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ABSTRACT. Reeb graphs are combinatorial signatures that capture shape properties from
the perspective of a chosen function. One of the most importantquestions is whether
Reeb graphs are robust against function perturbations thatmay occur because of noise and
approximation errors in the data acquisition process. In this work we tackle the problem of
stability providing an editing distance between Reeb graphs of orientable surfaces in terms
of the cost necessary to transform one graph into another by edit operations. Our main
result is that changes in the functions, measured by the maximumnorm, imply not greater
changes in this distance, yielding the stability property under function perturbations.

INTRODUCTION

In shape comparison, a widely used scheme is to measure the dissimilarity between
signatures associated with each shape rather than match shapes directly [16, 13, 22].

Reeb graphs are signatures describing shapes from topological and geometrical perspec-
tives. In this framework, shapes are modeled as spacesX endowed with scalar functions
f . The role of f is to explore geometrical properties of the spaceX. The Reeb graph of
f : X →R is obtained by shrinking each connected component of a levelset of f to a single
point [17].

Reeb graphs have been used as an effective tool for shape analysis and description
tasks since [21, 20]. The Reeb graph has a number of characteristics that make it useful
as a search key for 3D objects. First, a Reeb graph always consists of a one-dimensional
graph structure and does not have any higher dimension components such as the degenerate
surface that can occur in a medial axis. Second, by defining the function appropriately, it
is possible to construct a Reeb graph that is invariant to translation and rotation, or even
more complicate isometries of the shape.

One of the most important questions is whether Reeb graphs are robust against pertur-
bations that may occur because of noise and approximation errors in the data acquisition
process. Heuristics have been developed so that the Reeb graph turns out to be resistant to
connectivity changes caused by simplification, subdivision and remesh, and robust against
noise and certain changes due to deformation [8, 3].

In this paper we tackle the robustness problem for Reeb graphs from a theoretical point
of view. The main idea is to generalize to the case of surfacesthe techniques developed in
[5] to prove the stability of Reeb graphs of curves against function perturbations. Indeed
the case of surfaces appears as the most interesting area of applications of the Reeb graph
as a shape descriptor.

To this end, we introduce a combinatorial dissimilarity measure, called anediting dis-
tance, between Reeb graphs of surfaces in terms of the cost necessary to transform one
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graph into another by edit operations. The editing distanceturns out to have all the prop-
erties of a pseudometric. Our main result is that changes in the functions, measured by the
supremum norm, imply not greater changes in this editing distance, yielding the stability
property under function perturbations.

In the literature, some other comparison methodologies have been proposed to compare
Reeb graphs and estimate the similarity of the shapes described by Reeb graph.

In [8] the authors propose a Multiresolutional Reeb Graph (MRG) based on geodesic
distance. Similarity between 3D shapes is calculated usinga coarse-to-fine strategy while
preserving the topological consistency of the graph structures to provide a fast and efficient
estimation of similarity and correspondence between shapes.

In [3] the authors discuss a method for measuring the similarity and recognizing sub-
part correspondences of 3D shapes, based on the synergy of a structural descriptor, like the
Extended Reeb Graph, with a geometric descriptor, like spherical harmonics.

Only recently the problem of Reeb graph stability has been investigated from the theo-
retical point of view.

In [5] an editing distance between Reeb graphs of curves endowed with Morse functions
is introduced and shown to yield stability. Importantly, despite the combinatorial nature
of this distance, it coincides with the natural pseudo-distance between shapes [6], thus
showing the maximal discriminative power for this sort of distances.

The work in [2] about a stable distance for merge trees is alsopertinent to the stability
problem for Reeb graphs: merge trees are known to determine contour trees, that are Reeb
graphs for simple domains.

Recently a functional distortion distance between Reeb graphs has been proposed in the
preprint [1], with proven stable and discriminative. The functional distortion distance is
intrinsically continuous, whereas the editing distance wepropose is combinatorial.

Outline. The paper is organized as follows. In Section 1 we recall the basic properties of
labeled Reeb graphs of orientable surfaces. In Section 2 we define the editing deformations
between labeled Reeb graphs, and show that through a finite sequence of these deforma-
tions we can always transform a Reeb graph into another. In Section 3 we associate a cost
with each type of editing deformation and define the editing distance as the infimum cost
we have to bear to transform one graph into another. Eventually, Section 4 illustrates the
robustness of Reeb graphs with respect to the editing distance.

1. LABELED REEB GRAPHS OF ORIENTABLE SURFACES

Hereafter,M denotes a connected, closed (i.e. compact and without boundary), ori-
entable, smooth surface of genusg, andF the set ofC∞ real functions onM .

For f ∈ F , we denote byK( f ) the set of its critical points. Ifp∈ K( f ), then the real
numberf (p) is called acritical valueof f , and the set{q∈ M : q∈ f−1( f (p))} is called
a critical level of f . Otherwise, ifp ∈ M \K( f ), then f (p) is called aregular value.
Moreover, a critical pointp is callednon-degenerateif the Hessian matrix off at p is
non-singular. Theindexof a non-degenerate critical pointp of f is the dimension of the
largest subspace of the tangent space toM at p on which the Hessian is negative definite.
In particular, the index of a pointp∈ K( f ) is equal to 0,1, or 2 depending on whetherp is
a minimum, a saddle, or a maximum point off .

A function f ∈ F is called aMorse functionif all its critical points are non-degenerate.
Besides, a Morse function is said to besimpleif each critical level contains exactly one
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critical point. The set of simple Morse functions will be denoted byF 0, as a reminder that
it is a sub-manifold ofF of co-dimension 0 (see also Section 4).

Definition 1.1. Let f ∈F 0, and define onM the following equivalence relation: for every
p,q ∈ M , p ∼ q wheneverp,q belong to the same connected component off−1( f (p)).
The quotient spaceM / ∼ is a finite and connected simplicial complex of dimension 1
known as theReeb graphassociated withf .

Throughout the paper, Reeb graphs are regarded as combinatorial graphs and not as
topological spaces. The Reeb graph associated withf will be denoted byΓ f , its vertex set
byV(Γ f ), and its edge set byE(Γ f ). Moreover, ifv1,v2 ∈V(Γ f ) are adjacent vertices, i.e.,
connected by an edge, we will writee(v1,v2) ∈ E(Γ f ).

