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Abstract

This paper focuses on the dynamic misspecification that characterizes the class of small-

scale New-Keynesian models currently used in monetary and business cycle analysis, and

provides a ‘natural’ remedy for the typical difficulties these models have in accounting for

the rich contemporaneous and dynamic correlation structure of the data, generally faced

with ad hoc shock specifications. We suggest using the ‘best fitting’ statistical model for the

data as a device through which it is possible to adapt the econometric specification of the

New-Keynesian model, such that the risk of omitting important propagation mechanisms is

kept under control. The statistical model may feature an autocorrelation structure that is

more involved than the autocorrelation structure implied by the structural model’s reduced

form solution under rational expectations, and it is treated as the actual agents’ expectations

generating mechanism. A pseudo-structural form is built from the baseline system of Euler

equations by forcing the state vector of the system to have the same dimension as the state

vector characterizing the statistical model. Other than the structural parameters, the pseudo-

structural form features a set of estimable parameters that correct the mismatch between

rational and agents’ expectations. By construction, the pseudo-structural form gives rise to a

set of cross-equation restrictions that do not penalize the autocorrelation structure found in

the data. Standard estimation and evaluation methods can be used. We provide an empirical

illustration based on U.S. quarterly data and a small-scale monetary New Keynesian model.
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1 Introduction

Small-scale dynamic stochastic general equilibrium models developed within the New Keyne-

sian tradition (henceforth NK-DSGE models) have been treated as the benchmark of much of

the monetary policy literature, given their ability to explain the impact of monetary policy on

output and inflation. It is well recognized, however, that these models capture only stylized

features of the business cycle and the monetary policy stance, and display a limited time series

performance. Indeed, despite possessing attractive theoretical properties, such as the capabil-

ity of featuring potential structural sources of endogenous persistence, such as external habit

persistence, implicit indexation, adjustment costs of investment, etc., NK-DSGE models are

misspecified in several dimensions (Henry and Pagan, 2004; An and Schorfheide, 2007) and are

typically treated as restricted, but parametrically incomplete representations of the actual data

by econometricians (Diebold et al. 1998; An and Schorfheide, 2007; Canova and Ferroni, 2012).

Although NK-DSGE models cannot provide a complete description of the business cycle, they

are widely used to evaluate macroeconomic scenarios and to predict economic activity; therefore,

assessing the correspondence between what these models imply and what the data tell us is a

crucial step in the process of analysing policy options and their effects.

One important source of misspecification can be ascribed to the difficulties NK-DSGE mod-

els display in generating sufficient endogenous persistence to match the persistence observed

in quarterly data. NK-DSGE models are built upon the rational expectations (RE) paradigm.

Under RE, agents are assumed to know the data generating process (except the structural

parameters) and form their expectations consistently. Two types of restrictions arise on the

model’s reduced form solution: (i) parametric nonlinear cross-equation restrictions (CER) that

map the structural to the reduced form parameters; (ii) constraints on the lag order and correla-

tion structure of the variables. The restrictions in (i) are the Hansen and Sargent’s (1980, 1981)

traditional ‘metric’ for the evaluation of models based on forward-looking behaviour and RE, see

also Hansen (2014). Instead, the restrictions in (ii) are ‘implicit’, and very often, practitioners

are not aware of their role and importance in the empirical evaluation of NK-DSGE models.

The unique stable solution associated with NK-DSGE models can be represented as a state

space model, possibly transformed in minimal form (Komunjer and Ng, 2011), or as finite-

order vector autoregressive (VAR) systems, in the special case in which all endogenous variables

are observed. These solutions generally involve one (two) lag(s) of the endogenous variables,

giving rise to what we call throughout the paper an ‘omitted dynamics’ issue. By this term,

we denote the situation that occurs when the constraints in (ii) conflict with the propagation

mechanisms one detects from the data using a statistical model that does not embody the
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parametric constraints stemming from the theory. Testing the validity of the NK-DSGE model

through the CER when the restrictions in (ii) conflict with the actual autocorrelation structure

of the data might distort the evaluation process.

What should investigators do? The natural and obvious fix in these cases would require

the estimation of a theoretically micro-founded model with less restrictive dynamics than the

original New Keynesian model. An excellent example is provided in, e.g., Lubik and Schorfheide

(2004), Section 5.D, who estimate a dynamically less restrictive version of their NK-DSGE

model as a robustness check. They introduce a consumption Euler equation which features habit

formation that generalizes the previously specified purely forward-looking consumption equation,

and an ‘hybrid’ Phillips curve, as opposed to its purely forward-looking version. Examples like

this, nevertheless, are rare, because it is not always practical to microfound all propagation

mechanisms that characterize quarterly (or monthly) time series. What do practitioners typically

do? They generally endow the shocks of the model with more elaborate and persistent time

series models like, e.g., AR or ARMA-type processes (Smets and Wouters, 2007; Cúrdia and

Reis, 2010), without (apparently) changing the specification of their structural equations.

The aim of this paper is to formalize a procedure that relaxes the extent of the restrictions

in (ii) by relaxing the tightness of the RE paradigm. More specifically, we pursue the idea

that only the CER in (i) should be considered and tested to evaluate the model, while the

restrictions in (ii) should be neutralized when clearly at odds with the data. Our solution to the

omitted dynamics issue is based on the idea of using a ‘best fitting’ state space model for the

data as the actual agents’ expectations generating mechanism, without the need to resort to the

adaptive learning framework (Evans and Honkapohja, 1999; 2001; 2003; Sargent, 1999; Branch

and Evans, 2006; Milani, 2007). This leads to the definition of a pseudo-structural model that

combines the structural information subsumed by the NK-DSGE model with features of the

data captured by the statistical model. The pseudo-structural form is specified by augmenting

the original system of Euler equations with additional lags of the variables, such that the gap

between the dimension of the state vector under RE and the dimension of the state vector of

the statistical model is filled up. By construction, the unique stable solution associated with

the pseudo-structural model has the same time series representation as the statistical model,

and it features a component that serves as the expectations correction term. By construction,

the CER implied by the pseudo-structural model does not lead to restrictions in (ii) which are

at odds with the agents’ forecasts. For ease of reference, we call the so-built pseudo-structural

form the ‘NK-DSGE model under Quasi-RE (QRE)’.1

1We borrow the name Quasi Rational Expectations from Nerlove et al. (1979), Nelson and Blessler (1992),

Nerlove and Fornari (1998) and Holt and McKenzie (2003), who introduced this concept in different fields of

research. Strictly speaking, QRE would require replacing expectational variables in the structural equations with
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Frequentist and Bayesian estimation and evaluation methods can easily be applied. The

NK-DSGE model under RE is nested within the pseudo-structural model; hence, likelihood-

ratio tests can be used to select the two specifications. More generally, information criteria or

any other evaluation method can be exploited to select the specification that is more supported

by the data. We propose an empirical illustration based on U.S. quarterly data, where we use the

monetary business cycle model discussed in Benati and Surico (2009) as the reference structural

model. We compare and evaluate the results obtained under RE and with our approach.

It is worth stressing that we do not propose the active use of a statistical model to rectify the

specification of the NK-DSGE model as an end in itself. Rather, we see our approach as providing

a useful specification check for NK-DSGE models, allowing a researcher to robustify inferences

against one important dimension about the misspecification of the model, while capturing some

important ‘stylized facts’. In this respect, our approach shares the viewpoint also adopted in

Franchi and Juselius (2007) and, to some extent, in Consolo et al. (2009).2

Our paper has several connections with the existing literature. As already mentioned, one

way to address the poor time series performance of structural forward-looking models has been

advocated by Cúrdia and Reis (2010), who suggest augmenting the overall dynamics of macro

business cycle models by allowing for disturbances that have a rich contemporaneous and dy-

namic correlation structure. In practice, they suggest replacing the usual unsatisfactory autore-

gressive specification of order one (AR(1)) of the model’s disturbances with more general AR

or ARMA-type processes, allowing for possible cross-equation dependence, so as to maximize

the best time series performance of the model. Similarly, Smets and Wouters (2007) specify

ARMA(1,1)-type processes for the price mark-up and the wage mark-up disturbances in their

medium-sized estimated DSGE model, observing that for these shocks the inclusion of the mov-

ing average terms is designed to capture the high-frequency fluctuations in inflation and wages.

Like Cúrdia and Reis (2010), we let the data speak freely about the dimension of the dynamic

misspecification of the system, but unlike Cúrdia and Reis (2010), our starting point is a sta-

tistical model for the data which is anchored to the theoretical model to make expectations

their values calculated from the ‘best fitting’ statistical model for them. The concept should be properly adapted

in the context of dynamic stochastic general equilibrium models, see e.g., Fanelli (2009) for an early example.
2Broadly speaking, the best statistical model for the data might potentially (but not necessarily) also exploit

information ‘external’ to the structural model, possibly derived from large datasets, think e.g., about factor

models. For instance, Beyer et al. (2008) propose to combine factor analysis for information extraction from

large data sets and generalized method of moments to estimate the parameters of systems of forward-looking

equations. In principle, factor-augmented VAR models, as in Consolo et al. (2009), might be used as the agents’

expectations generating system. In this paper, we stick to the concept of model-consistent expectations; hence,

it is assumed that the agents exploit only the information ‘internally’ recoverable from the structural model.
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consistent with the agents’ forecasts.

