the tangent spaceZ@t p on which the Hessian is negative definite.
In particular, the index of a poirg € K(f) is equal to 0,1, or 2 depending on whetlpgs
a minimum, a saddle, or a maximum pointfof

A function f € .% is called aMorse functiorif all its critical points are non-degenerate.
Besides, a Morse function is said to bienpleif each critical level contains exactly one
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critical point. The set of simple Morse functions will be déed by.Z°, as a reminder that
it is a sub-manifold of# of co-dimension O (see also Section 4).

Definition 1.1. Let f € .#°, and define on/ the following equivalence relation: for every
p,q € .4, p~ qwheneverp,q belong to the same connected component of( f (p)).
The quotient space#/ ~ is a finite and connected simplicial complex of dimension 1
known as thdReeb graplassociated with.

Throughout the paper, Reeb graphs are regarded as comi@hgtaphs and not as
topological spaces. The Reeb graph associated fwithl be denoted by ¢, its vertex set
byV(I'¢), and its edge set b (I ). Moreover, ifvy,vo € V(I ¢) are adjacent vertices, i.e.,
connected by an edge, we will wriggvy,vo) € E(T'¢).

The critical points off correspond bijectively to the vertices bt. For this reason,
in the following, we will often identify vertices with the c@esponding critical points. In
particular, the maxima and minima éfcorrespond to vertices of degree 1, while saddle
points to vertices of degree 3 (the degree of a vertex is theoeu of edges which connect
this vertex to the graph). Our assumption that is orientable ensures the absence of
vertices of degree 2. Moreover,.i#Z has genug, 't has exactlyy linearly independent
cycles. We will denote a cycle of lengthin the graph by am-cycle

Let us observe that, ib,g,r denote the number of minima, maxima, and saddle points
of f, from the relationships between the Euler characteristie/q x (.#), andp,q,r, i.e.
X(A)=p+qg—r, and betweery(.#) and the genug of .7, i.e. x(.#)=2—2g, it
follows that the cardinality o¥ (I';), which isp+qg-+r, is also equal to@+qg+g—1),

i.e. is even in number. The minimum number of vertices of abRgmph is achieved
wheneverp = g = 1, and consequently= 2g. In this case the cardinality &f('¢) is
equal to g+ 2.

Definition 1.2. We shall callminimala Reeb graph s with p=q= 1. Moreover, we say
thatrl s is canonicalif it is minimal and all its cycles, if any, are 2-cycles.

Examples of minimal and canonical Reeb graphs are displiayEdjure 1. In particu-
lar, in a minimal Reeb graph, the vertices of degree 1 reptake global minimum and
maximum of f, respectively; the remaininggrertices are of degree 3 and are connected
each other in some way to forglinearly independent cycles representing ghieoles of

FIGURE 1. Examples of minimal Reeb graphs. The graph on the right is alsorieal.
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We want to underline that our definition of canonical Reelpgres slightly different
from the one in [10]. This choice has been done to simplifypteof of Proposition 2.7.

In what follows, we label the vertices &f; by equipping each of them with the value
of f at the corresponding critical point. We denote such a labglaph by(T ¢, ¢ ), where
¢s :V(I's) — R is the restriction off : .# — R to K(f). In a labeled Reeb graph, each
vertexv of degree 3 has at least two of its adjacent verticesysag, such that;(v1) <
£s (V) < £i(v2). An example is displayed in Figure 2.

FIGURE 2. Left: the height functionf : .# — R; center: the surface# of genus
g = 2; right: the associated labeled Reeb gréph /1 ). Here labels are represented by the
heights of the vertices.

To facilitate the reader, in all the figures of this paper wallstdopt the convention of
representing as the height function, so thég(va) < (V) if and only if v, is lower than
vy in the picture.

Let us consider the realization problem, i.e. the problencafstructing a function
f € .#° from a graph on an even number of vertices, all of which areegfrele 1 or 3,
appropriately labeled. This result requires the followdtgginition.

Definition 1.3. We shall say that two labeled Reeb graphs, /¢ ), (I g, /g) areisomorphic
and we write(I"¢,¢1) = ([g,4g), if there exists a graph isomorphigi: V(I't) — V(I'g)
such that, for every e V(I'¢), f(v) = g(®(v)) (i.e. ® preserves edges and vertices labels).

Proposition 1.4(Realization theorem)Let (G, ¢) be a labeled graph, where G is a graph
with m linearly independent cycles, on an even number ofcesit all of which are of
degree 1 or 3, and : V(G) — R is an injective function such that, for any vertex v of
degree 3, at least two among its adjacent vertices, say,vare such that(w) < ¢(v) <
£(w'). Then an orientable closed surfac# of genugy = m, and a simple Morse function
f:.# — R exist such thatl¢,¢¢) = (G, /).

Proof. Under our assumption on the degree of vertice§,of# and f can be constructed
as in the proof of Thm. 2.1 in [15]. |

We now face with the uniqueness problem, up to isomorphistabefled graphs. First
of all we review the following two relations of equivalence functions.