The critical points off correspond bijectively to the vertices ofΓ f . For this reason,
in the following, we will often identify vertices with the corresponding critical points. In
particular, the maxima and minima off correspond to vertices of degree 1, while saddle
points to vertices of degree 3 (the degree of a vertex is the number of edges which connect
this vertex to the graph). Our assumption thatM is orientable ensures the absence of
vertices of degree 2. Moreover, ifM has genusg, Γ f has exactlyg linearly independent
cycles. We will denote a cycle of lengthm in the graph by anm-cycle.

Let us observe that, ifp,q, r denote the number of minima, maxima, and saddle points
of f , from the relationships between the Euler characteristic of M , χ(M ), andp,q, r, i.e.
χ(M ) = p+ q− r, and betweenχ(M ) and the genusg of M , i.e. χ(M ) = 2− 2g, it
follows that the cardinality ofV(Γ f ), which is p+q+ r, is also equal to 2(p+q+g−1),
i.e. is even in number. The minimum number of vertices of a Reeb graph is achieved
wheneverp = q = 1, and consequentlyr = 2g. In this case the cardinality ofV(Γ f ) is
equal to 2g+2.

Definition 1.2. We shall callminimala Reeb graphΓ f with p= q= 1. Moreover, we say
thatΓ f is canonicalif it is minimal and all its cycles, if any, are 2-cycles.

Examples of minimal and canonical Reeb graphs are displayedin Figure 1. In particu-
lar, in a minimal Reeb graph, the vertices of degree 1 represent the global minimum and
maximum of f , respectively; the remaining 2g vertices are of degree 3 and are connected
each other in some way to formg linearly independent cycles representing theg holes of
M .

FIGURE 1. Examples of minimal Reeb graphs. The graph on the right is also canonical.
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We want to underline that our definition of canonical Reeb graph is slightly different
from the one in [10]. This choice has been done to simplify theproof of Proposition 2.7.

In what follows, we label the vertices ofΓ f by equipping each of them with the value
of f at the corresponding critical point. We denote such a labeled graph by(Γ f , ℓ f ), where
ℓ f : V(Γ f ) → R is the restriction off : M → R to K( f ). In a labeled Reeb graph, each
vertexv of degree 3 has at least two of its adjacent vertices, sayv1,v2, such thatℓ f (v1) <
ℓ f (v)< ℓ f (v2). An example is displayed in Figure 2.

M (Γ f , ℓ f )
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FIGURE 2. Left: the height functionf : M → R; center: the surfaceM of genus
g= 2; right: the associated labeled Reeb graph(Γ f , ℓ f ). Here labels are represented by the
heights of the vertices.

To facilitate the reader, in all the figures of this paper we shall adopt the convention of
representingf as the height function, so thatℓ f (va)< ℓ f (vb) if and only if va is lower than
vb in the picture.

Let us consider the realization problem, i.e. the problem ofconstructing a function
f ∈ F 0 from a graph on an even number of vertices, all of which are of degree 1 or 3,
appropriately labeled. This result requires the followingdefinition.

Definition 1.3. We shall say that two labeled Reeb graphs(Γ f , ℓ f ),(Γg, ℓg) areisomorphic,
and we write(Γ f , ℓ f ) ∼= (Γg, ℓg), if there exists a graph isomorphismΦ : V(Γ f )→V(Γg)
such that, for everyv∈V(Γ f ), f (v) = g(Φ(v)) (i.e. Φ preserves edges and vertices labels).

Proposition 1.4(Realization theorem). Let (G, ℓ) be a labeled graph, where G is a graph
with m linearly independent cycles, on an even number of vertices, all of which are of
degree 1 or 3, andℓ : V(G) → R is an injective function such that, for any vertex v of
degree 3, at least two among its adjacent vertices, say w,w′, are such thatℓ(w) < ℓ(v) <
ℓ(w′). Then an orientable closed surfaceM of genusg= m, and a simple Morse function
f : M → R exist such that(Γ f , ℓ f )∼= (G, ℓ).

Proof. Under our assumption on the degree of vertices ofG, M and f can be constructed
as in the proof of Thm. 2.1 in [15]. �

We now face with the uniqueness problem, up to isomorphism oflabeled graphs. First
of all we review the following two relations of equivalence on functions.

Definition 1.5. Let D(M ) be the set of self-diffeomorphisms ofM . Two functionsf ,g∈
F 0 are calledright-equivalent(briefly, R-equivalent) if there existsξ ∈ D(M ) such that
f = g◦ ξ . Moreover, f ,g are calledright-left equivalent(briefly, RL-equivalent) if there
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existξ ∈ D(M ) and an orientation preserving self-diffeomorphismη of R such thatf =
η ◦g◦ξ .

These equivalence relations on functions are mirrored by Reeb graphs isomorphisms.

Proposition 1.6 (Uniqueness theorem). If f ,g are simple Morse functions on a closed
surface, then

(1) f and g are RL-equivalent if and only if their Reeb graphsΓ f andΓg are isomor-
phic by an isomorphism that preserves the vertex order;

(2) f and g are R-equivalent if and only if their labeled Reeb graphs (Γ f , ℓ f ) and
(Γg, ℓg) are isomorphic.

Proof. Given two RL-equivalent functionsf ,g∈ F 0, it is immediate to see that there is a
graph isomorphismΦ betweenΓ f andΓg. Furthermore,Φ also preserves the vertex-order,
i.e., for everyv,w∈V(Γ f ), f (v)< f (w) if and only if g(Φ(v))< g(Φ(w)). The converse
is not so straightforward. Its proof follows from [12] (see also [19, Thm. 6.1]).

As for the second statement, two R-equivalent functions are, in particular, RL-equivalent.
Therefore, their Reeb graphs are isomorphic by an isomorphism that preserves the vertex
order. Sincef and g necessarily have the same critical values, this isomorphism also
preserves labels. Vice-versa, if(Γ f , ℓ f )and (Γg, ℓg) are isomorphic, by (1) it holds that
there existξ ∈ D(M ) and an orientation preserving self-diffeomorphismη of R such that
f = η ◦g◦ξ . Let us seth= g◦ξ . The functionh belongs toF 0, and has the same critical
points asf and also the same indexes. Moreover,h and f have the same values at each
critical point because(Γ f , ℓ f )and(Γg, ℓg) are isomorphic and thus the labels are the same.
Hence, applying [11, Lemma 1], it follows that there exists aself-diffeomorphismξ ′ of M

such thatf = h◦ξ ′. Thus f = g◦ξ ◦ξ ′, yielding that f andg areR-equivalent. �

2. EDITING DEFORMATIONS BETWEEN LABELEDREEB GRAPHS

In this section we list the editing deformations admissibleto transform a labeled Reeb
graph of an orientable surface into another. We introduce atfirst elementary deformations,
then, by virtue of the Realization theorem (Proposition 1.4), the deformations obtained by
their composition.