The most common and known alternative to RE is the adaptive learning hypothesis, see

Evans and Honkapohja (1999; 2001; 2003), Sargent (1999), Branch and Evans (2006) and Mi-

lani (2007) for details. Under adaptive learning, agents are assumed to form and update their

beliefs by using forecast models with time-varying coefficients and recursive updating rules.

The postulated agents’ forecasting model, or perceived law of motion, is typically (albeit not

necessarily) the reduced form solution of the system under RE. Although the adaptive learn-

ing hypothesis can induce more persistence in the data (Branch and Evans 2006; Milani 2007;

Chevillon et al. 2010), and it permits a substantial statistical relaxation of the strength of the

CER (Fanelli 2008; Fanelli and Palomba 2011), a typical learning model focuses on the dynamic

interaction between beliefs and observed data, and is not designed to solve the misspecification

issue with which we are concerned in this paper.3 Moreover, as will be shown throughout the pa-

per, our suggested approach does not deviate from the concept of model-consistent expectations.

‘Consistency’, however, is refers to the ‘best-fitting’ statistical model for the data.

Recently, Cole and Milani (2014) have investigated the ability of popular New Keynesian

models to match the data in terms of their interaction between macroeconomic variables and

their corresponding expectations. First, they report the failure of NK-DSGE models under RE

to account for the dynamic interaction between macroeconomic expectations and macroeconomic

realizations. Second, they observe that alternative models of expectations formation, including,

e.g., extrapolative and heterogeneous expectations, can reconcile the NK-DSGE models with

the data. Our approach represents another contribution towards the idea of reconciling the time

series performance of NK-DSGE models with the data.

We also have some points in common with the DSGE-VAR approach of Del Negro et al.

(2007). The DSGE-VAR approach is driven by the idea of assessing how far/close a dynamic

macro model based on RE is from the data. Del Negro et al. (2007) propose a Bayesian

evaluation method: They use a VAR system for the observed variables as the statistical model

for the data, and centre the prior distribution for the VAR parameters on the CER implied

by the structural model. The dispersion of these priors from the CER is governed by a scalar

(hyper)parameter: Small values of such a (hyper)parameter indicate that the VAR is far from

the theoretical model, while large values of this (hyper)parameter indicate that the theoretical

model is supported by the data. In our setup, the statistical model that describes the data

is either a VAR system or a state space model, depending on whether one can observe/proxy

all endogenous variables or not. The statistical model determines the dynamic structure of the

3Cho and Kasa (2014) have recently proposed a model validation approach to learning, where agents operating

in a self-referential environment are aware of potential model misspecification and try to detect it in real-time,

using econometric specification tests.
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pseudo-structural model that is confronted with the data. Like Del Negro et al. (2007), we are

motivated by the idea of relaxing the tightness of the restrictions implied by the RE hypothesis,

without renouncing the concept of model-consistent expectations.

The rest of the paper is organized as follows. In Section 2 we present our main idea through

a simple uni-equational example. In Section 3 we introduce our prototype structural NK-DSGE

model and discuss the omitted dynamics issue that arises under RE, and in Section 4 we present

our approach. In Section 5 we estimate a NK-DSGE model for the U.S. economy using quarterly

data: In Sub-section 5.1 we discuss the reference structural model, in Sub-section 5.2 we deal

with ‘best fitting’ statistical model for the data and, finally, in Sub-sections 5.3 and 5.4 we

address the frequentist and Bayesian estimation and evaluation results. Section 6 contains some

concluding remarks.

2 Background

Consider a simple economy described by the uni-equational linear RE model

Zt = γfEtZt+1 + γbZt−1 + ωt , ωt ∼WN(0, 1) , t = 1, ..., T. (1)

Zt is an observable scalar generated by a covariance stationary process, Z0 is given, EtZt+1:=E(Zt+1 |
Ft) is the expectation operator conditional on the information set Ft, and ωt is a scalar white

noise process with variance 1, called structural (or fundamental) disturbance (or structural

shock). We call the model in Eq. (1) ‘structural model’. The structural parameters are γf > 0,

γb > 0, and are collected in the vector θ:=(γf , γb)
′.

Assuming that γf+ γb < 1, the unique stable RE solution to the model in Eq. (1) is given

by the autoregressive model of order one (AR(1)):

Zt = φ̃Zt−1 + ψ̃ωt , t = 1, ..., T (2)

where φ̃ = φ(θ) and ψ̃ = ψ(θ) are reduced form parameters that depend nonlinearly on θ. A

‘tilde’ over φ and ψ is used to stress the fact that these parameters are forced to depend on θ

under RE. In particular, φ̃ is the real stable root (i.e. φ̃ ∈(-1, 1)) of the second-order equation

γfφ
2 − φ+ γb = 0, and ψ̃=(1− γf φ̃)−1.

Under RE, the data generating process belongs to the class of models described by Eq.

(2). Consistent estimates of θ can be obtained from the autoregressive parameter φ and the

variance σ2ε of εt:=ψ̃ωt, by imposing the CER: φ=φ̃, σ2ε=σ̃
2
ε , where φ̃ is the real stable solution

to γfφ
2− φ+ γb = 0 and σ̃2ε = (1− γf φ̃)−2. Moreover, the autocorrelation structure of the time

series Z1, Z2, ..., ZT should conform to that of AR(1)-type processes.
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Assume now that based on his/her specification analysis, the econometrician believes the

data generating process belongs to the class of covariance stationary AR(2) processes of the

form

Zt = φ1Zt−1 + φ2Zt−2 + εt , εt ∼WN(0, σ2ε) , t = 1, ..., T, (3)

where the autoregressive coefficient associated with the second lag, φ2, is such that φ2 6= 0. We

call the model in Eq. (3) the statistical model for the data. The parameters of the statistical

model are τ :=(φ1, φ2, σ
2
ε)
′. Compared to the reduced form solution in Eq. (2), the AR(2) model

in Eq. (3) involves an additional lag of the state variable Zt. For the econometrician, the best

forecast of Zt+1 conditional on the information set available at time t will be E(Zt+1 | Ft) =

φ1Zt + φ2Zt−1 and not E(Zt+1 | Ft) = φ1Zt as predicted by the structural model under RE.

Since the model in Eq. (2) is nested in Eq. (3), the AR(2) model might be interpreted as

the reduced form solution associated with the structural model in Eq. (1) if the following set of

restrictions hold:

res-I:
φ1=φ̃, where φ̃ is the stable root of γfφ

2 − φ+ γb = 0

σ2ε=σ̃
2
ε , where σ̃2ε = (1− γf φ̃)−2

res-II: φ2=φ̃2=0.

(4)

In principle, the structural parameters θ might be estimated consistently from the model in Eq.

(3) by imposing the restrictions in Eq. (4). It is clear, however, that the restrictions res-II in

Eq. (4) conflict with the econometrician’s finding that φ2 6= 0. If the data generating process

belongs to the class of models in Eq. (3) with φ2 6= 0, the estimator of θ recovered from model

Eq. (2) imposing the CER in Eq. (4) will be distorted because of the omission of a relevant

regressor.

The natural fix to this shortcoming should be the re-specification of a theory-based structural

model implying a time series representation for Zt featuring Zt−2, other than Zt−1. Yet only

seldom is that feasible. We discuss two solutions to the ‘omitted dynamics’ issue: First, the

‘conventional’ approach, and subsequently our solution.

Conventional approach

The ‘conventional’ approach works by endowing the structural model in Eq. (1) with an

AR(1) process for the shocks, now denoted with ω∗t , i.e.

Zt = γfEtZt+1 + γbZt−1 + ω∗t , t = 1, ..., T

ω∗t = ρω∗t−1 + vt , |ρ| < 1 , vt ∼WN(0, 1− ρ2).
(5)

In this specification, ρ is an autoregressive parameter and vt is the structural shock (which is

normalized such that the variance of ω∗t is still equal to 1). The autoregressive equation for ω∗t
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and the associated autoregressive parameter, ρ, are not generally derived from first principles,

but from the practical purpose of improving the statistical fit of the model. Apparently, the

theoretical structural model in Eq. (1) has not been changed. Actually, by exploiting the

autoregressive structure of ω∗t and using simple algebra, we obtain:

Zt =
γf

1 + ργf
EtZt+1 +

γb + ρ

1 + ργf
Zt−1 −

ργb
1 + ργf

Zt−2 +
1

1 + ργf
v∗t , t = 1, ..., T (6)

where v∗t :=ργfηt + vt, and ηt:=Zt − Et−1Zt is a martingale difference sequence forecast error

(Et−1ηt = 0). The representation in Eq. (6) recalls a well known fact from textbook econo-

metrics: Autoregressive disturbances amount to additional lagged regressors of the endogenous

variable. The unique stable RE solution associated with Eq. (6) is given by the AR(2) process

in Eq. (3), with τ subject to the following set of CER: φ1 = φ̃1, φ2 = φ̃2, σ
2
ε = σ̃2ε , where

(1− γf φ̃1 + ργf )φ̃1 = (γf φ̃2 + γb + ρ)

(1− γf φ̃1 + ργf )φ̃2 = −ργb
σ̃2ε =

(
1−ρ

1−γf φ̃1

)2
.