Definition 1.5. Let 2(.#) be the set of self-diffeomorphisms .of. Two functionsf,g €
F9 are calledight-equivalent(briefly, R-equivalentif there exists € 2(.#) such that
f =go&. Moreover,f, g are calledright-left equivalent(briefly, RL-equivalentif there
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existé € Z(.#) and an orientation preserving self-diffeomorphignoef R such thatf =
nogoé.
These equivalence relations on functions are mirrored ®bReaphs isomorphisms.

Proposition 1.6 (Uniqueness theorem)f f,g are simple Morse functions on a closed
surface, then
(1) f and g are RL-equivalent if and only if their Reeb graphsandl 4 are isomor-
phic by an isomorphism that preserves the vertex order;
(2) f and g are R-equivalent if and only if their labeled Reeb tra(l ¢,¢5) and
(Fg,4g) are isomorphic.

Proof. Given two RL-equivalent function§,g € .Z, it is immediate to see that there is a
graph isomorphisn® betweerm ¢ andl™g. Furthermoreg also preserves the vertex-order,
i.e., foreverywwe V(I's), f(v) < f(w) if and only if g(®(v)) < g(P(w)). The converse
is not so straightforward. Its proof follows from [12] (sde@[19, Thm. 6.1]).

As for the second statement, two R-equivalent functionsagearticular, RL-equivalent.
Therefore, their Reeb graphs are isomorphic by an isomsmpltat preserves the vertex
order. Sincef and g necessarily have the same critical values, this isomonplalso
preserves labels. Vice-versa,(If¢,¢¢)and ([g,¢q) are isomorphic, by (1) it holds that
there exis€ € Z(.#') and an orientation preserving self-diffeomorphigrof R such that
f =nogoé. Letus seh=go&. The functionh belongs toZ°, and has the same critical
points asf and also the same indexes. Moreovegnd f have the same values at each
critical point becaus€ ¢, /¢ )and (g, /g) are isomorphic and thus the labels are the same.
Hence, applying [11, Lemma 1], it follows that there existeH-diffeomorphisn€’ of .#
such thatf =ho&’. Thusf =go & o &', yielding thatf andg areR-equivalent. O

2. EDITING DEFORMATIONS BETWEEN LABELEDREEB GRAPHS

In this section we list the editing deformations admisstblé¢ransform a labeled Reeb
graph of an orientable surface into another. We introdudiesaelementary deformations,
then, by virtue of the Realization theorem (Proposition),ltle deformations obtained by
their composition.

Elementary deformations allow to transform a Reeb graph amother with either a
different number of vertices ((B) and (D)), or with the samentber of vertices endowed
with different labels ((R) and (¥, i = 1,2,3), and can be described as follows.

Let(I'¢,¢t) be a labeled Reeb graph withvertices. We call anelementary deforma-
tion of (I¢,¢¢) if T transforms(I¢,4¢) in one and only one of the ways described next,
with the convention of denoting the open interval with endjsa, b by ]a, b|.

(B) Fix e(vi,v2) € E(T't), with £(v1) < £¢(v2). ThenT transforms(l'¢,¢¢) into a
labeled grapiG, ¢) according to the following ruleG is the new graph on+ 2
vertices, obtained deleting the edg(@;,v») and inserting two new vertices, u,
and the edges(vi,u;), e(ug,up),e(us, v2); moreoverf :V(G) — R is defined by
extending/s fromV (') toV(G) =V (I't) U{uz, Uz} in such away thaty ) =
¢, and eitherls (v1) < £(uy) < £(Up) < £ (V2), with £1(J¢(uy),£(up)[) = 0 , or
£(v1) < £(up) < £(ug) < Le(vz2), with £71(]¢(up), £(u)[) = O (see Table 1, row 1).

(D) Assumee(vy,us),e(ug, uz),e(us,v2) € E(T"t), up of degree 1, and eithé (v1) <
Zf(ul) < ff(l.lz) < ff(Vz), with ff_l(]gf(l.ll),gf (Uz)[) =0, or ls (Vl) < Ef(Uz) <
5 (up) < L (v2), with £72(]¢¢ (up), ££ (ug)[) = 0. ThenT transformgT¢, ¢¢) into a
labeled grapHG, ¢) according to the following ruleG is the new graph on—2
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vertices, obtained deleting, u, and the edges(vi,us), €(ug, Uz), €(us,v2), and
inserting an edge(vy,V2); moreover/ : V(G) — R is defined as the restriction of
i toV(M¢)\ {ug,u} (see Table 1, row 1).