Elementary deformations allow to transform a Reeb graph into another with either a
different number of vertices ((B) and (D)), or with the same number of vertices endowed
with different labels ((R) and (Ki), i = 1,2,3), and can be described as follows.

Let (Γ f , ℓ f ) be a labeled Reeb graph withn vertices. We callT anelementary deforma-
tion of (Γ f , ℓ f ) if T transforms(Γ f , ℓ f ) in one and only one of the ways described next,
with the convention of denoting the open interval with endpoints a,b by ]a,b[.

(B) Fix e(v1,v2) ∈ E(Γ f ), with ℓ f (v1) < ℓ f (v2). ThenT transforms(Γ f , ℓ f ) into a
labeled graph(G, ℓ) according to the following rule:G is the new graph onn+2
vertices, obtained deleting the edgee(v1,v2) and inserting two new verticesu1, u2

and the edgese(v1,u1),e(u1,u2),e(u1,v2); moreover,ℓ : V(G)→ R is defined by
extendingℓ f fromV(Γ f ) toV(G) =V(Γ f )∪{u1,u2} in such a way thatℓ|V(Γ f ) ≡

ℓ f , and eitherℓ f (v1) < ℓ(u1) < ℓ(u2) < ℓ f (v2), with ℓ−1(]ℓ(u1), ℓ(u2)[) = /0 , or
ℓ f (v1)< ℓ(u2)< ℓ(u1)< ℓ f (v2), with ℓ−1(]ℓ(u2), ℓ(u1)[) = /0 (see Table 1, row 1).

(D) Assumee(v1,u1),e(u1,u2),e(u1,v2) ∈ E(Γ f ), u2 of degree 1, and eitherℓ f (v1)<

ℓ f (u1) < ℓ f (u2) < ℓ f (v2), with ℓ−1
f (]ℓ f (u1), ℓ f (u2)[) = /0, or ℓ f (v1) < ℓ f (u2) <

ℓ f (u1)< ℓ f (v2), with ℓ−1
f (]ℓ f (u2), ℓ f (u1)[) = /0. ThenT transforms(Γ f , ℓ f ) into a

labeled graph(G, ℓ) according to the following rule:G is the new graph onn−2
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vertices, obtained deletingu1, u2 and the edgese(v1,u1), e(u1,u2), e(u1,v2), and
inserting an edgee(v1,v2); moreover,ℓ : V(G)→R is defined as the restriction of
ℓ f to V(Γ f )\{u1,u2} (see Table 1, row 1).

(R) T transforms(Γ f , ℓ f ) into a labeled graph(G, ℓ) according to the following rule:
G= Γ f , andℓ : V(G)→ R induces the same vertex-order asℓ f except for at most
two vertices, sayu1,u2, for which, if ℓ f (u1)< ℓ f (u2) andℓ−1

f (]ℓ f (u1), ℓ f (u2)[) =

/0, thenℓ(u1)> ℓ(u2), andℓ−1(]ℓ(u2), ℓ(u1)[) = /0 (see Table 1, row 2).
(K1) Assumee(v1,u1),e(u1,u2),e(u1,v4),e(u2,v2),e(u2,v3) ∈ E(Γ f ), with two among

v2,v3,v4 possibly coincident, and eitherℓ f (v1)<ℓ f (u1)<ℓ f (u2)<ℓ f (v2), ℓ f (v3),
ℓ f (v4), with ℓ−1

f (]ℓ f (u1), ℓ f (u2)[) = /0, orℓ f (v2), ℓ f (v3), ℓ f (v4)< ℓ f (u2)< ℓ f (u1)

< ℓ f (v1), with ℓ−1
f (]ℓ f (u2), ℓ f (u1)[) = /0. ThenT transforms(Γ f , ℓ f ) into a la-

beled graph(G, ℓ) according to the following rule:G is the new graph onn
vertices, obtained deleting the edgese(v1,u1), e(u2,v2), and inserting the edges
e(v1,u2),e(u1,v2); moreover,ℓ : V(G)→ R is defined asℓ f onV(Γ f ) \ {u1,u2},
and eitherℓ f (v1)< ℓ(u2)< ℓ(u1)< ℓ f (v2), ℓ f (v3), ℓ f (v4), with ℓ−1(]ℓ(u2), ℓ(u1)[)

= /0, orℓ f (v2), ℓ f (v3), ℓ f (v4)< ℓ(u1)< ℓ(u2)< ℓ f (v1), with ℓ−1(]ℓ(u1), ℓ(u2)[) =
/0 (see Table 1, row 3).

(K2) Assumee(v1,u1),e(u1,u2),e(v2,u1),e(u2,v3),e(u2,v4)∈E(Γ f ), with u1,u2 of de-
gree 3,v2,v3 possibly coincident withv1,v4, respectively, andℓ f (v1), ℓ f (v2) <

ℓ f (u1) < ℓ f (u2) < ℓ f (v3), ℓ f (v4), with ℓ−1
f (]ℓ f (u1), ℓ f (u2)[) = /0. ThenT trans-

forms (Γ f , ℓ f ) into a labeled graph(G, ℓ) according to the following rule:G
is the new graph onn vertices, obtained deleting the edgese(v1,u1), e(u2,v3),
and inserting the edgese(u1,v3),e(v1,u2); moreover,ℓ : V(G)→ R is defined as
ℓ f onV(Γ f ) \ {u1,u2}, andℓ f (v1), ℓ f (v2) < ℓ(u2) < ℓ(u1) < ℓ f (v3), ℓ f (v4), with
ℓ−1(]ℓ(u2), ℓ(u1)[) = /0 (see Table 1, row 4).

(K3) Assumee(v1,u2),e(u1,u2),e(v2,u1),e(u1,v3),e(u2,v4)∈E(Γ f ), with u1,u2 of de-
gree 3,v2,v3 possibly coincident withv1,v4, respectively, andℓ f (v1), ℓ f (v2) <

ℓ f (u2) < ℓ f (u1) < ℓ f (v3), ℓ f (v4), with ℓ−1
f (]ℓ f (u2), ℓ f (u1)[) = /0. ThenT trans-

forms (Γ f , ℓ f ) into a labeled graph(G, ℓ) according to the following rule:G
is the new graph onn vertices, obtained deleting the edgese(v1,u2), e(u1,v3),
and inserting the edgese(v1,u1),e(u2,v3); moreover,ℓ : V(G)→ R is defined as
ℓ f onV(Γ f ) \ {u1,u2}, andℓ f (v1), ℓ f (v2) < ℓ(u1) < ℓ(u2) < ℓ f (v3), ℓ f (v4), with
ℓ−1(]ℓ(u1), ℓ(u2)[) = /0 (see Table 1, row 4).