(7)

It can be noticed that ρ 6= 0 implies φ2 6= 0. Instead, if ρ = 0, the restrictions above collapse to

those in Eq. (4).

Suggested approach

Our suggested approach is based on a slight change of perspective. We assume that the

AR(2) model in Eq. (3) is the agents’ forecast model, and introduce a ‘pseudo-structural’ form

whose reduced form solution has a time series representation consistent with Eq. (3). The

pseudo-structural form is in this case given by

Zt = γfEtZt+1 + γbZt−1 + ζZt−2 + ω∗∗t , ω∗∗t ∼WN(0, 1), t = 1, ..., T, (8)

and is obtained from the structural model in Eq. (1) by adding the term ζZt−2 to the baseline

equation. The disturbance ω∗∗t is still a white noise term with variance 1.

The crucial question here is: How do we interpret the ζZt−2 term in Eq. (1)? In principle,

ζZt−2 might be interpreted as a term capturing propagation mechanisms that are not directly

explained by the theoretical model because of the omission of adjustment costs, information

delays, time-to-build effects, etc. These effects, however, should be modelled endogenously in the

structural specification, if any. In our setup, ζZt−2 plays the role of an ‘expectations correction’

term in a sense that will be qualified below. The auxiliary parameter ζ is not constrained to lie

in the (-1,1) interval; the only implicit requirement we give to ζ is that if for a given θ = θ̆ the

solution to the model in Eq. (1) is unique and stable, the solution to the model in Eq. (8) also

must be unique and stable.
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The specification in Eq. (8) should be no more disturbing than that in Eq. (6) obtained by

adding the autoregressive disturbance to the structural theoretical model. The unique stable

solution associated with the model in Eq. (8), if it exists, is given by the AR(2) process in Eq.

(3) with parameters τ subject to the following set of CER: φ1 = φ̃1, φ2 = φ̃2, σ
2
ε = σ̃2ε , where

(1− γf φ̃1)φ̃1 = (γf φ̃2 + γb)

(1− γf φ̃1)φ̃2 = ζ

σ̃2ε = (1− γf φ̃1)−2.
(9)

It can be noticed that, in this case, ζ 6= 0 also implies φ2 6= 0. Instead, if ζ = 0, the restrictions

above collapse to those in Eq. (4).

Although the likelihoods associated with the AR(2) model under the restrictions in Eq. (7)

and in Eq. (9) may be numerically different (recall that ρ lies in the (-1,1) interval, while ζ is

subject to another requirement), at first glance, the two approaches seem to be equivalent. Yet

they are conceptually different. With the ‘conventional’ approach, the practitioner does not need

to specify any statistical model for the data. He/she will specify a time series process for the

disturbance ωt with the aim of improving the overall empirical fit of the model. Our approach

is instead based on the idea of treating the statistical model for the data like the actual agents’

expectations generating system. The term ζZt−2 in Eq. (8) plays the role of an expectations

correction term that fills up the mismatch between rational and agents’ expectations. The term

ζZt−2 guarantees that the unique stable solution associated with the pseudo-structural form has

the same time series representation as the agents’ statistical model for the data, and that the

difference between the two models is only due to the CER.

3 The NK-DSGE model under Rational Expectations and the

omitted dynamics issue

Let Zt:=(Z1,t, Z2,t, · · · , Zn,t)′ be a n × 1 vector of endogenous variables and assume that after

log-linearization, the structural form of the NK-DSGE model can be represented in the form

Γ0Zt = ΓfEtZt+1 + ΓbZt−1 + C + ηt , t = 1, ..., T (10)

where, Γi:=Γi(θ), i = 0, f, b are n×n matrices whose elements depend on the vector of structural

parameters θ, C:=C(θ) is a n×1 constant which can be non-zero when it is intended to capture

steady state values of some variables of the system, and ηt is a n×1 vector of disturbances which
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is assumed to be adapted to the sigma-field Ft, where Ft represents the agents’ information

set at time t, EtZt+1:=E(Zt+1 | Ft). Without any loose of generality, Γ0 is assumed non-

singular. When a direct link between the process generating ηt and a set of ‘forcing variables’

is not provided by the theory, a typical completion of system (10) is obtained through the

autoregressive specification

ηt = Rηt−1 + ωt , ωt ∼WN(0,Σω) (11)

where R is a p× p diagonal stable matrix (i.e. with its eigenvalues inside the unit disk), and ωt

is a white noise term with covariance matrix Σω that can be can be diagonal or non-diagonal.

The true value of θ, θ0, is assumed to be an interior point of the parameter space Θ.

The multivariate linear RE model in Eq.s (10)-(11) nests a large class of small-scale linearized

NK-DSGE models used in monetary policy analysis. There exists many solution methods avail-

able in the literature by which a reduced form solution of system (10)-(11) can be computed

under RE. A solution of system (10)-(11) is any stochastic process {Z∗t }
∞
t=0 such that, for θ ∈ Θ,

EtZ
∗
t+1 = E(Z∗t+1 | Ft) exists and if Z∗t is substituted for Zt into the structural equations, the

model is verified for each t, for fixed initial conditions. A reduced form solution is a member of

the solution set whose time series representation is such that Zt can be expressed as a function o

ωt, lags of Zt and ωt and, possibly, other arbitrary martingale difference sequences (MDS) with

respect to Ft, independent of ωt, called ‘sunspot shocks’, see Fanelli (2012) and Castelnuovo and

Fanelli (2015).

Assuming that θ0 lies in the determinacy region of Θ, the unique stable reduced form solution

associated with system (10)-(11) can be represented in the form (see Binder and Pesaran, 1995;

Uhlig, 1999; Klein, 2000)(
Zt − υ̃
Zt−1 − υ̃

)
xt

=

(
Φ̃1 Φ̃2

In 0n×n

)
A(θ)

(
Zt−1 − υ̃
Zt−2 − υ̃

)
xt−1

+

(
Ψ̃

0n×n

)
G(θ)

ωt (12)

where υ̃:=(In − Φ̃1 − Φ̃2)
−1µ̃, and we use ‘tildes’ over the matrices of parameters to remark the

fact that Φ1,Φ2, Ψ and µ depend on θ through the set of CER:

(ΓR0 − Γf Φ̃1)Φ̃1 − Γf Φ̃2 + Γb,1 = 0n×n (13)

(ΓR0 − Γf Φ̃1)Φ̃2 − Γb,2 = 0n×n

µ̃− (ΓR0 − Γf Φ̃1 − Γf )C = 0n×1

Σ̃ε = Ψ̃ Σω Ψ̃′ , Ψ̃ =
(

Γ0 − Γf Φ̃1

)−1
. (14)
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In the expressions in Eq.s (13)-(14), ΓR0 = (Γ0 + RΓf ), Γb,1 = (Γb + RΓ0), Γb,2 = −RΓb, and

Σ̃ε is the covariance matrix of the reduced form disturbance εt = Ψ̃ωt, see B̊ardsen and Fanelli

(2015) and Castelnuovo and Fanelli (2015). A convenient way to summarize the equilibrium in

Eq.s (12)-(14) is to refer to the representation

xt
2n×1

= A(θ)
2n×2n

xt−1
2n×1

+ G(θ)
2n×n

ωt
n×1

. (15)

Let yt:=(y1,t, y2,t, · · · , yp,t)′ be the p × 1 vector of observable variables. When all variables

in Zt are observed, yt = Zt, and the transition system in Eq. (15) along with the measurement

system: yt = Hxt, H:=(In : 0n×n), give rise to a VAR representation for Zt in which the VAR

coefficients depend on θ through the CER in Eq.s (13)-(14). In general, when not all variables

in Zt are observed, the measurement system will take the form

yt = Hxt + V vt (16)

where H is a p × 2n matrix, vt a b × 1 vector (b ≤ p) of measurement errors with covariance

matrix Σv, and V is a p × b selection matrix. Let ut:=(ω′t, v
′
t)
′ be the n + b complete vector of

innovations. By substituting Eq. (15) into Eq. (16) and using some algebra, one obtains the

the so-called ABCD representation

xt
2n×1

= A(θ)
2n×2n

xt−1
2n×1

+ B(θ)
2n×(n+b)

ut
(n+b)×1

yt
p×1

= C(θ)
p×2n

xt−1
2n×1

+ D(θ)
2n×(n+b)

ut
(n+b)×1

(17)

where B(θ):=(G(θ) : 02n×b), C(θ):=HA(θ) and D(θ):=(HG(θ) : V ).4

The state space system (17) summarizes the determinate (unique and stable) equilibrium

associated with the NK-DSGE model under RE. (It collapses to a VAR for Zt when yt = Zt).

Provided θ is locally identifiable, the state space model defined by Eq.s (15)-(16) can be taken

to the data using different estimation methods, see e.g. Ruge-Murcia (2007). These procedures,

however, can fail to deliver consistent estimates of θ when the omitted dynamics issue occurs,

see e.g. Jondeau and Le Bihan (2008).

