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Abstract

An avalanche of empirical studies has addresseddlrdity of the rank-size rule (or Zipf's law) in
a multi-city context in many countries. City size most countries seems to obey Zipf's law, but the
guestion under which conditions (e.g. sample ssmatial scale) this ‘law’ holds remained largely
underinvestigated. Another complementary quessontiether socio-economic networks in space also
show a similar hierarchical pattern.

Against this background, the present paper invastgy— from a methodological viewpoint — the
relationship between network connectivity and twekrsize rule (or Zipf's law) in an urban-economic
network constellation. After a review of the litaree, we address in particular the following
methodological issues: (i) the (aggregate) behasioiwundation underlying the rank-size rule/Zipf's
law in the light of spatial-economic network thesri(e.g. entropy maximization, spatial interaction
theory, etc.); (ii) the nature of the analyticdhat®nship between social-spatial network analgsid the
rank-size rule/Zipf's law. We argue that the ramtegule is compatible with conventional economic
foundations of spatial network models. Consequemtlgpatial-economic interpretation — as well as a
network connectivity interpretation — of the rankesrule coefficient is provided.

Our methodological contribution forms the foundatifor the subsequent empirical analysis
applied to spatial networks in a socio-economictextn The aim here is to test the sensitivity of
empirical findings for changes in scale, functiof@ms, time periods, and network structures. Our
application is concerned with an extensive spa&iogoral panel database related to the evolution of
urban population in Germany. We test the relevaridde rank-size rule/Zipf's law, and its evolution
over the years, and — in parallel — the relatediGseconomic’ connectivity in these urban networks.
particular, we will show that Zipf's law (i.e., witthe rank-size coefficient equal to 1) is onlyidal
under particular conditions of the sample size. Paper concludes with some retrospective and
prospective remarks.

Key-words: rank-size rule, Zipf's law, entropy, spatial irgetion, connectivity, German municipalities



1 Hierarchical Spatial Structures: Introduction

“How much validity and universality should be atitdd to this rank-size rule is, at this stage,
a matter of individual opinion and judgméfitsard, 1956, p. 57).

The spatial organization of a system of cities te@gived much attention in the urban-geographic
and regional science literature over the past dexdd particular, studies on Christaller-Loschieys
— and the related rank-size rules — have culminateml wealth of literature on Zipf's law. This law
addresses essentially the issue of spatial org@mzaf systems of places. One may distinguish two
main strands of the literature that form the foummhafor a hierarchical ordering of spatial unithe
first paradigm emerges from gravity theory, whiolnfis the basis for spatial interaction modellinge T
gravity model is based on two basic assumptiorzs,thie attraction (or centripetal) forces exertgdb
certain mass or centre (population, production, ranies, etc.) — this is, in fact, an agglomeration
externality — and the distance friction exertedtiy geographical separation of two units — thisns,
fact, cost-minimizing behaviour of actors in spadéws, agglomeration forces and spatial cost-
minimization may be seen as the foundation of apatieraction models. Combined with heterogeneity
of goods or services traded or transported betwd@@rent places, this also forms a cornerstonthef
New Economic Geography. It can be demonstratedtieatssence of such a model is equivalent to an
entropy-maximizing paradigm of a spatial flow modsée Nijkamp and Reggiani, 1992; Gordon,
2010). Zipf's law is then a particular case of ep¥r, as we also demonstrate in Section 2.

The complementary foundation of Zipf's law sten@nirtrade theory in market network analysis.
In accordance with Ldsch’s spatial equilibrium gsa, geographical space is governed by spati& uni
(centres) with agglomeration advantages, the poesef transport costs for traded goods, and the
existence of price-elastic demand curves for hgmreous goods. This leads to spatial product
specialization, in which the highest-order goodiefo luxury goods, with lower price elasticity) are
produced in the biggest agglomeration (i.e. thgwith the highest rank), while the lowest-ordeods
(often daily goods, with a high demand elasticéiy® found in all or most places. This hierarchical
equilibrium order implies essentially a combinatmf individual profit maximization at the firm lel
and total transport cost minimization for all astor the system (see also Isard, 1956).