We shall denote byT(Γ f , ℓ f ) the result of the elementary deformationT applied to(Γ f , ℓ f ).
Let us observe that, by virtue of the above elementary deformations, the vertex-order

induced byf can change only for the verticesui compared with the others and remains the
same among the verticesvi .

Proposition 2.1. Let T be an elementary deformation of(Γ f , ℓ f ), and let(G, ℓ)=T(Γ f , ℓ f ).
Then(G, ℓ) is isomorphic to a labeled Reeb graph(Γg, ℓg), with g∈ F 0.

Proof. The claim follows from Propositions 1.4. �

As a consequence of Proposition 2.1, we can apply elementarydeformations iteratively.
This fact is used in the next Definition 2.2.

Given an elementary deformationT of (Γ f , ℓ f ) and an elementary deformationS of
T(Γ f , ℓ f ), the juxtapositionST means applying firstT and thenS.
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TABLE 1. Elementary deformations of a labeled Reeb graph.

Definition 2.2. We shall calldeformationof (Γ f , ℓ f ) any finite ordered sequenceT =
(T1,T2, . . . ,Tr) of elementary deformations such thatT1 is an elementary deformation of
(Γ f , ℓ f ), T2 is an elementary deformation ofT1(Γ f , ℓ f ), ...,Tr is an elementary deformation
of Tr−1Tr−2 · · ·T1(Γ f , ℓ f ). We shall denote byT(Γ f , ℓ f ) the result of the deformationT
applied to(Γ f , ℓ f ). Moreover, we shall callidentical deformationany deformation such
thatT(Γ f , ℓ f )∼= (Γ f , ℓ f ).

Let us observe that the identical deformation can be considered as a particular elemen-
tary deformation of type (R).

We now introduce the concept of inverse deformation.

Definition 2.3. Let T be a deformation such thatT(Γ f , ℓ f )∼= (Γg, ℓg). Then we denote by
T−1, and call it theinverseof T, the deformation such thatT−1(Γg, ℓg)∼= (Γ f , ℓ f ) defined
as follows:

• If T is elementary of type (D) deleting two vertices, thenT−1 is of type (B) insert-
ing the same vertices, with the same labels, and viceversa;
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• If T is elementary of type (R) relabeling vertices ofV(Γ f ), thenT−1 is again of
type (R) relabeling these vertices in the inverse way;

• If T is elementary of type (K1) relabeling two vertices, thenT−1 is again of type
(K1) relabeling the same vertices in the inverse way;

• If T is elementary of type (K2) relabeling two vertices, thenT−1 is of type (K3)
relabeling the same vertices in the inverse way, and viceversa;

• If T = (T1, . . . ,Tr), thenT−1 = (T−1
r , . . . ,T−1

1 ).

We prove that, for every two labeled Reeb graphs, a finite number of elementary defor-
mations always allows us to transform any of them into the other one, up to isomorphism.
We first need two lemmas which are widely inspired by [10, Lemma 1 and Theorem 1],
respectively.

Lemma 2.4. Let (Γ f , ℓ f ) be a labeled Reeb graph with n vertices, n≥ 4.

(i) Let u,v ∈ V(Γ f ) correspond to two minima or two maxima of f . There exists a
deformation T such that u and v are adjacent to the same vertexw in T(Γ f , ℓ f ).

(ii) Let C be an m-cycle inΓ f , m≥ 2. There exists a deformation T such that C is a
2-cycle in T(Γ f , ℓ f ).

Proof. Let us prove statement(i) assuming thatu,v correspond to two minima off . The
other case is analogous.

Let us consider a pathγ on Γ f havingu,v as endpoints, whose length ism> 2, and the
finite sequence of vertices through which it passes is(w0,w1, . . . ,wm), with w0 = u,wm= v,
andwi 6= w j for i 6= j. We want to show that there exists a deformationT such that in
T(Γ f , ℓ f ) the pathγ is reduced to be of length 2, i.e.u,v are adjacent to the same vertexw.

Let wi 6= u,v with ℓ f (wi) = max
j=0,...,m

{ℓ f (w j)}. It exists becauseu,v are minima of f .

It is easy to observe that, in a neighborhood ofwi , possibly after a finite sequence of
deformations of type (R), the graph gets one of the configurations shown in Figure 3(a)−
(e) (left).

As it can be seen, through a finite sequence of deformations oftype (K1) and/or (K3),
possibly together with deformations of type (R), the pathγ, which has lengthm, can be
transformed into a simple path of lengthm− 1. Iterating this procedure, we deduce the
desired claim.

The proof of statement(ii) is analogous to that of statement(i), provided thatγ is taken
to be anm-cycle withu≡ v of degree 3, andf (u) = min

j=0,...,m−1
{ f (w j)}. �

Remark2.5. We observe that if the vertexw in Figure 3(a)− (e) (left) is of degree 1,
then, in the cases(a),(b),(d),(e), it can be deleted with its adjacent vertex through a
deformation of type (D), possibly after a deformation of type (R), and, in the case(c), it
can be deleted via the composition of (K3) with (R). This is an alternative way to decrease
the length of the pathγ by one.

Lemma 2.6. Every labeled Reeb graph(Γ f , ℓ f ) can be transformed into a canonical one
through a finite sequence of elementary deformations.

Proof. Our proof is in two steps: first we show how to transform an arbitrary Reeb graph
into a minimal one; then how to reduce a minimal Reeb graph to the canonical form.