To characterize the omitted dynamics issue we are concerned with in this paper, assume that

4We refer to Fernández-Villaverde et al. (2007), Ravenna (2007), Franchi and Vidotto (2013) and Franchi and

Paruolo (2014) for a detailed analysis of the cases in which yt can be given a fundamental and finite-order VAR

representation when the D = D(θ) matrix in Eq. (17) is square. More generally, the state space model in Eq.

(17) will give rise to VARMA-type representations for yt, see e.g. Hannan and Deistler (1988).
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the ‘best fitting’ model for the data is represented by the state space system
Zt − υ
Zt−1 − υ

...

Zt−k+1 − υ


x∗t

=


Φ1 Φ2 · · · Φk−1 Φk

In 0n×n · · · 0n×n 0n×n
. . .

...
...

0n×n 0n×n · · · In 0n×n


A∗(τ)


Zt−1 − υ
Zt−2 − υ

...

Zt−k − υ


x∗t−1

+


εt

0n×n
...

0n×n


G∗(τ)

(18)

yt = H∗x∗t + V ∗vt (19)

where Φ1,Φ2, ....,Φk, µ and Σε:=E(εtε
′
t) are matrices of coefficients in which no theoretical

restriction is placed, υ:=(In − Φ1 − Φ2 − ... − Φk)
−1µ, and H∗ and V ∗ are selection matrices

of suitable dimensions. It is assumed that Φk 6= 0n×n. Collecting the parameters of system

(18)-(19) in the vector τ :=(vec(Φ1)
′, ..., vec(Φk)

′, µ′, vech(Σε)
′, vech(Σv)

′)′ and using the vector

of innovations ut:=(ω′t, v
′
t)
′, also the statistical model can be summarized in ABCD form:

x∗t = A∗(τ) x∗t−1 + B∗(τ) ut

yt = C∗(τ) x∗t−1 + D∗(τ) ut
(20)

that is assumed to be in ‘minimal form’, see Komunjer and Ng (2011).5 Again, we assume that

τ is locally identifiable (Komunjer and Ng, 2011) and that the state space model in Eq. (20)

collapses to a stationary VAR for Zt when yt = Zt.

The simple comparison of systems (17) and (20) reveals that the dimension of the state

vector in Eq. (20) will be generally larger than the dimension of the state vector in system (17),

i.e. dim(x∗t )≥dim(xt). The CER that the NK-DSGE model in Eq.s (10)-(11) places on τ can

be represented in the form

(ΓR0 − Γf Φ̃1)Φ̃1 − Γf Φ̃2 + Γb,1 = 0n×n (21)

(ΓR0 − Γf Φ̃1)Φ̃2 − Γb,2 = 0n×n

C − (ΓR0 − Γf Φ̃1 − Γf )µ̃ = 0n×1

Σ̃ε = Ψ̃ Σω Ψ̃′ , Ψ̃:=(Γ0 − Γf Φ̃1)
−1 (22)

Φj=Φ̆j = 0n×n , j = 3, 4, ..., k. (23)

The restrictions in Eq.s (21)-(22) coincide with those in Eq.s (13)-(14), but now we have the

additional set of n2(k−2) zero restrictions, summarized in Eq. (23), that force the dimension of

the state vector x∗t of the statistical model to match the dimension of xt in the structural model.

5Minimality means that the model involves a minimum (non redundant) number of state variables. In practice,

this conditions corresponds to ruling out common (cancelling) roots from VARMA-type systems.
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While the CER in Eq.s (21)-(22) define a nonlinear mapping from θ to τ (res-I), say τ = g(θ),

where g(·) is a nonlinear continuos vector function, the zero restrictions in Eq. (23) imply

dim(x∗t )=dim(xt) (res-II). When in particular the data generating process belongs to the class

of models defined by system (18)-(19) (or equivalently system (20)) and k ≥ 3, dim(x∗t )>dim(xt)

and the CER in Eq.s (13)-(22) lead to the omitted dynamics issue.

4 The pseudo-structural form

Consider the NK-DSGE model in Eq.s (10)-(11) and the statistical model in Eq.s (18)-(19). We

exploit the information stemming from the latter by introducing the following assumptions:

Assumption 1 [Expectations generating mechanism] Agents form their expectations us-

ing system (18)-(19).

Assumption 2 [Data generating process] The data generating process belongs to the class

of models in Eq.s (18)-(19) with dim(x∗t ) = nkop and Φkop 6= 0n×n; the associated ABCD

representation in Eq. (20) is in minimal form.

Assumption 3 [Stationarity] The matrix A∗(τ) is stable.

Assumption 4 [Parameters invariance] The parameters in τ does not vary over the period

t = 1, 2, ..., T .

Assumption 1 postulates that the agents form their expectations consistently with the sta-

tistical model for the data. Assumption 2 is a correct specification hypothesis. It maintains

that the data generating process belongs to the specified statistical model, and that such a

model involves the minimum number of state variables necessary to capture the propagation

mechanisms at work in the data. We remark that Assumptions 1-2 are not in contrast with the

concept of model-consistent expectations, as it will be clear below. Assumption 3 implies that

the statistical model is asymptotically stable. The analysis can be easily extended to the case

of unit roots and cointegration when yt = Zt, along the lines discussed in e.g. Fanelli (2009),

Fukač and Pagan (2009) and B̊ardsen and Fanelli (2015). Finally, Assumption 4 postulates that

the parameters of the statistical model are time invariant.6

6At first glance, Assumption 4 is at odds with the logic of the adaptive learning hypothesis. Indeed, in the case

of learning, the (population) parameters of the perceived law of motion - the agents’ beliefs - are typically treated

as time-varying coefficients which are updated recursively as new information become available. However, if in

our case the ‘best fitting’ model for the data would be specified with drifting parameters τt, and its associated

law of motion would be associated with the evolution of the agents’ beliefs, our setup would line up with a the

adaptive learning hypothesis.
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Given the structural form in Eq.s (10)-(11) and the statistical model in Eq.s (18)-(19), we

build a ‘pseudo-structural’ form associated with the NK-DSGE model, given by: Γ0Zt = ΓfEtZt+1 + ΓbZt−1 +
(∑kop−1

j=2 ΥjZt−j

)
I{kop≥3} + C + ηt

ηt = Rηt−1 + ωt
(24)

where I{·} is the indicator function, and the n× n matrices Υj , j = 2, ..., kop − 1 contain, when

kop ≥ 3, additional auxiliary parameters associated with kop−2 additional lags of Zt. To keep the

number of auxiliary parameters as small as possible, the matrices Υjs can be specified diagonal.

When kop ≤ 2, the pseudo-structural form coincides with the ‘conventional’ NK-DSGE model

in Eq.s (10)-(11).7 It turns out that the NK-DSGE model in Eq.s (10)-(11) is nested within the

so-built pseudo-structural form.

It is tempting to interpret the term
(∑kop−1

j=2 ΥjZt−j

)
I{kop≥3} in Eq. (24) as a component

summarizing the effects of propagation mechanisms that albeit present in the data, are omitted

by the baseline structural specification, such as length of real contracts, adjustment costs, delays

in information flows, decision lags, etc., see e.g. Kozicki and Tinsley (1999), Rudebusch (2002a,

2002b) and Fuhrer and Rudebusch (2004) for example. However, if actually important, these

effects should be micro-founded and incorporated directly in the structural specification. In

our setup, the quantity
(∑kop−1

j=2 ΥjZt−j

)
I{kop≥3} in Eq. (24) plays the role of an expectations

correction term. It forces the reduced form solution associated with system (24) to be consistent

with the postulated expectations generating system (Assumptions 1-2), as Proposition 1 below

will clarify.

To fully understand the nature of system (24), we focus on its i-th Euler equation for kop ≥ 3,

which is given by

Zi,t = γ′i,0Z
∗
i,t + γ′i,fEtZt+1 + γ′i,bZt−1 +

kop−1∑
j=2

ζ ′i,jZi,t−j

+ Ci + ηi,t

ηi,t = Riηi,t−1 + ωi,t , i = 1, ..., n.

In this equation, the (n−1)×1 vector Z∗i,t denotes Zt with its i-th entry suppressed, the (n−1)×1

vector γi,0 collects the structural parameters that enter the i-th row of Γ0, the n× 1 vector γi,f

collects the structural parameters that enter the i-th row of Γf , the n × 1 vector γi,b contains

the structural parameters that enter the i-th row of Γb, ζ
′
i,j is the i-th diagonal element of Υj ,

j = 1, ..., k − 1, Ci is the i-th element of C and, finally, ηi,t and ωi,t are the i-th elements of

the vectors ηt and ωt, respectively, where the autoregressive parameter −1 < Ri < 1 is the i-th

diagonal component of R.

7In our setup the case kop = 1 coincides with the situation where R = 0n×n in Eq. (11).
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Let ζ be the vector collecting the expectations correction parameters contained in the matri-

ces Υj , j = 2, ..., kop−1, and θ∗ = (θ′, ζ ′)′ the vector containing all parameters associated with the

pseudo-structural form in Eq. (24). The next assumption ensures that the uniqueness/stability

properties of the NK-DSGE model are inherited by the associated pseudo-structural form.