A merger of spatial interaction models and thedrghtical organization of trade networks between
regions can be found, inter alia, in Bos (1964) &imbergen (1964), where the authors demonstrate th
trade specialization may generate trade revenag¢$itrease total welfare through cost minimizatién
spatial transport or trade flows. Their hierarcHyopen spatial systems is based on an underlying
hierarchy of the economic force fields in tradiregions, and highlights the importance of sectoral
heterogeneity in transport and trade.

Over the years, an avalanche of publications hasn bgroduced on the foundation and
measurement of spatial hierarchies of places aomegMost of the literature has addressed thesisu
a hierarchy of cities, an issue that found its naigin in the work of Zipf (1949). The practicalea
was that spatial hierarchies in networks (e.ghef@hristaller-Lésch type or of the Tinbergen-Bgse)
were difficult to test, unless simple measuremehemes were introduced. Zifp’s law — or in a more
general sense, the rank-size rule — was an ind&stto confirm the validity of functional hieraies in
spatial systems. More recently, considerable attenbas also been given to the identification of
hierarchical organization of networks in a broackamtext (see, e.g., Barabasi, 2002). Our paper &ims



advance the current debate by critically reviewthg Zipf's law assumption, by next proposing
alternative (or complementary) measurement scheara$,by focussing attention more directly on
structural regularities in spatial networks, bodim@eptually and empirically.

It is noteworthy that the regional science literatover the past decades has seen an intensive
ongoing debate on the empirical rank-size distidmitof cities, inspired by the basic contribution by
Zipf (1949). Starting from Simon (1955) and Isat@%6), who explained the existence of power laws in
city-size distributions, there has been a permafi@ntof interesting interpretations of the signdnce
of rank-size distributions, and hence of Zipf's IaWe refer here to, amongst others, Krugman (1996a)
who questioned the economic interpretation of Simmpnarguing“Because while a relationship like
equation 1 is difficult to explain with an equilibm story about determination of city size, it iste
easy to justify with a nihilistic story of the kindalyzed by Herbert Simorfp. 2465.

Many discussions have centred around the universatid the potential of power functions in
city-size distributions. Clearly, other functionavie been found to be suitable as well. For exantipée,
lognormal function or the double Pareto lognormalction have also received much attention in the
literature (see, e.g., Giesen et al., 2010). moeworthy that most studies have restricted theyasdo
truncated samples, by focussing mainly on largesin a national context (see also Section 4)eGiv
the abundant literature on these issues, our pergo® briefly review the main results from — aod
offer new thoughts on — the continuing debate enetimpirics of rank-size distributions of cities dahd
underlying theoretical frameworks. In particulag will highlight that:

* the rank-size distribution of cities (or rank-sizée) may also be valid for functions different
from the power form, for example, for the exponainorm, the Tanner function, etc.;

* the choice of the unit in a geographical spaceyedsas the choice of the sample size of cities, is
critical;

+ despite the empirical nature of the rank-size ralmethodological interpretation of Zipf's law —
and its related rank-size rule — should not onlgrads hierarchical patterns in city size, but alscio-
economic networks in space.

Starting from the above methodological propositji@ansecond aim of this paper is then to explore
the structural dynamics of urban systems, withresgfee to rank-size/Zipf's rules, as well as to roekw
analysis, over a period of different years, anddiferent spatial scales and population sizesoun
empirical analysis, we will consider the populatioihurban centres in Germany in terms of various
spatial scale levels (region, district, city, mupadity, city-network), for different years. The enging
different patterns will also be investigated by meaf a number of functional forms in the rank-size
distribution (more specifically, by adopting powexponential, lognormal, and Tanner functions).
These functions play a crucial role in spatial miaalg, in particular in conventional Spatial Intetesn
Models (SIMs), and hence due attention is neededhi® related spatial-economic underpinning of
these models.