(R) T transforms(I"¢, /) into a labeled grapkG, ¢) according to the following rule:

(K1)

(K2)

(Ks)

G=T+,and/:V(G) — R induces the same vertex-orderfaexcept for at most
two vertices, sayl, U, for which, if £¢(ur) < £+(u2) andé; 110+ (u), £+ (U)]) =
0, thenf(uy) > £(up), and¢=1(J¢(uz), £(u1)[) = O (see Table 1, row 2).
Assumee(vi,us),e(u,Up),e(u,Va),e(Uz, v2),e(uy,v3) € E(I¢), with two among
Vy, V3, Vg possibly coincident, and eithér(vy) < ¢+ (u1) < £5(uz) < £5(V2), 45 (V3),
5 (va), with 2105 (ur), €5 (U2)[) = O, or s (V2), L5 (Va), £ (Va) < L5 (Up) < £¢(uy)
< Lg(v1), with £;1(1¢¢(U2), 2 (u1)[) = 0. ThenT transforms(I'¢, /) into a la-
beled graph(G,¢) according to the following rule:G is the new graph om
vertices, obtained deleting the edg#®s;,u;), e(uy, v2), and inserting the edges
e(v1,U),e(ug, vo2); moreover! :V(G) — R is defined ags onV (I¢) \ {ug, Uz},
and eithers (v1) < £(up) < £(uy) < £ (V2),£5(Va), Lt (Va), with £72(]6(up), £(ug))
=0,0rls(V2), 05 (V3), L5 (V) < £(Ug) < L(uz) < £ (va), with £72(J¢(uy), £(u2)[) =
0 (see Table 1, row 3).

Assumes(vy, U1),e(ug, Uz),e(V2,u1),e(Uz, v3),e(uz,va) € E(T 1), with ug, up of de-
gree 3,v»,v3 possibly coincident withs, vy, respectively, ands(v1),4s(v2) <
Li(ug) < Li(up) < 5(v3),ls(va), with ﬁf‘l(]ff(ul),éf(uz)[) = 0. ThenT trans-
forms (I'+,4¢) into a labeled grapi{G,¢) according to the following rule:G
is the new graph om vertices, obtained deleting the edg&si,u;), e(uy,vs),
and inserting the edgesus,vs),e(v1,Uz); moreover/ : V(G) — R is defined as
Lt onV(I'f)\{ul,uz}, andﬁf(vl),ﬁf(vz) < E(Uz) < E(ul) < gf(V3),£f(V4), with
71(J€(u), £(uy)]) = O (see Table 1, row 4).

Assumee(vy, Uz),e(ug, Uz),e(Vo,uz),e(us,V3),e(up,va) € E(T ), with ug, up of de-
gree 3,v,v3 possibly coincident withvy,va, respectively, and (v1),¢s(v2) <
Cr(Up) < €5 (ur) < € (va), Lt (Va), with £71(10¢(U2), £ (u1)[) = 0. ThenT trans-
forms ([¢,4¢) into a labeled graphG,¢) according to the following rule:G
is the new graph om vertices, obtained deleting the edg&s1,u), e(uy,Vvs),
and inserting the edgegvi,us),e(uz,v3); moreover( : V(G) — R is defined as
e onV (T¢)\ {ug,uz}, andfs(vy), €5 (v2) < £(u1) < £(up) < £5(v3),%5(Va), with
071(J¢(u1), £(up)[) = O (see Table 1, row 4).

We shall denote by (T ¢, ¢+ ) the result of the elementary deformatibrapplied to(I" 1, ¢ ).

Let us observe that, by virtue of the above elementary deftioms, the vertex-order

induced byf can change only for the verticescompared with the others and remains the
same among the vertices

Proposition 2.1. Let T be an elementary deformation6%,¢¢), and let(G, ¢) =T ([, £5).

Then(G, /) is isomorphic to a labeled Reeb grapiy, ¢g), with ge .Z°.

Proof. The claim follows from Propositions 1.4. |

As a consequence of Proposition 2.1, we can apply elemettdoymations iteratively.

This fact is used in the next Definition 2.2.

Given an elementary deformation of (I'¢,¢;) and an elementary deformati@hof

T(T't,£5), the juxtapositiorBT means applying first and thers.
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u
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Uy
<
v V2 v V2

TABLE 1. Elementary deformations of a labeled Reeb graph.

Definition 2.2. We shall calldeformationof (I'¢,¢¢) any finite ordered sequende=
(T1,T,...,Ty) of elementary deformations such thgtis an elementary deformation of
(C¢,25), Tois an elementary deformation ("¢, ¢t), ..., Ty is an elementary deformation
of Tr_1Tr—2---T1(I1,¢¢). We shall denote by (I'¢,¢¢) the result of the deformatiom
applied to(I¢,¢¢). Moreover, we shall caidentical deformatiorany deformation such

thatT(F¢,0¢) = (M, 45).

Let us observe that the identical deformation can be coresidas a particular elemen-

tary deformation of type (R).
We now introduce the concept of inverse deformation.

Definition 2.3. Let T be a deformation such th&(I"¢,¢s) = (g, ¢g). Then we denote by
T-1, and call it theinverseof T, the deformation such that (g, 4q) = (T't,¢1) defined
as follows:

e If T is elementary of type (D) deleting two vertices, thient is of type (B) insert-
ing the same vertices, with the same labels, and viceversa;
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e If T is elementary of type (R) relabeling vertices\tfl 1), thenT 1 is again of
type (R) relabeling these vertices in the inverse way;

e If T is elementary of type (K relabeling two vertices, thefi~! is again of type
(K1) relabeling the same vertices in the inverse way;

e If T is elementary of type (K relabeling two vertices, thefi~! is of type (Kg)
relabeling the same vertices in the inverse way, and viseyer

o If T=(Ty,...,Tr), thenT 1= (T, %,..., T, ).