Assumption 5 [Invariance to determinacy] Given the pseudo-structural form in Eq. (24),

the expectations correction parameters in ζ are restricted such that for any θ = θ̆ ∈ Θ for

which a determinate solution for the NK-DSGE model in Eq.s (10)-(11) exists, a solution

to system (24) exists and is determinate.

The next proposition derives the model-consistent reduced form solution and the CER im-

plied by the pseudo-structural form in Eq. (24).

Proposition 1 [The CER under QRE] Under Assumptions 1-5, if a unique stable reduced

form solution exists for the model in Eq. (24), it can be represented as in the form (18)-(19)

with τ subject to the following set of CER: Φj=Φ̃j , j = 1, ..., k, µ=µ̃, Σε = Σ̃ε, where

(ΓR0 − Γf Φ̃1)Φ̃1 − (Γf Φ̃2 + Γb,1) = 0n×n

(ΓR0 − Γf Φ̃1)Φ̃2 − (Γf Φ̃3 + Γb,2 + Υ2) = 0n×n

(ΓR0 − Γf Φ̃1)Φ̃3 − (Γf Φ̃4 + Υ3 −RΥ2) = 0n×n
...

(ΓR0 − Γf Φ̃1)Φ̃kop +RΥkop−1 = 0n×n

(ΓR0 − Γf Φ̃1 − Γf )µ̃− (In −R)C = 0n×1

Σ̃ε − Ψ̃ Σω Ψ̃′ = 0n×n , Ψ̃:=(Γ0 − Γf Φ̃1)
−1.

(25)

Proof : See Appendix A.

The interesting feature of the restrictions in Eq. (25) is that there are no zero restrictions

that reduce the length of the vector x∗t in system (18)-(19).8

To distinguish our approach from the case in which expectations are computed directly

from the reduced form solution associated with the structural model in Eq.s (10)-(11), hereafter

we denote the pseudo-structural form under the restrictions of Proposition 1 as the ‘NK-DSGE

8A natural concern here is whether the CER in Eq. (25) allow to identify θ∗. A convenient way to summarize

the CER of Proposition 1 is by the distance function f(τ, θ∗) = 0a×1, where f(·, ·) is a nonlinear continuos

vector differentiable function and a = n2kop + n + 1
2
n(n + 1). By the implicit function theorem, the CER can

be represented in explicit form τ = g(θ∗), where g(·) is a nonlinear continuos differentiable vector function.

Although an analytic expression for the function g(·) is not generally available, the Jacobian of the relationship

can be computed with minor adaptations along the lines of B̊ardsen and Fanelli (2015).
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model under Quasi Rational Expectations (QRE)’. Such a name is motivated by the observation

that in our setup the statistical model in Eq.s (18)-(19) is treated likewise the true agents’

expectations generating mechanism (Assumption 1). In practise, our approach does not lead to

any deviation from the concept of model-consistent expectations.

A frequentist econometric procedure for the NK-DSGE under QRE can be based on the

following two steps:

Step 1 Fit the statistical model in Eq.s (18)-(19) to the data, and use information criteria or

likelihood-ratio tests to determine the dimension of the state vector, dim(x∗t ) = nkopt, that

fits the data optimally. This can be done by estimating the state space model through

maximum likelihood and Kalman filtering. The specific procedure we use to find a global

maximum for τ is the simulated annealing/genetic algorithm of Andreasen (2010). For

each estimated model, we check whether the minimality (controllability and observability)

and local identification conditions discussed in Komunjer and Ng (2011) are satisfied in

correspondence of the maximum likelihood estimate τ̂ . If it is found that kopt ≤2, the

NK-DSGE model is estimated and evaluated in the ‘conventional’ way, i.e. under RE. If

it is found that kopt ≥3, consider the next step;

Step 2 Given dim(x∗t ) = nkopt, estimate θ∗ = (θ′, ζ ′)′ from the statistical model in Eq.s (18)-(19)

under a numerical approximation of the CER in Eq. (25), and then test the CER through a

likelihood ratio test that compares the likelihood obtained in the previous step, logLT (τ̂),

and the likelihood associated with θ∗, logLT (θ̂∗), obtaining LRCERT :=−2(logLT (θ̂∗) −
logLT (τ̂)). The log-likelihood maximization is also achieved through Kalman filtering and

Andreasen’s (2010) algorithm.

If in Step 2 the CER are not rejected and standard regularity conditions hold (other than

Assumptions 1-4), the estimator of θ∗ (hence of θ) is consistent and asymptotically Gaussian,

while LRCERT is asymptotically χ2(d), with d =dim(τ)-dim(θ∗). Moreover, the possible rejection

of the CER can not be ascribed to the omitted dynamics issue.9

The Step 2 of the procedure can easily be adapted to the Bayesian approach. Given the

statistical model built in Step 1, it is possible to specify a prior distribution for θ∗, p(θ∗), and

then compute the posterior given the observations y1, ..., yT , obtaining p(θ∗ | y1, ..., yT ). This

can be done by using e.g. the Random Walk Metropolis (RWM) algorithm along the lines of An

9Standard regularity conditions might not hold because of sample identification issues documented by e.g.

Canova and Sala (2009). In these cases, it is possible to adapt the two steps above by using identification-robust

methods along the lines of Dufour et al. (2013), Guerron-Quintana et al. (2013), Andrews and Mikusheva (2014)

and Castelnuovo and Fanelli (2015).
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and Schorfheide (2007). In our framework, it is ‘natural’ to specify priors for the expectations

correction parameters ζ that are centered on zero, i.e. on the RE solution, such that the extent

of the misspecification, if any, is determined by the data, see the next sections. Moreover,

the selection between the NK-DSGE model under RE and QRE can be based on Bayesian

information criteria or odds-ratios, etc. More details are provided in Sub-section 5.4.

5 Empirical analysis

In this section, we estimate and empirically evaluate a small-scale monetary NK-DSGE model

on U.S. quarterly data, applying the QRE methodology discussed in the previous section. We

also compare our approach with the ‘conventional’ RE case. In Sub-section 5.1 we introduce the

reference structural model. In Sub-section 5.2 we describe the data and discuss the specification

of the agents’ statistical model. In Sub-section 5.3 we estimate and evaluate the NK-DSGE

model under QRE using a frequentist maximum likelihood approach, and in Sub-section 5.4 we

repeat the same exercise using the Bayesian approach.

5.1 Structural model

Our reference NK-DSGE model is taken from Benati and Surico (2009) and is based on the

following three equations:

õt = γEtõt+1 + (1− γ)õt−1 − δ(Rt − Etπt+1) + ηỹ,t (26)

πt =
β

1 + βα
Etπt+1 +

α

1 + βα
πt−1 + κõt + ηπ,t (27)

Rt = ρRt−1 + (1− ρ)(ϕππt + ϕõõt) + ηR,t (28)

where

ηx,t = ρxηx,t−1 + ωx,t , -1 < ρx < 1 , ωx,t ∼WN(0, σ2x) , x = ỹ, π, R. (29)

The variables õt:=ot−opt , πt, and Rt stand for the output gap (ot is output and opt the natural rate

of output), inflation, and the nominal interest rate, respectively; γ is the weight of the forward-

looking component in the intertemporal IS curve; α is price the setters’ extent of indexation

to past inflation; δ is households’ intertemporal elasticity of substitution; β is a discount factor

which is assumed to be fixed at the value β:=0.99; κ is the slope of the Phillips curve; ρ, ϕπ, and

ϕỹ are the interest rate smoothing coefficient, the long-run coefficient on inflation, and that on

the output gap in the monetary policy rule, respectively; finally, ηõ,t, ηπ,t and ηR,t in Eq. (29)

are the mutually independent, autoregressive of order one disturbances and ωõ,t, ωπ,t and ωR,t

are the structural (fundamental) shocks with variances σ2x, x = õ, π, R.
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This and similar small-scale models have successfully been employed to conduct empirical

analysis concerning the U.S. economy. Clarida et al. (2000) and Lubik and Schorfheide (2004)

have investigated the influence of systematic monetary policy over the U.S. macroeconomic dy-

namics; Boivin and Giannoni (2006) and Benati and Surico (2009) have replicated the U.S. Great

Moderation, while Castelnuovo and Fanelli (2015) have tested the determinacy/indeterminacy

properties of the implied equilibria controlling for identification failure. It is worth noting that

Benati and Surico’s (2009) model is ‘hybrid’, in the sense that given the policy rule, both the IS

curve and the NKPC feature lags of õt and πt other than future expectations. In this respect, it

seems particularly suited to serve as a reference structural model in the estimation/evaluation

exercise with which we are concerned in this paper.

The three-equation system (26)-(28) can be cast in the form in Eq.s (10)-(11) by setting

Zt:=(õt, πt, Rt)
′, (n = 3), ηt:=(ηõ,t, ηπ,t, ηR,t)

′, ωt:=(ωõ,t, ωπ,t, ωR,t)
′ and

Γ0:=


1 0 δ

−κ 1 0

−(1− ρ)ϕõ −(1− ρ)ϕπ 1

 , Γf :=


γ δ 0

0 β
1+βα 0

0 0 0

 , Γb:=


1− γ 0 0

0 α
1+βα 0

0 0 ρ

 .