The first step is by induction ons= p+q, with p andq denoting the number of minima
and maxima off . If s= 2, thenΓ f is already minimal (see Definition 1.2). Let us assume
that any Reeb graph withs≥ 2 vertices of degree 1 can be transformed into a minimal
one through a certain deformation. LetΓ f haves+1 vertices of degree 1. Thus, at least
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FIGURE 3. Possible configurations of a simple path on a labeled Reeb graph in a neigh-
borhood of its maximum point, and elementary deformations whichreduce its length.

one betweenp andq is greater than one. Letp > 1 (the caseq > 1 is analogous). By
Lemma 2.4(i), if u,v correspond to two minima off , we can construct a deformationT
such that inT(Γ f , ℓ f ) these vertices are both adjacent to a certain vertexw of degree 3. Let
T(Γ f , ℓ f ) = (Γ, ℓ), with ℓ(u)< ℓ(v)< ℓ(w). If there exists a vertexw′ ∈ ℓ−1(]ℓ(v), ℓ(w)[),
sincev,w′ cannot be adjacent, we can apply a deformation of type (R) relabeling only
v, and get a new labelingℓ′ such thatℓ′(w′) is not contained in]ℓ′(v), ℓ′(w)[. Possibly
repeating this procedure finitely many times, we get a new labeling, that for simplicity we
still denote byℓ, such thatℓ−1(]ℓ(v), ℓ(w)[) = /0. Hence, through a deformation of type (D)
deletingv,w, the resulting labeled Reeb graph hass vertices of degree 1. Hence, by the
inductive hypothesis, it can be transformed into a minimal Reeb graph.
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Now we prove the second step. LetΓ f be a minimal Reeb Graph, i.e.p= q= 1. The
total number of splitting saddles (i.e. vertices of degree 3for which there are two higher
adjacent vertices) ofΓ f is g. If g = 0, thenΓ f is already canonical. Let us consider the
caseg ≥ 1. Let v∈ V(Γ f ) be a splitting saddle such that, for every cycleC containingv,
ℓ f (v) = min

w∈C
{ℓ f (w)}, and letC be one of these cycles. By Lemma 2.4(ii), there exists a

deformationT that transformsC into a 2-cycle, still havingv as the lowest vertex. Letv′

be the highest vertex in this 2-cycle. We observe that no other cycles ofT(Γ f ) containv
andv′, otherwise the initial assumption onℓ f (v) would be contradicted. Hencev, v′ and
the edges adjacent to them are not touched when applying again Lemma 2.4(ii) to reduce
the length of another cycle. Therefore, iterating the same argument on a different splitting
saddle, after at mostg iterations (actually at mostg−1 would suffice)Γ f is transformed
into a canonical Reeb graph. �

Proposition 2.7. Let (Γ f , ℓ f ) and(Γg, ℓg) be two labeled Reeb graphs. Then the set of all
the deformations T such that T(Γ f , ℓ f ) ∼= (Γg, ℓg) is non-empty. This set of deformations
will be denoted byT ((Γ f , ℓ f ),(Γg, ℓg)).

Proof. By Lemma 2.6 we can find two deformationsTf andTg transforming(Γ f , ℓ f ) and
(Γg, ℓg), respectively, into canonical labeled Reeb graphs. Moreover, Tf (Γ f , ℓ f ) can be
transformed into a graph isomorphic toTg(Γg, ℓg) through an elementary deformation of
type (R), sayTR. Thus(Γg, ℓg)∼= T−1

g TRTf (Γ f , ℓ f ). �

3. EDITING DISTANCE BETWEEN LABELED REEB GRAPHS

In this section we introduce an editing distance between labeled Reeb graphs, in terms
of the cost necessary to transform one graph into another. Webegin by defining the cost of
a deformation.

Definition 3.1. Let T be an elementary deformation such thatT(Γ f , ℓ f )∼= (Γg, ℓg).

• If T is of type (B) inserting the verticesu1,u2 ∈V(Γg), then we define the associ-
ated cost as

c(T) =
|ℓg(u1)− ℓg(u2)|

2
.

• If T is of type (D) deleting the verticesu1,u2 ∈V(Γ f ), then we define the associ-
ated cost as

c(T) =
|ℓ f (u1)− ℓ f (u2)|

2
.

• If T is of type (R) relabeling the verticesv∈V(Γ f ) =V(Γg), then we define the
associated cost as

c(T) = max
v∈V(Γ f )

|ℓ f (v)− ℓg(v)|.

• If T is of type (Ki), with i = 1,2,3, relabeling the verticesu1,u2 ∈V(Γ f ), then we
define the associated cost as

c(T) = max{|ℓ f (u1)− ℓg(u1)|, |ℓ f (u2)− ℓg(u2)|}.

Moreover, if T = (T1, . . . ,Tr) is a deformation such thatTr · · ·T1(Γ f , ℓ f ) ∼= (Γg, ℓg), we

define the associated cost asc(T) =
r
∑

i=1
c(Ti).

Proposition 3.2. For every deformation T such that T(Γ f , ℓ f )∼= (Γg, ℓg), c(T−1) = c(T).
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Proof. It is sufficient to observe that, for every deformationT = (T1, . . . ,Tr) such that
T(Γ f , ℓ f )∼= (Γg, ℓg), Definitions 3.1 and 2.3 imply the following equalities:

c(T) =
r

∑
i=1

c(Ti) =
r

∑
i=1

c(T−1
i ) = c(T−1).

�

Theorem 3.3. For every two labeled Reeb graphs(Γ f , ℓ f ) and(Γg, ℓg), we set

d((Γ f , ℓ f ),(Γg, ℓg)) = inf
T∈T ((Γ f ,ℓ f ),(Γg,ℓg))

c(T).

Then d is a pseudometric on isomorphism classes of labeled Reeb graphs.

Proof. The coincidence axiom can be verified by observing that the identical deformation,
if obtained as a particular elementary deformation of type (R), has a cost equal to 0; the
symmetry is a consequence of Proposition 3.2; the triangle inequality can be proved in the
standard way. �

In order to deduce thatd is actually a metric, we need to prove thatd((Γ f , ℓ f ),(Γg, ℓg))=
0 implies(Γ f , ℓ f )∼= (Γg, ℓg). Nevertheless, for simplicity, we will refer tod as to theedit-
ing distance.

In the next Section 4 we prove that the editing distance between two labeled Reeb graphs
is upper-bounded by theC0-norm evaluated at the difference between the corresponding
functions. We observe that such a result is strictly relatedto how the cost of an elementary
deformation of type (R) has been defined. See, for instance, Example 1.