We prove that, for every two labeled Reeb graphs, a finite murabelementary defor-
mations always allows us to transform any of them into theiotime, up to isomorphism.
We first need two lemmas which are widely inspired by [10, Larirand Theorem 1],
respectively.

Lemma 2.4. Let ([ ¢,¢¢) be a labeled Reeb graph with n vertices; A.

(i) Letuve V() correspond to two minima or two maxima of f. There exists a
deformation T such that u and v are adjacent to the same veriaxT (I, ¢5).

(i) LetC be an m-cycle ifif, m> 2. There exists a deformation T such thatC is a
2-cyclein Tl ¢,45).

Proof. Let us prove statemeifit) assuming thati, v correspond to two minima of. The
other case is analogous.

Let us consider a patphonT ¢ havingu,v as endpoints, whose lengthiis> 2, and the
finite sequence of vertices through which it passésiiswy, . . ., Wm), With wp = U, wm =,
andw; # w;j for i # j. We want to show that there exists a deformatiosuch that in
T(I¢,¢¢) the pathy is reduced to be of length 2, i.e,v are adjacent to the same vertex

It is easy to observe that, in a neighborhoodwef possibly after a finite sequence of
deformations of type (R), the graph gets one of the configamratshown in Figure 8a) —
(e) (left).

As it can be seen, through a finite sequence of deformatiohgef(K;) and/or (K3),
possibly together with deformations of type (R), the pgthwhich has lengthm, can be
transformed into a simple path of lengtih— 1. Iterating this procedure, we deduce the
desired claim.

The proof of statemertii ) is analogous to that of statemeny, provided thay is taken
to be anm-cycle withu = v of degree 3, and (u) = 0mirrl1 l{f(Wj)}. O

Remark2.5. We observe that if the vertex in Figure 3(a) — (e) (left) is of degree 1,
then, in the case&), (b),(d),(e), it can be deleted with its adjacent vertex through a
deformation of type (D), possibly after a deformation ofey(R), and, in the casg), it
can be deleted via the composition ofsjkvith (R). This is an alternative way to decrease
the length of the patly by one.

Lemma 2.6. Every labeled Reeb gragli 1, ¢¢) can be transformed into a canonical one
through a finite sequence of elementary deformations.

Proof. Our proof is in two steps: first we show how to transform anteaby Reeb graph
into a minimal one; then how to reduce a minimal Reeb graphdaanonical form.

The first step is by induction o= p+ g, with p andqg denoting the number of minima
and maxima off. If s= 2, thenl"; is already minimal (see Definition 1.2). Let us assume
that any Reeb graph with> 2 vertices of degree 1 can be transformed into a minimal
one through a certain deformation. Uet haves+ 1 vertices of degree 1. Thus, at least
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FIGURE 3. Possible configurations of a simple path on a labeled Reelh gmapneigh-
borhood of its maximum point, and elementary deformations wiredace its length.

one betweerp andq is greater than one. Lgi> 1 (the casey > 1 is analogous). By
Lemma 2.4(i), if u,v correspond to two minima of, we can construct a deformatidn
such that inT (T ¢, ¢+ ) these vertices are both adjacent to a certain vertekdegree 3. Let
T(Tt,0¢) = (T, ), with £(u) < £(v) < £(w). If there exists a vertew € ¢=1(J¢(v), £(w)[),
sincev,w cannot be adjacent, we can apply a deformation of type (Rpedihg only
v, and get a new labeling such that¢'(w') is not contained if¢ (v), ¢ (w)[. Possibly
repeating this procedure finitely many times, we get a newliiagy, that for simplicity we
still denote by?, such that=1(]¢(v), £(w)[) = 0. Hence, through a deformation of type (D)
deletingv,w, the resulting labeled Reeb graph agertices of degree 1. Hence, by the
inductive hypothesis, it can be transformed into a minimagiRgraph.
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Now we prove the second step. et be a minimal Reeb Graph, i.p=q=1. The
total number of splitting saddles (i.e. vertices of degrder3vhich there are two higher
adjacent vertices) df; is g. If g =0, thenl; is already canonical. Let us consider the
caseg > 1. Letve V(I) be a splitting saddle such that, for every cyCleontainingv,

e (V) = Vrpeig{ﬁf (w)}, and letC be one of these cycles. By Lemma Zi¥), there exists a

deformationT that transform< into a 2-cycle, still having as the lowest vertex. Lef
be the highest vertex in this 2-cycle. We observe that noratyeles of T (I ¢) containv
andV, otherwise the initial assumption d@h(v) would be contradicted. Henae v’ and
the edges adjacent to them are not touched when applying bgaima 2.4(ii) to reduce
the length of another cycle. Therefore, iterating the sargeraent on a different splitting
saddle, after at most iterations (actually at mosgt— 1 would suffice) ¢ is transformed
into a canonical Reeb graph. O