R:=dg(ρõ, ρπ, ρR) , Σω:=dg(σ2õ , σ
2
π, σ

2
R),

where the operator dg(·) denotes a diagonal matrix and the entries are in the argument. θ:=(γ, δ, α, κ, ρ, ϕỹ, ϕπ, ρõ, ρπ, ρR, σ
2
õ , σ

2
π, σ

2
R)′

is the 13×1 vector of structural parameters. The constant C is, in this case, set to zero because

estimation is based on demeaned variables, see below.

As in B̊ardsen and Fanelli (2015), we complete the model in Eq.s (26)-(29) by assuming that

the natural rate of output opt is generated by the Random Walk process:

opt = opt−1 + ηop,t , ηop,t ∼WN(0, σ2op) (30)

to capture the effects of technology shocks. Using Eq. (30) and the definition of õt:=ot− opt , we

obtain the relationship

õt − õt−1 = ∆ot − ηop,t (31)

where ∆ot:=ot − ot−1, which will be exploited in the measurement system below.

5.2 Data and statistical model

We employ quarterly data relative to the ‘Great Moderation’ sample 1984q2-2008q3. The start-

ing date of our estimation and evaluation sample, 1984q2, is justified by McConnell and Pérez-

Quirós (2000), who find a break in the variance of the U.S. output growth in 1984q1. The ending

date is instead motivated by the fact that, with data after 2008q3, it would be hard to identify
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a ‘conventional’ monetary policy shock with our structural model during the well known zero

lower bound (ZLB) episodes. We have three observable variables, yt:=(∆ot, πt, Rt)
′ (p = 3),

where ∆ot is related to the unobservable output-gap õt through Eq. (31).10 Output, ot, is the

log of real GDP. The inflation rate, πt, is the quarterly growth rate of the GDP deflator. For

the short-term nominal interest rate, Rt, we consider the effective Federal funds rate expressed

in quarterly terms (averages of monthly values). The source of the data is the website of the

Federal Reserve Bank of St. Louis. The three variables are demeaned.11

Step 1 of our estimation and evaluation procedure (Section 4) requires fitting the state-space

model in Eq.s (18)-(19) to the data. This entails selecting the optimal length of the state vector,

i.e. dim(x∗t )=nk
op. Starting from a maximum lag order of kmax = 6, the ‘largest’ statistical

model which is taken to the data is given by


Zt

Zt−1
...

Zt−(kmax−1)


x∗t

=


Φ1 Φ2 · · · Φkmax−1 Φkmax

I3 03×3 · · · 0n×n 03×3
...

. . .
...

...
...

03×3 03×3 I3 03×3


A∗(τ)


Zt−1

Zt−2
...

Zt−kmax


x∗t−1

+


εt

03×3
...

03×3


G∗(τ)

(32)


∆ot

πt

Rt


yt

=


1 0 0 −1 0 · · · 0

0 1 0 0 0 · · · 0

0 0 1 0 0 · · · 0


H



õt

πt

Rt
...

õt−(kmax−1)

πt−(kmax−1)

Rt−(kmax−1)


x∗t

+


1

0

0


V

v1,t
vt

(33)

where Zt:=(õt, πt, Rt)
′, ωt:=(ωõ,t, ωπ,t, ωR,t)

′, and vt:=v1,t=ηop,t from Eq. (31).

We estimate the space state model in Eq.s (32)-(33) in the period 1984q2-2008q3, varying

k from 1 to 6=:kmax, using a Kalman filter-based maximum likelihood approach in conjunc-

tion with the simulated annealing/genetic algorithm of Andreasen (2010). For each estimated

10We have also considered the case in which õt is proxied by a measure of the output-gap computed by using the

measure of the natural rate of output released by the Congressional Budget Office (CBO). In that case, estimation

does not necessarily require the use of Eq. (31). Results are available upon request to the authors.
11Before demeaning and estimating the model, we run a preliminary check for stationarity of yt:=(∆ot, πt, Rt)

′.

We compute Johansen’s (1996) cointegration rank test using a VAR model for yt with restricted (to the cointe-

gration space) and unrestricted constants, respectively. In both cases we reject the hypothesis that unit roots are

present in the system. Results are available upon request to the authors.
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model, we check whether the minimality (controllability and observability) and local identifi-

cation conditions discussed in Komunjer and Ng (2011) are satisfied in correspondence of the

estimate τ̂ delivered by the estimation algorithm. We then compute the Akaike, Hannan-Quinn

and Schwartz information criteria and likelihood-ratio (LR) tests to select the optimal lag kop.

The results of this specification analysis are summarized in Table 1.

Table 1 shows that using the 5% nominal level of significance, the LR tests selects the model

based on k = kop=4 lags. The Akaike information criterion selects 5 lags, while Schwartz and

Hannan-Quinn select 2 lags. Since the evidence on the optimal number of lags is not clear-cut, it

makes sense to consider both of the cases based on kop=4 lags, i.e. dim(x∗t )=nk
op = 12, and the

case of RE based on kop=2 lags, in the period 1984q2-2008q3. In this first case, the vector of pa-

rameters associated with the statistical model is given by τ :=(vec(Φ1)
′, vec(Φ2)

′, vec(Φ3)
′, vec(Φ4)

′, vech(Σε)
′, σ2op)′.

5.3 Frequentist estimation and empirical evaluation

Assuming that the ‘best fitting’ statistical model for the data is based on kop=4 lags, i.e.

dim(x∗t )=nk
op = 12 > dim(xt)=n2 = 6, the pseudo-structural form associated with our NK-

DSGE model is given by

õt = γEtõt+1 + (1− γ)õt−1 − δ(Rt − Etπt+1) + ζõ,2õt−2 + ζõ,3õt−3 + ηỹ,t (34)

πt =
β

1 + βα
Etπt+1 +

α

1 + βα
πt−1 + κõt + ζπ,2πt−2 + ζπ,3πt−3 + ηπ,t

Rt = ρRt−1 + (1− ρ)(ϕππt + ϕõõt) + ζR,2Rt−2 + ζR,3Rt−3 + ηR,t

ηx,t = ρxηx,t−1 + ωx,t , -1 < ρx < 1 , ωx,t ∼WN(0, σ2x) , x = õ, π, R (35)

where ζõ,2, ζπ,2 ,ζR,2,ζõ,3, ζπ,3 and ζR,3 are the expectations correction parameters that enter

the (supposed diagonal) matrices Υ2 and Υ3, see Eq. (24), in order to rectify the base-

line NK-DSGE model. Thus ζ:=(ζõ,2, ζπ,2, ζR,2, ζõ,3, ζπ,3, ζR,3)
′ = (diag(Υ2)

′, diag(Υ3)
′)′ and

θ∗ = (θ′, ζ ′)′:=(γ, δ, α, κ, ρ, ϕõ, ϕπ, ρõ, ρπ, ρR, σ
2
õ , σ

2
π, σ

2
R, ζõ,2, ζπ,2, ζR,2, ζõ,3, ζπ,3, ζR,3)

′ is the 19×1

vector containing the truly structural and expectations correction parameters.

Step 2 of the procedure summarized in Section 4 requires estimating θ∗ = (θ′, ζ ′)′ from the

state space model (32)-(33) by imposing the CER implied by the pseudo-structural form. By

applying Proposition 1, we obtain: Φi = Φ̃i, i = 1, 2, 3, 4, Σε=Σ̃ε, where

(ΓR0 − Γf Φ̃1)Φ̃1 − (Γf Φ̃2 + Γb,1) = 03×3

(ΓR0 − Γf Φ̃1)Φ̃2 − (Γf Φ̃3 + Υ2 −RΓb) = 03×3

(ΓR0 − Γf Φ̃1)Φ̃3 − (Γf Φ̃4 + Υ3 −RΥ2) = 03×3

(ΓR0 − Γf Φ̃1)Φ̃4 +RΥ3 = 03×3

Σ̃ε − Ψ̃ Σω Ψ̃′ = 0n×n , Ψ̃:=(ΓR0 − Γf Φ̃1)
−1.

(36)
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Estimation results for θ∗ = (θ′, ζ ′)′ are reported in Table 2. In the upper panel of Table 2, we

summarize the estimate of θ obtained under RE, i.e. taking the structural model in Eq.s (26)-

(29) to the data in the ‘conventional way’, and the corresponding estimate obtained from the

pseudo-structural form (34)-(35). Observe that in order to obtain the CER under RE (kop=2),

it is sufficient to set the expectations correction matrices Υ2 and Υ3 to zero in Eq. (36), leading

to Φ̃3 = Φ̃4 = 03×3. This implies that there are no deviations of agents’ expectations from RE.

We label the estimates obtained from the pseudo-structural form in the fourth column of Table

2 with the acronym ‘QRE’.

The lower panel of Table 2 summarizes the Akaike, Hannan-Quinn and Schwartz information

criteria and a battery of LR tests through which it is possible to select the ‘best’ specification.