Example 1. Let f ,g : M →R with f ,g∈F 0 illustrated in Figure 4. Letf (qi)− f (pi)= a,
i = 1,2,3. Let us show thatd((Γ f , ℓ f ),(Γg, ℓg)) ≤

a
2. For every 0< ε < a

2, we can apply

q1
q1

p1p1

q2
q2

p2p2

q3
q3

p3p3

qq q′q′

pp p′p′

(Γ f , ℓ f ) (Γg, ℓg)f g

FIGURE 4. The functions f ,g ∈ F 0 considered in Example. Even in this case
d((Γ f , ℓ f ),(Γg, ℓg)) = D( f ,g) = 1

2( f (q1)− f (p1)).

to (Γ f , ℓ f ) a deformation of type (R), that relabels the verticespi ,qi , i = 1,2,3, in such a
way thatℓ f (pi) is increased bya2 − ε, andℓ f (qi) is decreased bya2 − ε, composed with
three deformations of type (D) that deletepi with qi , i = 1,2,3. Thus, since the total cost
is equal toa

2 − ε +3ε, by the arbitrariness ofε, it holds thatd((Γ f , ℓ f ),(Γg, ℓg))≤
a
2.
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4. STABILITY

This section is devoted to proving that Reeb graphs of orientable surfaces are stable
under function perturbations. More precisely, it will be shown that arbitrary changes in
simple Morse functions imply smaller changes in the editingdistance between the associ-
ated labeled Reeb graphs. Formally:

Theorem 4.1. For every f,g∈ F 0, d((Γ f , ℓ f ),(Γg, ℓg))≤ ‖ f −g‖C0, where‖ f −g‖C0 =
max
p∈M

| f (p)−g(p)|.

In order to prove this stability theorem, we considerF endowed with theC2 topol-
ogy, which may be defined as follows. Let{Uα} be a coordinate covering ofM with
coordinate mapsϕα : Uα → R

2, and let{Cα} be a compact refinement of{Uα}. For
every positive constantδ > 0 and for everyf ∈ F , defineN( f ,δ ) as the subset ofF
consisting of all mapsg such that, denotingfα = f ◦ϕ−1

α andgα = g◦ϕ−1
α , it holds that

maxi+ j≤2 |
∂ i+ j

∂xi∂y j ( fα −gα)| < δ , at all points ofϕα(Cα). TheC2 topology is the topology

obtained by taking the setsN( f ,δ ) as a base of neighborhoods.
Next we consider the strataF 0 andF 1 of thenatural stratificationof F , as presented

by Cerf in [4].

• The stratumF 0 is the set of simple Morse functions.
• The stratumF 1 is the disjoint union of two setsF 1

α andF 1
β , where

– F 1
α is the set of functions whose critical levels contain exactly one critical

point, and the critical points are all non-degenerate, except exactly one.
– F 1

β is the set of Morse functions whose critical levels contain at most one
critical point, except for one level containing exactly twocritical points.

F 1 is a sub-manifold of co-dimension 1 ofF 0∪F 1, and the complement ofF 0∪F 1

in F is of co-dimension greater than 1. Hence, given two functions f ,g ∈ F 0, we can
always find f̂ , ĝ∈ F 0 arbitrarily near tof ,g, respectively, for which

• f̂ , ĝ are RL-equivalent tof , g, respectively,

and the pathh(λ ) = (1−λ ) f̂ +λ ĝ, with λ ∈ [0,1], is such that

• h(λ ) belongs toF 0∪F 1 for everyλ ∈ [0,1];
• h(λ ) is transversal toF 1.

As a consequence,h(λ ) belongs toF 1 for at most a finite collection of valuesλ , and does
not traverse strata of co-dimension greater than 1 (see, e.g., [7]).

With these preliminaries set, the stability theorem will beproven by considering a path
that connectsf to g via f̂ , h(λ ), andĝ as aforementioned. This path can be split into a
number of segments whose endpoints are such that the stability theorem holds on them, as
shown in some preliminary lemmas. In conclusion Theorem 4.1will be proven by apply-
ing the triangle inequality of the editing distance.

In the following preliminary lemmas,f andg belong toF 0 andh : [0,1]→ F denotes
their convex linear combination:h(λ ) = (1−λ ) f +λg.

Lemma 4.2. ‖h(λ ′)−h(λ ′′)‖C0 = |λ ′−λ ′′| · ‖ f −g‖C0 for everyλ ′,λ ′′ ∈ [0,1].
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Proof.

‖h(λ ′)−h(λ ′′)‖C0 = ‖(1−λ ′) f +λ ′g− (1−λ ′′) f −λ ′′g‖C0

= ‖(λ ′′−λ ′) f − (λ ′′−λ ′)g‖C0 = |λ ′−λ ′′| · ‖ f −g‖C0.

�

Lemma 4.3. If h(λ ) ∈ F 0 for everyλ ∈ [0,1], then d((Γ f , ℓ f ),(Γg, ℓg))≤ ‖ f −g‖C0.

Proof. The statement can be proved in the same way as [5, Prop. 4.4]. �

Lemma 4.4. Let h(λ ) intersectF 1 transversely at h(λ ), 0 < λ < 1, and nowhere else.
Then, for every constant valueδ > 0, there exist two real numbersλ ′,λ ′′ with 0 < λ ′ <

λ < λ ′′ < 1, such that

d((Γh(λ ′), ℓh(λ ′)),(Γh(λ ′′), ℓh(λ ′′)))≤ δ .

Proof. In this proof we use the notion of universal deformation. More details on universal
deformations may be found in [4, 14, 18].

In particular, sinceh(λ ) intersectsF 1 transversely ath(λ ), we can consider two differ-
ent universal deformations ofh= h(λ ): F(s, p) = h(p)+s· (g− f )(p), andG(s, p) whose
construction depends on whetherh belongs toF 1

α or F 1
β .

Let us assume for a moment thatG has been defined.
We want to exploit the fact that, being two universal deformations ofh∈ F 1, F andG

are equivalent. This means that there exist a diffeomorphism η(s) with η(0) = 0, and a lo-
cal diffeomorphismφ(s,(x,y)), with φ(s,(x,y))= (η(s),ψ(η(s),(x,y))) andφ(0,(x,y))=
(0,(x,y)), such thatF = (η∗G) ◦φ . Hence, the Reeb graphs ofF(s, ·) andG(η(s), ·) are
isomorphic. Moreover, the difference in the values of the labels of corresponding vertices
in the Reeb graphs ofF(s, ·) andG(η(s), ·) continuously depends ons, and is 0 fors= 0.
Therefore, for everyδ > 0, taking|s| sufficiently small, it is possible to transform the la-
beled Reeb graph ofF(s, ·) into that ofG(η(s), ·), or viceversa, by a deformation of type
(R) whose cost is not greater thanδ/3. Moreover, as equalities (4.1)-(4.2) will show, for
everyδ > 0, |s| can be taken sufficiently small that the distance between thelabeled Reeb
graphs ofG(η(s), ·) andG(η(−s), ·) is not greater thatδ/3.