Proposition 2.7. Let ("¢, ¢¢) and (g, /g) be two labeled Reeb graphs. Then the set of all
the deformations T such that(ITt, /) == (I'g,4g) is non-empty. This set of deformations
will be denoted by7 ((I't,4¢), (Fg,4g))-

Proof. By Lemma 2.6 we can find two deformatioffis and Tq transforming(I'¢,¢¢) and
(g, 4g), respectively, into canonical labeled Reeb graphs. Mamedy(I't,/s) can be
transformed into a graph isomorphic Tg(I"g,¢g) through an elementary deformation of
type (R), saylr. Thus(g,(g) = TgflTRTf(Ff,Ef). O

3. EDITING DISTANCE BETWEEN LABELED REEB GRAPHS

In this section we introduce an editing distance betweeeléabReeb graphs, in terms
of the cost necessary to transform one graph into anothebégja by defining the cost of
a deformation.

Definition 3.1. Let T be an elementary deformation such thaf ¢,(s) = (g, {g).
o If T is of type (B) inserting the verticas ,u, € V(I'g), then we define the associ-

ated cost as
o(m) = o8~

o If T is of type (D) deleting the verticas,u, € V(I ¢), then we define the associ-

ated cost as
oT) = |£1(u1) ;gf(uz)l.

o If T is of type (R) relabeling the verticass V(I') =V ([g), then we define the
associated cost as

o(T) = max £1(4) —fg(V)]

o If T is of type (K), withi =1,2, 3, relabeling the verticas,u, € V(I'¢), then we
define the associated cost as

¢(T) = max{|€r (ur) — Lg(ur)], [£r (uz) — fg(U2) [}
Moreover, if T = (Ty,...,T;) is a deformation such tha ---Ty(M¢,4¢) = (Tg,4g), We

r
define the associated cost&3 ) = 3 c(Ti).
i=1

Proposition 3.2. For every deformation T such that(Tt, ¢) 2 (T g, 4g), ¢(T~1) = ¢(T).
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Proof. It is sufficient to observe that, for every deformatidn= (T1,...,T,) such that
T(M¢,4¢) = (Fg,{g), Definitions 3.1 and 2.3 imply the following equalities:

Theorem 3.3. For every two labeled Reeb grap(ist, ¢¢) and (g, ¢g), we set

d((T't,45), (g, 4q)) = inf c(T).
(( f, f)v( B g)) TE?((FfI/f),(l—g/g)) ( )

Then d is a pseudometric on isomorphism classes of labelebl gRaphs.

Proof. The coincidence axiom can be verified by observing that teetidal deformation,
if obtained as a particular elementary deformation of tyRe bas a cost equal to O; the
symmetry is a consequence of Proposition 3.2; the triamglguality can be proved in the
standard way. |

In order to deduce thatis actually a metric, we need to prove thatr ¢, /), (Mg, 4g)) =
0 implies(I'¢,¢¢) = (Ig,4q). Nevertheless, for simplicity, we will refer was to theedit-
ing distance

In the next Section 4 we prove that the editing distance betviwo labeled Reeb graphs
is upper-bounded by th@%-norm evaluated at the difference between the correspgndin
functions. We observe that such a result is strictly reladdtbw the cost of an elementary
deformation of type (R) has been defined. See, for instanamgle 1.

Example 1. Let f,g:.# — Rwith f,g < .#Villustrated in Figure 4. Lef(q) — f(p;) =a,
i =1,2,3. Let us show thadl((I't,¢r), (g, 4g)) < §. For every 0< £ < §, we can apply

g  |eEe A TUE
-/i-);%

KZQZ
zlch

p ______________

_______________ o}

p

FIGURE 4. The functionsf,g € .#° considered in Example. Even in this case
d((Fr,61),(Fg,fg)) = D(f,9) = 3(f(an) - f(pr))-

to (I'¢,¢¢) a deformation of type (R), that relabels the vertipes);, i = 1,2,3, in such a
way that/(p;) is increased by — &, and/¢(q) is decreased b§ — &, composed with
three deformations of type (D) that delgiewith g, i = 1,2,3. Thus, since the total cost
is equal to§ — € + 3¢, by the arbitrariness d, it holds thatd((I't, /1), (g, 4g)) < §.
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4. STABILITY

This section is devoted to proving that Reeb graphs of atdatsurfaces are stable
under function perturbations. More precisely, it will beogim that arbitrary changes in
simple Morse functions imply smaller changes in the editiggance between the associ-
ated labeled Reeb graphs. Formally:

Theorem 4.1. For every fge . %%, d((I'1,4f),(Tg,4g)) < || f —gllco, where|| f —g]|co =
max (p) —9(p)|

In order to prove this stability theorem, we consid&rendowed with theC? topol-
ogy, which may be defined as follows. L@t} be a coordinate covering o# with
coordinate map®, : Uy — R?, and let{Cq} be a compact refinement ¢tJ,}. For
every positive constand > 0 and for everyf € %, defineN(f,d) as the subset of#
consisting of all mapg such that, denotindy, = f o ¢;* andgy = go ¢ 2, it holds that
max.j<2 |T(>9<:;—;/J(f“ —da)| < 0, at all points of¢4 (Cy). TheC? topology is the topology
obtained by taking the sel(f, d) as a base of neighborhoods.