All three information criteria favour the model estimated under QRE. The LR test for the null

ζ=06×1 (RE) against the alternative ζ 6= 06×1 (QRE) strongly rejects the null hypothesis. In

both cases, the CER are strongly rejected.

Coming back to the estimated parameters in the upper panel of Table 2, we notice that

the large majority (four out of six) of the expectations correction parameters ζ:=(ζõ,2, ζπ,2,

ζR,2, ζõ,3, ζπ,3, ζR,3)
′, reported in the forth column are significant at conventional significance

levels. This confirms that there is a mismatch between agents’ expectations and the case of RE.

Focusing on the truly structural parameters θ, we notice that the main differences between the

estimates obtained under RE and QRE involve the intertemporal elasticity of substitution δ and

the forward-looking parameter γ in the IS curve, the slope κ and shock persistence parameter ρπ

in the NKPC, and the Fed’s long run response to output gap ϕõ and shock persistence parameter

ρπ in the policy reaction function.

The magnitude and precision of the estimated δ is considerably higher under QRE, whereas

δ does not seem to be empirically identified under RE. Conversely, the magnitude and precision

of the estimated γ is lower under QRE relative to RE, suggesting a lesser extent of forward-

looking behaviour once we account for the whole dynamics of the system. This result can

be clearly explained in light of the more ‘flexible’ expectations generating system we assume.

The slope parameter of the NKPC is poorly estimated in both cases, confirming a traditional

difficulty in its empirical identification. The magnitude of the estimated indexation parameter

of the NKPC, α, is the same in the two cases; we observe that precision is considerably higher

under QRE relative to RE. However, the estimated α obtained under QRE is comparatively

more precise than the estimate obtained under RE. Overall, our maximum likelihood estimates

seems to suggest that the NKPC can be more precisely empirically identified by relaxing some

constraints on the autocorrelation structure of the data. As concerns the policy rule, we notice

that the Fed’s long run response to output gap is remarkably higher relative to the case of RE
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(1.5 as opposed to 0.336) and more precisely estimated under QRE. As it known, the empirical

literature on the identifiability of the policy parameters ϕõ and ϕπ in the class of New Keynesian

models is huge and has not yet reached a consensus. The recent empirical literature, which

makes increasing use of identification-robust methods, suggests that it is difficult to estimate

ϕõ (and ϕπ) precisely on the Great Moderation era, see, among others, Mavroeidis (2010) and

Castelnuovo and Fanelli (2015) and references therein. Our result seems to suggest that concern

regarding the dynamic misspecification that characterize baseline New Keynesian systems can

aid the empirical identification process of monetary policy parameters.

5.4 Bayesian estimation and empirical evaluation

In the Bayesian approach, Step 1 is exactly as in Sub-section 5.2; hence, the estimated pseudo-

structural form in Step 2 is given by system (34)-(35). The priors used for the truly structural

parameters, θ, are taken from Benati and Surico (2009), while the priors used for the expectations

correction parameters, ζ, are centered at the RE equilibrium. This means that for each ζi,j ,

i = õ, π, R , j = 2, 3 in Eq.s (34)-(35), we use a Gaussian distribution centered on 0 with

variance 0.25. Table 3 summarizes the modes and standard deviations of the prior distributions

for all structural parameters. The RWM algorithm delivers the posterior distributions reported

in Table 4.

As expected, the DIC information criterion favours the NK-DSGE model estimated under

QRE, relative to the case of RE. The estimates in Table 4 are quantitatively different from their

counterparts in Table 2 obtained with the frequentist maximum likelihood approach. Similarly to

the frequentist estimation approach, we observe that the mismatch between agents’ expectations

and RE seems to be relevant. The magnitude of estimated persistence parameters, ρõ, ρπ and

ρR, is considerably larger in the pseudo-structural form compared to the case of RE, suggesting

that other than capturing omitted propagation mechanisms, the pseudo-structural model does

not penalize the persistence of the data, given the chosen priors.

The main differences between the estimates obtained under RE and by the pseudo-structural

form involve the forward-looking parameter of the IS curve, γ, and the policy reaction of the

Fed to the output gap, ϕõ. Contrary to what is reported in Table 2, the magnitude of the

estimated γ is considerably larger under QRE, pointing towards a greater extent of forward-

looking behaviour. Obviously, the difference in the estimates of γ in Table 2 and Table 4 can

solely be ascribed to the role of the prior distributions. On the other hand, we notice that in

the Bayesian approach as well, the Fed’s long run response to output gap is remarkably higher

relative to the case of RE (1.054 as opposed to 0.449) and more precisely estimated under QRE.

This evidence confirms the finding obtained with the frequentist approach in Sub-section 5.3.
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All other estimates in Table 4 are roughly the same as in Table 2.

6 Concluding remarks

In this paper, we have focused on the poor time series performance that characterizes the class

of small-scale NK-DSGE models used in monetary policy and business cycle analysis. Under

RE, NK-DSGE models give rise to a set of nonlinear CER and constraints on the lag order of the

system that may conflict with the actual autocorrelation structure that characterizes quarterly

(or monthly) time series. In these cases, the investigator should re-formulate the structural

model by specifying a less restrictive, possibly microfounded, dynamic structure that accounts

for the previously omitted propagation mechanisms. This is not always feasible. Practitioners

typically react to the misspecification issue by specifying ad hoc time-series models for the shocks

in order to improve the overall fit of the model. We rationalize these practices using a statistical

model for the data that is treated like the true agents’ expectations generating mechanism. This

allows one to relax the tightness of the restrictions arising under RE, without abandoning the

logic of model-consistent expectations. Our approach is illustrated empirically focusing on the

‘hybrid’ NK-DSGE monetary model by Benati and Surico (2009) as the reference system.

A Appendix: proof of propositions

Proof of Proposition 1 For kop ≤ 2, the result is obtained under Assumptions 1-5 by fol-

lowing Binder and Pesaran (1995) and, more in detail, the supplementary material

in Castelnuovo and Fanelli (2015). For kop ≥ 3, use the autoregressive structure of ηt

to write system (24) in the form

ΓR0 Zt = ΓfEtZt+1 + Γb,1Zt−1 + Υ∗2Zt−2 +

kop−1∑
j=3

Υ∗jZt−j + Υ∗kopZt−kop + C∗ + ω∗t

where ω∗t :=ωt + RΓfut and ut:=Zt − Et−1Zt is a martingale difference sequence,

ΓR0 :=(Γ0+RΓf ), Γb,1:=(Γb+RΓ0), Υ∗2:=(Υ2−RΓb), Υ∗j :=(Υj−RΥj−1), j = 3, ..., kop−
1, Υ∗kop :=−RΥkop−1 and C∗:=(In − R)C. Then compact the system above in the

companion-form representation:

Γc0Z
c
t = ΓcfEtZ

c
t+1 + ΓcbZ

c
t−1 + Cc + ωct (37)
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where Zct :=(Z ′t, Z
′
t−1, ..., Z

′
t−kop+1)

′, Cc:=(C∗′, 01×n(kop−1))
′, ωct :=(ω∗′t , 01×n(kop−1))

′ and

Γc0:=


ΓR0 0n×n · · · 0n×n

0n×n In · · · 0n×n
...

...
. . .

0n×n 0n×n · · · In

 , Γcf :=


Γf 0n×n · · · 0n×n

0n×n 0n×n · · · 0n×n
...

...
. . .

0n×n 0n×n · · · 0n×n



Γcb:=


Γb,1 Υ∗2 Υ∗3 · · · Υ∗kop−1

In 0n×n 0n×n · · · 0n×n
...

. . .
...

...

0n×n 0n×n 0n×n In 0n×n

 .

From Binder and Pesaran (1995) and the supplementary material in Castelnuovo and

Fanelli (2014), it follows that if under Assumptions 1-4 a unique and stable solution

for the system (37) exists, it takes the form

Zct = Φ̃cZct−1 + µ̃c + εct , εct :=Ψ̃cωct

where Φ̃c, Ψ̃c and µ̃c:=(µ′, 01×n(kop−1))
′ are block matrices (vectors) subject to the

CER:

(Γc0 − Γcf Φ̃c)Φ̃c = Γcb = 0nkop×nkop (38)

(Γc0 − Γcf Φ̃c − Γcf )µ̃c = Cc (39)

E(εctε
c′
t ):=Ψ̃cE(ωctω

c′
t )Ψ̃c′, Ψ̃c:=(Γc0 − Γcf Φ̃c)−1

and with k = kop the matrix Φ̃c has the same block structure as the matrix A(τ)

in Eq. (18). Assumption 1 ensures that Φ̃c is stable, while uniqueness occurs if

(Γc0 − Γcf Φ̃c)−1Γcf is stable. Note that

(Γc0 − Γcf Φ̃c):=


ΓR0 − Γf Φ̃1 −Γf Φ̃2 · · · −Γf Φ̃kop

0n×n In · · · 0n×n
...

...
. . .

0n×n 0n×n · · · In


and using inversion formulas for partitioned matrices, the upper left block of the

inverse of the matrix above (Ψ̃c) is Ψ̃:=(ΓR0 − Γf Φ̃)−1. Moreover,

(Γc0 − Γcf Φ̃c)−1Γcf :=


(ΓR0 − Γf Φ̃1)

−1Γf 0n×n · · · 0n×n

0n×n 0n×n · · · 0n×n
...