Applying the triangle inequality, we deduce that, for everyδ > 0, there exists a suffi-
ciently smalls> 0 such that the distance between the labeled Reeb graphs ofF(s, ·) and
F(−s, ·) is not greater thanδ . Thus the claim follows takingλ ′ = λ −sandλ ′′ = λ +s.

Let us construct the universal deformationG.
If h∈ F 1

α , let p be the sole degenerate critical point forh. Let (x,y) be a suitable local
coordinate system aroundp in which the canonical expression ofh is h(x,y) = h(p)±
x2+ y3. Let ω : M → R be a smooth function equal to 1 in a neighborhood ofp, which
decreases moving fromp, and whose support is contained in the chosen coordinate chart
aroundp. Finally, letG(s,(x,y)) = h(x,y)+s·ω(x,y) ·y.

For s< 0, G(s, ·) has no critical points in the support ofω and is equal toh every-
where else, while, fors> 0, G(s, ·) has exactly two critical points in the support ofω,
preciselyp1 =

(
0,−

√ s
3

)
and p2 =

(
0,
√ s

3

)
, and is equal toh everywhere else (see Fig-

ure 5). Therefore, for everys> 0 sufficiently small, the labeled Reeb graph ofG(−s, ·)
can be transformed into that ofG(s, ·) by an elementary deformation of type (B). By Defi-
nition 3.1, a direct computation shows that its cost is

∣∣∣h(p)+
(√ s

3

)3
+s·

√ s
3 −

(
h(p)−

(√ s
3

)3
−s·

√ s
3

)∣∣∣
2

= 4·
( s

3

)3/2
.(4.1)
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h= G(0, ·) G(s, ·), s> 0G(s, ·), s< 0

(B)

(D)

FIGURE 5. A function h ∈ F 1
α with one degenerate critical point (center) admits a

universal deformationG(s, ·) in which, for s< 0, the degenerate critical point disappears
(left), while, fors> 0, the degenerate critical point is split into non-degenerate singularities
(right). The labeled Reeb graphs associated withG(s, ·) for s< 0 ands> 0 can be obtained
one from the other through an elementary deformation of type (B) or (D).

Obviously, in the cases< 0, the deformation we consider is of type (D), and its cost is
the same because of Proposition 3.2.

Let us now assume thath ∈ F 1
β , and letp andq be the critical points ofh such that

h(p) = h(q).
We distinguish the following two situations:

(1) The pointsp andq belong to two different connected components ofh
−1
(h(p))

(see Figure 6).

p q p q p q

FIGURE 6. Two critical points belonging to different connected components of the
same critical level. The dark (light, respectively) regionscorrespond to points under (over,
respectively) the considered critical level. Possibly inverting the colors of one or both the
components, we obtain all the possible cases.

(2) The pointsp andq belong to the same connected component ofh
−1
(h(p)) (see

Figure 7).

In both the cases (1) and (2), sincep is non-degenerate, there exists a suitable local
coordinate system(x,y) aroundp in which the canonical expression ofh is h(x,y) = h(p)+
x2 + y2 if p is a minimum, orh(x,y) = h(p)− x2 − y2 if p is a maximum, orh(x,y) =
h(p)±x2∓y2 if p is a saddle point.



REEB GRAPHS OF SURFACES ARE STABLE UNDER FUNCTION PERTURBATIONS 15

(a)

p q

(b)

p q

(c)

p

q

(d)

p

q

FIGURE 7. Two critical points belonging to the same connected componentof the same
critical level. The dark (light, respectively) regions correspond to points under (over, re-
spectively) the considered critical level. Possibly inverting the colors of this component,
we obtain all the possible cases.

Let ω : M →R be a smooth function equal to 1 in a neighborhood ofp, which decreases
moving fromp, and whose support is contained in the coordinate chart around p in which
h has one of the above expressions. Finally, letG(s,(x,y)) = h(x,y)+s·ω(x,y).

For everys sufficiently small,G(s, ·) has the same critical points, with the same in-
dices, ash. As for critical values, they are the same as well, apart fromthe value taken
at p: G(s, p) = h(p)+s. Therefore, for everys sufficiently small, the labeled Reeb graph
of G(s, ·), with s< 0, can be transformed into that ofG(s, ·), with s> 0, by one of the
following elementary deformations.

In all the cases (1), for everys> 0 sufficiently small, the deformationT which takes the
labeled Reeb graph ofG(−s, ·) to the labeled Reeb graph ofG(s, ·) is of type (R).

As for the cases (2), the following deformations shall be considered:

• If p andq are as in Figure 7(a), for everys> 0 sufficiently small, the deformation
T which takes the labeled Reeb graph ofG(−s, ·) to the labeled Reeb graph of
G(s, ·) is of type (K1) (see e.g. the example in Figure 8).

• If p andq are as in Figure 7(b), for everys> 0 sufficiently small, the deformation
T which takes the labeled Reeb graph ofG(−s, ·) to the labeled Reeb graph of
G(s, ·) is of type (K3), while the deformation which takes the labeled Reeb graph
of G(s, ·) to the labeled Reeb graph ofG(−s, ·) is of type (K2) (see e.g. the example
in Figure 9).

• If p andq are as in Figure 7(c) or (d), for everys> 0 sufficiently small, the
deformationT which takes the labeled Reeb graph ofG(−s, ·) to the labeled Reeb
graph ofG(s, ·) is of type (R) (see e.g. the examples in Figures 10-11).

In all the cases, the cost of the considered deformationT is:

c(T) = |h(p)−s− (h(p)+s)|= 2s.(4.2)

�
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h= G(0, ·) G(s, ·),s> 0G(s, ·),s< 0

(K1)

pp pqq q

FIGURE 8. A function h ∈ F 1
β with two saddles as in Figure 7(a) (center) admits a

universal deformationG(s, ·) in which these two critical points belong to different critical
levels (left-right). The labeled Reeb graphs associated with G(s, ·) for s< 0 ands> 0 can
be obtained one from the other through an elementary deformation of type (K1).

h= G(0, ·) G(s, ·),s> 0G(−s, ·),s> 0

(K2)

(K3)

pp pppp q qq

FIGURE 9. A function h ∈ F 1
β with two saddles as in Figure 7(b) (center) admits a

universal deformationG(s, ·) in which these two critical points belong to different critical
levels (left-right). The labeled Reeb graphs associated with G(s, ·) for s< 0 ands> 0
can be obtained one from the other through an elementary deformation of type (K3) or its
inverse (K2).
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h= G(0, ·) G(s, ·),s> 0G(−s, ·),s> 0