Next we consider the strat&® and.#* of thenatural stratificationof .#, as presented
by Cerfin [4].

e The stratum#?C is the set of simple Morse functions.
e The stratum# " is the disjoint union of two set& and.7, where
— 7} is the set of functions whose critical levels contain exaotie critical
point, and the critical points are all non-degenerate, gixeractly one.
- 0‘[} is the set of Morse functions whose critical levels contaimast one
critical point, except for one level containing exactly teriical points.

Z'is a sub-manifold of co-dimension 1 f°U.Z?1, and the complement o °U %1
in .Z is of co-dimension greater than 1. Hence, given two funstityg € .#°, we can
always findf, g € .Z9 arbitrarily near tof , g, respectively, for which

o T, g are RL-equivalent td, g, respectively,
and the patin(A) = (1—A)f +Ag, with A € [0,1], is such that

e h(A) belongs toZ°uU.Z1 for everyA < [0,1];
e h(A)is transversal to7 1.

As a consequench(A ) belongs toZ? for at most a finite collection of values and does
not traverse strata of co-dimension greater than 1 (see[€})g

With these preliminaries set, the stability theorem willdseven by considering a path
that connectd to g via f, h(A), andg as aforementioned. This path can be split into a
number of segments whose endpoints are such that the stafslorem holds on them, as
shown in some preliminary lemmas. In conclusion Theorenwdlllbe proven by apply-
ing the triangle inequality of the editing distance.

In the following preliminary lemmasf, andg belong to.#° andh: [0,1] — .# denotes
their convex linear combinatiot(A) = (1—A)f +Ag.

Lemma 4.2. [[h(A") —h(A")||co = [A" = A"|-|| f —g||co for everyA’,A” € [0,1].
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Proof.
Ih(A) =h(A")[lco = [I(1=A")f +A'g—(1-A")f —A"g||co
= (A" =AN = (A" =A")gllco =A"=A"] [ f = glco.
(]
Lemma 4.3. If h(A) € #0 for everyA € [0,1], then d(T't,4+), (Mg, 4g)) < ||f —9lco-
Proof. The statement can be proved in the same way as [5, Prop. 4.4]. |

Lemma 4.4. Let h(A) intersect#* transversely at M), 0 < A < 1, and nowhere else.
Then, for every constant valie> 0, there exist two real numbers’, A" with 0 < A’ <
A <A” <1, such that

d((Tharys thary)s (Mhamys €nary)) < 0.

Proof. In this proof we use the notion of universal deformation. Mdetails on universal
deformations may be found in [4, 14, 18].

In particular, sincéa(A ) intersectsZ* transversely &t(A ), we can consider two differ-
ent universal deformations &f=h(A): F(s, p) = h(p) +s- (g— f)(p), andG(s, p) whose
construction depends on whetlrebelongs to%} or ﬂ‘g

Let us assume for a moment tiahas been defined.

We want to exploit the fact that, being two universal defdiors ofh € .#1, F andG
are equivalent. This means that there exist a diffeomonphis) with n(0) = 0, and a lo-
cal diffeomorphisnip(s, (x,y)), with @(s, (x,y)) = (n(s), ¢(n(s), (x,y))) ande(0, (x,y)) =
(0,(x,y)), such thaF = (n*G) o . Hence, the Reeb graphsefs,-) andG(n(s),-) are
isomorphic. Moreover, the difference in the values of theela of corresponding vertices
in the Reeb graphs &¢i(s,-) andG(n(s),-) continuously depends e and is 0 fors= 0.
Therefore, for every > 0, taking|s| sufficiently small, it is possible to transform the la-
beled Reeb graph ¢i(s,-) into that ofG(n(s),-), or viceversa, by a deformation of type
(R) whose cost is not greater thai3. Moreover, as equalities (4.1)-(4.2) will show, for
everyd > 0, |s| can be taken sufficiently small that the distance betweefatieded Reeb
graphs ofG(n(s),-) andG(n(-s),-) is not greater thad/3.

Applying the triangle inequality, we deduce that, for evéry 0, there exists a suffi-
ciently smalls > 0 such that the distance between the labeled Reeb graphsef and
F(—s,-) is not greater thad. Thus the claim follows taking’ =A —sandA” = A +s.

Let us construct the universal deformati@n

If he.Z}, letp be the sole degenerate critical point forLet (x,y) be a suitable local
coordinate system arourfain which the canonical expression bfis h(x,y) = h(p) +
x?+y°. Letw: .# — R be a smooth function equal to 1 in a neighborhoogofvhich
decreases moving frofp, and whose support is contained in the chosen coordinaté cha
aroundp. Finally, letG(s, (x,y)) = h(x,y) +s- w(x,y) - V.