...
. . .

0n×n 0n×n · · · 0n×n
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and

(Γc0 − Γcf Φ̃c − Γcf )µ̃c − Cc:=


(ΓR0 − Γf Φ̃1 − Γf )µ̃− (In −R)C

0n×n
...

0n×n


Using simple algebra it turns out that the relationships in Eqs. (38)-(39) are equiva-

lent to the CER in Eq. (25).�
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TABLE 1. Lag length selection in the statistical model in Eq.s (32)-(33).

Estimation sample: 1984q2 - 2008q3

LR tests Information criteria

lag Likelihood LR p-value Akaike Hannan-Quinn Schwartz

2 151.42 74.71 0.000 -240.84 -208.57∗ -161.03∗

3 161.08 55.40 0.001 -242.15 -200.69 -139.58

4 176.99 23.57 0.167∗ -255.98 -205.42 -130.84

5 186.44 4.68 0.861 -256.87∗ -197.29 -109.36

6 188.78 - - -243.55 -175.04 -73.87

NOTES: The log-likelihood is maximized by a Kalman-filtering approach and the simulated-annealing/genetic

algorithm of Andreasen (2010). The LR tests are computed by comparing the log-likelihoods obtained

with k = 2, .., 5=:kmax − 1 lags with the log-likelihood obtained with kmax= 6. Asterisks denote the

optimal lag selection according to the test/information criterion.
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TABLE 2. Estimated structural parameters of the Benati and Surico’s (2009) model in Eq.s (26)-

(29).

Estimation sample: 1984q2 - 2008q3

Parameters Interpretation RE QRE

δ IS: inter. elast. of substitution 0.010(0.057) 0.079(0.055)

γ IS: forward looking term 0.572(0.062) 0.269(0.207)

α NKPC: indexation past inflation 0.035(0.230) 0.035(0.039)

κ NKPC: slope 0.041(0.121) 0.0267(0.043)

ρ Policy rule: smoothing term 0.908(0.054) 0.889(0.034)

ϕõ Policy rule: reaction to output gap 0.336(0.963) 1.500(0.248)

ϕπ Policy rule: reaction to inflation 1.650(0.974) 1.650(0.803)

ρõ IS: shock persistence 0.908(0.034) 0.801(0.190)

ρπ NKPC: shock persistence 0.100(0.342) 0.775(0.082)

ρR Policy rule: shock persistence 0.539(0.080) 0.192(0.157)

σ2õ IS: variance of shock 0.001(0.001) 0.006(0.002)

σ2π NKPC: variance of shock 0.025(0.003) 0.053(0.010)

σ2R Policy rule: variance of shock 0.011(0.002) 0.006(0.001)

σ2op Variance of potential output 0.045(0.009) 0.031(0.006)

ζõ,2 IS: exp. correction (Υ2) - -0.061(0.191)

ζπ,2 NKPC: exp. correction (Υ2) - -0.444(0.176)

ζR,2 Policy rule: exp. correction (Υ2) - 0.057(0.061)

ζõ,3 IS: exp. correction (Υ3) - 0.047(0.016)

ζπ,3 NKPC: exp. correction (Υ3) - 0.065(0.131)

ζR,3 Policy rule: exp. correction (Υ3) - -0.192(0.058)

Likelihood 115.09 129.79

Akaike -202.18 -219.57*

Hannan-Quinn -187.54 -198.66*

Schwartz -165.99 -167.88*

LR(RE vs QRE)=29.40, p-value=0.000

LR(CER model with RE)=72.66, p-value=0.000

LR(CER model with QRE)=94.40, p-value=0.0001

NOTES: ‘RE’ means that the model in Eq.s (26)-(29) is estimated in the ‘conventional’ way un-

der rational expectations; ‘QRE’ means that the estimated model is the pseudo-structural form in

Eq.s (34)-(35). The log-likelihood is maximized by a Kalman-filtering approach and the simulated-

annealing/genetic algorithm of Andreasen (2010), using the following bounds for the parameters: [0.010-
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0.200] for δ; [0.100-0.999] for γ; [0.035-0.100] for α; [0.025-∞] for κ; [0.001-0.999] for ρ; [0.001-1.500]

for ϕõ; [1.650-5.500] for ϕπ; [0.001-0.999] for ρõ, ρπ and ρR, leaving all remaining parameters, including

the auxiliary parameters ζ:=(ζõ,2, ζπ,2, ζR,2, ζõ,3, ζπ,3, ζR,3)’, free on condition that model’s determinacy

was met. Standard errors in parentheses have been calculated using the ‘hessian.mat’ function available

in Matlab. Asterisks denote the optimal lag selection according to the information criterion.
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TABLE 3. Bayesian approach, prior distributions used for the structural parameters in the Benati

and Surico’s (2009) model in Eq.s (26)-(29).

Parameter Interpretation Density Mode Standard Deviation

δ IS: inter. elast. of substitution Inverse Gamma 0.06 0.04

γ IS: forward looking term Beta 0.25 0.20

α NKPC: indexation past inflation Beta 0.75 0.20

κ NKPC: slope Gamma 0.05 0.01

ρ Policy rule: smoothing term Beta 0.75 0.20

ϕõ Policy rule: reaction to output gap Gamma 0.15 0.25

ϕπ Policy rule: reaction to inflation Gamma 1.00 0.50

ρõ IS: shock persistence Beta 0.25 0.20

ρπ NKPC: shock persistence Beta 0.25 0.20

ρR Policy rule: shock persistence Beta 0.25 0.20

σ2õ IS: variance of shock Inverse Gamma 0.25 0.25

σ2π NKPC: variance of shock Inverse Gamma 0.50 0.50

σ2R Policy rule: variance of shock Inverse Gamma 0.25 0.25

σ2τ Variance of potential output Inverse Gamma 0.25 0.25

ζi,j Auxiliary, i = õ, π, R ; j = 2, 3 Normal 0 0.25

NOTES: The prior distributions for the truly structural parameters, θ, are taken from Table 1 in

Benati and Surico (2009). The parameter δ corresponds to σ−1 in Benati and Surico (2009), hence we

use an Inverse-Gamma distribution in place of a Gamma.
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TABLE 4. Bayesian approach, estimated structural parameters of the Benati and Surico’s (2009)

model in Eq.s (26)-(29).

Estimation sample: 1984q2 - 2008q3

Parameters Interpretation Posterior RE Posterior QRE

Mean [5%, 95%] Mean [5%, 95%]

δ IS: inter. elast. of substitution 0.183[0.156,0.199] 0.185[0.158,0.199]

γ IS: forward looking term 0.136[0.102,0.200] 0.829[0.649,0.951]

α NKPC: indexation past inflation 0.056[0.036,0.088] 0.062[0.037,0.093]

κ NKPC: slope 0.053[0.038,0.072] 0.053[0.038.0.071]

ρ Policy rule: smoothing term 0.783[0.682,0.870] 0.733[0.584,0.902]

ϕõ Policy rule: reaction to output gap 0.449[0.116,0.805] 1.054[0.167,1.478]

ϕπ Policy rule: reaction to inflation 2.107[1.682,3.043] 1.801[1.658,2.120]

ρõ IS: shock persistence 0.529[0.341,0.714] 0.845[0.681,0.952]

ρπ NKPC: shock persistence 0.484[0.175,0.771] 0.783[0.637,0.903]

ρR Policy rule: shock persistence 0.470[0.204,0.717] 0.641[0.233,0.916]

σ2õ IS: variance of shock 0.041[0.030,0.054] 0.047[0.034,0.063]

σ2π NKPC: variance of shock 0.232[0.193,0.278] 0.249[0.204,0.301]

σ2R Policy rule: variance of shock 0.112[0.092,0.135] 0.115[0.094,0.139]

σ2op Variance of potential output 0.048[0.035,0.063] 0.054[0.039,0.073]

ζõ,2 IS: exp. correction (Υ2) - -0.082[-0.364,0.209]

ζπ,2 NKPC: exp. correction (Υ2) - -0.638[-0.913,-0.370]

ζR,2 Policy rule: exp. correction (Υ2) - 0.125[-0.176,0.439]

ζõ,3 IS: exp. correction (Υ3) - 0.011[-0.249,0.263]

ζπ,3 NKPC: exp. correction (Υ3) - -0.247[-0.538,0.055]

ζR,3 Policy rule: exp. correction (Υ3) - -0.053[-0.307,0.213]

DIC 42.41 3.26∗

NOTES: ‘RE’ means that the model in Eq.s (26)-(29) is estimated in the ‘conventional’ way under

rational expectations; ‘QRE’ means that the estimated model is the pseudo-structural form in Eq.s (34)-

(35). The prior distributions are reported in Table 3. Posterior distributions are computed using the

Random Walk Metropolis algorithm. ‘Mean [5%, 95%]’ denotes a 90% credible set. The posteriors satisfy

the standard convergence criteria and the acceptance ratio is 22.94% for the model estimated under RE

and 36.79 for the model estimated under QRE. DIC is the Deviance Information Criterion.
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