(R)

pp pp p

qq qq qq

FIGURE 10. A function h∈ F 1
β with two saddles as in Figure 7(c) (center) admits a

universal deformationG(s, ·) in which these two critical points belong to different critical
levels (left-right). The labeled Reeb graphs associated with G(s, ·) for s< 0 ands> 0 can
be obtained one from the other through an elementary deformation of type (R).

h= G(0, ·) G(s, ·),s> 0G(−s, ·),s> 0

(R)

pp pppp

q qq

FIGURE 11. A function h∈ F 1
β with two saddles as in Figure 7(d) (center) admits a

universal deformationG(s, ·) in which these two critical points belong to different critical
levels (left-right). The labeled Reeb graphs associated with G(s, ·) for s< 0 ands> 0 can
be obtained one from the other through an elementary deformation of type (R).
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Lemma 4.5. If h(λ ) belongs toF 0 for everyλ ∈ [0,1] apart from one value0< λ < 1 at
which h transversely intersectsF 1, then d((Γ f , ℓ f ),(Γg, ℓg))≤ ‖ f −g‖C0.

Proof. Let h= h(λ ). By Lemma 4.4, for every real numberδ > 0,we can find two values
0< λ ′ < λ < λ ′′ < 1 such thatd((Γh(λ ′), ℓh(λ ′)),(Γh(λ ′′), ℓh(λ ′′)))≤ δ .

Applying the triangle inequality, we have:

d((Γ f , ℓ f ),(Γg, ℓg)) ≤ d((Γ f , ℓ f ),(Γh(λ ′),h(λ ′)
|
))+d((Γh(λ ′),h(λ ′)

|
),(Γh(λ ′′),h(λ ′′)

|
))

+d((Γh(λ ′′),h(λ ′′)
|
),(Γg, ℓg)).

From Lemma 4.3, and from Lemma 4.2 withf = h(0),g= h(1), we get

d((Γ f , ℓ f ),(Γh(λ ′),h(λ ′)
|
))≤ ‖ f −h(λ ′)‖C0 = λ ′ · ‖ f −g‖C0,

and
d((Γh(λ ′′),h(λ ′′)

|
),(Γg, ℓg))≤ ‖h(λ ′′)−g‖C0 = (1−λ ′′) · ‖ f −g‖C0.

Hence,
d((Γ f , ℓ f ),(Γg, ℓg))≤ (1+λ ′−λ ′′) · ‖ f −g‖C0 +δ .

In conclusion, given that 0< λ ′ < λ ′′, the inequalityd((Γ f , ℓ f ),(Γg, ℓg))≤ ‖ f −g‖C0 +δ
holds. This yields the claim by the arbitrariness ofδ . �

We are now ready to prove the stability Theorem 4.1.

Proof of Theorem 4.1.Recall from [9] thatF 0 is open inF endowed with theC2 topol-
ogy. Then, for every sufficiently small real numberδ > 0, the neighborhoodsN( f ,δ )
andN(g,δ ) are contained inF 0. Take f̂ ∈ N( f ,δ ) and ĝ ∈ N(g,δ ) such that the path
h : [0,1]→ F , with h(λ ) = (1−λ ) f̂ +λ ĝ, belongs toF 0 for everyλ ∈ [0,1], except for
at most a finite numbern of values at whichh transversely intersectsF 1.

We begin by proving our statement for̂f andĝ, and then show its validity forf andg.
We proceed by induction onn.
If n = 0 or n = 1, the inequalityd((Γ f̂ , ℓ f̂ ),(Γĝ, ℓĝ)) ≤ ‖ f̂ − ĝ‖C0 holds because of

Lemma 4.3 or 4.5, respectively.
Let us assume the claim is true forn≥ 1, and prove it forn+1.
Let 0< µ1 < λ1 < µ2 < λ2 < .. . < µn < λn < µn+1 < 1, withh(0)= f̂ , h(1)= ĝ, h(µi)∈

F 1, for everyi = 1, . . . ,n+1, andh(λ j) ∈ F 0, for every j = 1, . . . ,n. We considerh as
the concatenation of the pathsh1,h2 : [0,1] → F , defined, respectively, ash1(λ ) = (1−
λ ) f̂ +λh(λn), andh2(λ ) = (1−λ )h(λn)+λ ĝ. The pathh1 transversally intersectF 1 at
n valuesµ1, . . . ,µn. Hence, by inductive hypothesis, we haved((Γ f̂ , ℓ f̂ ),(Γh(λn), ℓh(λn)))≤

‖ f̂ −h(λn)‖C0. Moreover, the pathh2 transversally intersectF 1 only at the valueµn+1.
Consequently, by Lemma 4.5, we haved((Γh(λn), ℓh(λn)),(Γĝ, ℓĝ))≤ ‖h(λn)− ĝ‖C0. Using
the triangle inequality and Lemma 4.2, we can conclude that:

d((Γ f̂ , ℓ f̂ ),(Γĝ, ℓĝ)) ≤ d((Γ f̂ , ℓ f̂ ),(Γh(λn), ℓh(λn)))+d((Γh(λn), ℓh(λn)),(Γĝ, ℓĝ))

≤ λn‖ f̂ − ĝ‖C0 +(1−λn)‖ f̂ − ĝ‖C0 = ‖ f̂ − ĝ‖C0.(4.3)

Let us now estimated((Γ f , ℓ f ),(Γg, ℓg)). By triangle inequality, we have:

d((Γ f , ℓ f ),(Γg, ℓg))≤ d((Γ f , ℓ f ),(Γ f̂ , ℓ f̂ ))+d((Γ f̂ , ℓ f̂ ),(Γĝ, ℓĝ))+d((Γĝ, ℓĝ),(Γg, ℓg)).

Since f̂ ∈N( f ,δ )⊂F 0 andĝ∈N(g,δ )⊂F 0, the following facts hold:(a) for everyλ ∈

[0,1], (1−λ ) f +λ f̂ ,(1−λ )g+λ ĝ∈ F 0; (b) ‖ f − f̂‖C0 ≤ δ and‖ĝ−g‖C0 ≤ δ . Hence,
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from (a), we haved((Γ f , ℓ f ),(Γ f̂ , ℓ f̂ ))≤ ‖ f − f̂‖C0, andd((Γg, ℓg),(Γĝ, ℓĝ))≤ ‖ĝ−g‖C0

because of Lemma 4.3. Using also(b), and inequality 4, we deduce thatd((Γ f , ℓ f ),(Γg, ℓg))≤
‖ f −g‖C0 +2δ . This yields the conclusion by the arbitrariness ofδ . �
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