Fors < 0, G(s,-) has no critical points in the support of and is equal td every-
where else, while, fos > 0, G(s,-) has exactly two critical points in the support @f
preciselyp; = (0,—/3) andp2 = (0,,/3), and is equal td everywhere else (see Fig-
ure 5). Therefore, for every > 0 sufficiently small, the labeled Reeb graph@(f-s,-)
can be transformed into that 6f(s,-) by an elementary deformation of type (B). By Defi-
nition 3.1, a direct computation shows that its cost is

R+ (V3 +s vE- (AP - (V3 -5 V)| —4. ("

(4.1) 5 3
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G(s,-),s<0

(B)
—mo

FIGURE 5. A function h € .#} with one degenerate critical point (center) admits a
universal deformatio(s, -) in which, fors < 0, the degenerate critical point disappears
(left), while, fors> 0, the degenerate critical point is split into non-degetessagularities
(right). The labeled Reeb graphs associated Bith -) for s< 0 ands > 0 can be obtained
one from the other through an elementary deformation of typ@(gD).

Obviously, in the case < 0, the deformation we consider is of type (D), and its cost is

the same because of Proposition 3.2. B
Let us now assume thate .#}, and letp andq be the critical points oh such that

h(p) = h(g).
We distinguish the following two situations:
(1) The pointsp andqg belong to two different connected componentsﬁfﬁ(ﬁ(p))

(see Figure 6).

FIGURE 6. Two critical points belonging to different connected comats of the
same critical level. The dark (light, respectively) regiensrespond to points under (over,
respectively) the considered critical level. Possiblyeiring the colors of one or both the
components, we obtain all the possible cases.

(2) The pointsp andq belong to the same connected componerf_nfojf(ﬁ(p)) (see

Figure 7).
In both the cases (1) and (2), sinpas non-degenerate, there exists a suitable local
coordinate systerfx,y) aroundp in which the canonical expressiontois h(x,y) = h(p) +
X2 4+ y2 if pis a minimum, orh(x,y) = h(p) — x? —y? if P is a maximum, oh(x,y) =
h(p) £ x%Fy? if pis a saddle point.
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(© (d)

FIGURE 7. Two critical points belonging to the same connected compasfeht same
critical level. The dark (light, respectively) regions mspond to points under (over, re-
spectively) the considered critical level. Possibly irivey the colors of this component,
we obtain all the possible cases.

Letw: .# — R be a smooth function equal to 1 in a neighborhoop,afhich decreases
moving fromp, and whose support is contained in the coordinate charndrpin which
h has one of the above expressions. Finally@&t (x,y)) = h(x,y) +s- w(X,y).

For everys sufficiently small,G(s,-) has the same critical points, with the same in-
dices, ash. As for critical values, they are the same as well, apart ftbenvalue taken
atp: G(s,p) = h(p) +s. Therefore, for everg sufficiently small, the labeled Reeb graph
of G(s,-), with s < 0, can be transformed into that 6fs,-), with s> 0, by one of the
following elementary deformations.

In all the cases (1), for eves/> 0 sufficiently small, the deformatioh which takes the
labeled Reeb graph @(—s, ) to the labeled Reeb graph 6f’s, -) is of type (R).

As for the cases (2), the following deformations shall bestdered:

o |f pandgare as in Figure 7a), for everys > 0 sufficiently small, the deformation
T which takes the labeled Reeb graphGff—s,-) to the labeled Reeb graph of
G(s,) is of type (K1) (see e.g. the example in Figure 8).

e If pandgare as in Figure Tb), for everys > 0 sufficiently small, the deformation
T which takes the labeled Reeb graph@(f-s,-) to the labeled Reeb graph of
G(s,-) is of type (Kg), while the deformation which takes the labeled Reeb graph
of G(s,-) to the labeled Reeb graph@f —s, -) is of type (K) (see e.g. the example
in Figure 9).

e If pandq are as in Figure 7c) or (d), for everys > 0 sufficiently small, the
deformationT which takes the labeled Reeb graph3if-s, -) to the labeled Reeb
graph ofG(s, -) is of type (R) (see e.g. the examples in Figures 10-11).

In all the cases, the cost of the considered deformation

“.2) o(T) = [A(p) —s— (R(p) +5)| = 2s.
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FIGURE 8. A functionh ¢ 3“[} with two saddles as in Figure (&) (center) admits a
universal deformatiof®(s, -) in which these two critical points belong to different arii
levels (left-right). The labeled Reeb graphs associatéld &fs, -) for s < 0 ands > 0 can
be obtained one from the other through an elementary defaymafitype (k).

FIGURE 9. A functionh ﬂ& with two saddles as in Figure (b) (center) admits a
universal deformatiofs(s, -) in which these two critical points belong to different aitl
levels (left-right). The labeled Reeb graphs associatet @(s,-) for s< 0 ands > 0
can be obtained one from the other through an elementaryrdafian of type (Ig) or its
inverse (k).



REEB GRAPHS OF SURFACES ARE STABLE UNDER FUNCTION PERTURBANS

FIGURE 10. A functionh e 3“,% with two saddles as in Figure (¢) (center) admits a
universal deformatiofs(s, -) in which these two critical points belong to different arii
levels (left-right). The labeled Reeb graphs associatéld &s, -) for s < 0 ands > 0 can
be obtained one from the other through an elementary defamafitype (R).

888

AG

FIGURE 11. Afunctionh e 3?& with two saddles as in Figure (@) (center) admits a
universal deformatiofs(s, -) in which these two critical points belong to different aritl
levels (left-right). The labeled Reeb graphs associaté¢d @fs, -) for s< 0 ands > 0 can
be obtained one from the other through an elementary defamafitype (R).



18 B. DI FABIO AND C. LANDI

Lemma 4.5. If h(A) belongs toZ° for everyA < [0,1] apart from one valu® < A < 1 at
which h transversely intersectg?, then d ("¢, 4¢), (Tg,4g)) < ||f — d|co-

Proof. Leth=h(A). By Lemma 4.4, for every real numbér> 0,we can find two values
0<A' < /\ < A" <1 such thaﬂ((rh A ,Kh(,\/)),(rh()\//),éh()\// )) < 0.
Applying the triangle inequality, we have:
d((rfaéf)7(r9’€g)) < d((rf>€f) (rh()\’)vh(A/)\))+d((rh()\/)’h(A/)|)7(rh()\”)’h(A”)\))
+d((Thany, h(/\”)‘),(rg,ﬂg)).
From Lemma 4.3, and from Lemma 4.2 with= h(0),g = h(1), we get
d((Tt,£1), (Than,h(A"))) < [T =h(A")[lco =A"-[|f —g|co,
and
d((Thany; h(A"))), (Fg.bg)) < [[NA") = dllco = (1= A") - [|f = gllco-
Hence,
d((T+,01),(Fg,lg)) < (14+A"=A")-||f —g|lco+ 8.

In conclusion, given that& A’ < A”, the inequalityd((I't,4¢), (Tg,4g)) < || f —dllco+ O
holds. This yields the claim by the arbitrarinesdof O

We are now ready to prove the stability Theorem 4.1.

Proof of Theorem 4.1Recall from [9] that#? is open in.Z endowed with theC? topol-
ogy. Then, for every sufficiently small real numb&r> 0, the neighborhoodsl(f,d)
andN(g, d) are contained in7°. Take fe N(f,d) andg € N(g,0) such that the path
h:[0,1] — %, with h(A) = (1—A)f +Ag, belongs toZ° for everyA € [0,1], except for
at most a finite numbenr of values at whict transversely intersectg *.

We begin by proving our statement fﬁrand@, and then show its validity fof andg.

We proceed by induction am

If n=0 orn=1, the inequalityd((I'¢¢¢), (g, {g)) < = 0l|co holds because of
Lemma 4.3 or 4.5, respectively.

Let us assume the claim is true foe> 1, and prove it fon+ 1.

LetO< pi < A1 < ta < A2 < ... < Hn < An < Hne1 < 1, withh(0) = f, h(1) =g, h(i;) €
F1, for everyi =1,...,n+1, andh(Aj) € Z°, for everyj = 1,...,n. We consideh as
the concatenation of the path§ h? : [0,1] — .%, defined, respectively, d8(A) = (1—
M) f+Ah(An), andh?(A) = (1—A)h(An) +AG. The patth® transversally intersec#? at
nvaluesyy, . .., Un. Hence, by inductive hypothesis, we hal€l ¢, £7), (Th(x,)s €hiry))) <
= h(An)||co- Moreover, the patih? transversally intersec#?! only at the valueun 1.
Consequently, by Lemma 4.5, we half@ln(x), fh(x,))» (Mg, £g)) < [[n(An) — Gllco. Using
the triangle inequality and Lemma 4.2, we can conclude that:

d((r?aéf)a(rg\agg\)) < d((rf\agf\%(rh()\n)vgh(An)))J'_d((rh()\n))Eh()\n))v(r@aeg\))
(4.3) < Mllf=Gllco+ (L= An)lIf = Gllco = I T - Gllco-

Let us now estimatd((I,¢+), (Mg, 4g)). By triangle inequality, we have:
d((F'+,¢1),(Fg,4g)) < ((Ff,éf), 7)) +d((Fg,45), (Mg, £g)) +d((Tg,g), (Mg, Lg))-

Me
Sincef e N(f, 5) c #%andge N(g,
0,1, 1-A)f+AT,(1-A)g+Age

d) c F9, the following facts hold{a) for everyA ¢
e 7% (b) || f — fllco < 3 and|g—gl|co < 3. Hence,
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from (a), we haved((T's, ), (T ¢7)) < || — fllco, andd((Tg, £g), (Tg: 4g)) < 1§ 9llco
because of Lemma 4.3. Using aldn, and inequality 4, we deduce th({(T" ¢, 41 ), (Mg, 4g)) <
[If —gllco+2d. This yields the conclusion by the arbitrarinesgof O
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