Furthermore, urban systems are usually connected retworked — by means of physical and
virtual infrastructures, and hence our analysid aldo explore how rank-size rules may be linked to

“Rank-size distribution or the rank-size rule (aw) describes the remarkable regularity in manypheena including
the distribution of city-sizes around the worldzes of businesses, particle sizes (such as samjths of rivers,
frequencies of word usage, wealth among individugtis All are real-world observations that follpawer laws such
as those called Zipf's law, the Yule distributiam,the Pareto distribution. If one ranks the popaolesize of cities in a
given country or in the entire world and calculaties natural logarithm of the rank and of the gigpulation, the
resulting graph will show a remarkable log-lineattprn. This is the rank-size distribution” (Wikiba, 2011).

2 Equation 1 mentioned by Krugman is the rank-site (see expression (1) in Section 2.1).
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social network analysis in space. From this |gtenspective, it seems plausible that different $ypk
infrastructure and socio-economic networks may ridoume — or give rise — to different city-size
distributions.

Our conclusion — both methodologically and emplhyca is that the rank-size concept can be
conceived as a ‘universal’ expression of many nedehditionally used in urban and regional
economics, and is thus able to: (i) grasp the h@meify/heterogeneity of the spatial system conaerne
(at an aggregate level, by means of its rank-szefficient); and (ii) understand the associated
connectivity infrastructure or socio-economic netwmorphology (or socio-economic constellation) of
complex spaces.

The present paper is organized as follows. SeQiamitically reviews the broader context of
Zipf's law, followed by an exposition on the retatship between Zipf's law and socio-spatial network
in Section 3. This section also discusses the muesthether the highest ranked places are alsbeake
connected places in a network. Next, Section 4nigiecal in nature and offers a wealth of experitsen
on German population centres and socio-spatial or&sy These empirical analyses are followed by
concluding remarks in Section 5.

2 The Spatial Economics of Zipf's Law

2.1 TheRank-Size Rulefor City-Size Distribution

Despite the frequent reference in the geograpleyalitire to Zipf (1949), Auerbach (1913) was
essentially the first to use the power-law condepdescribe city-size distributions. The basic farfn
the rank-size distribution is:

P=AR", 1)
whereP is a given size of a city populatioR;is the related rank of the citg;is the elasticity parameter,
andA is a positive constant (usually the populatiorth&f biggest city). In logarithmic form, the rank-
size distribution (1) shows a linear relationshsf@lows:

log(P) = log(A) - glog(R). 2)

In increasing order, the city with a rank equallts the biggest city of a country; the city with a
rank equal to 2 is the second biggest city, andrsoThe parameten represents the slope of the
logarithmic expression between the rank of the aitg the size. The slomemay be larger, equal, or
smaller than 1. Zipf (1949) stipulates that the-size distribution follows the rank-size distrilmit
with the g-coefficient equal or close to 1. This particulapeession is known as ‘Zipf's law’. It implies
that the city with rank 1 is two times bigger thae city with rank 2, three times bigger than thg c
with rank 3, and so on. Whenis larger than 1, it means that there is moreatigpand heterogeneity
between the cities, whereas wheis smaller than 1, it implies that the cities arere homogeneous
(see, among others, Brakman et al., 1999). CleZnpf;s law is a special case of the general raiak-s
distribution. It expresses a sort of ‘perfect hiehy’ between the spatial units in geographicakcespét
is essentially based on spatial efficiency priresplin a functional interconnected equilibrium
framework.

Several researchers also refer to Zipf's law asPtueeto distribution. This is formally correct, but
we prefer to differentiate between these two exgioes. In the present paper, we use formulation (1)
where we have the rank on tkeaxis and the city size on theaxis, so as to comply with standard
representations in regional science and geografiiys, our empirical research is based on a rark-siz
expression of type (1) and its logarithmic form. (2any authors have used this rank-size procedarre;
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example, Berry and Garrison (1958) show the cabspatial hierarchy in Korea and Washington. In
more recent years, Pumain and Moriconi-Ebrard (1890w the relevance of Zipf's law for a set of
countries with data from ‘Geopolfs’Brakman et al. (1999) and Mulder and de Groo0&Gtudy the
case of the Nederlands; Benguigui and Blumenfeé&bérthal (2010) present findings from Israel; and
Matlaba et al. (2011) study the size distributibidan areas in Brazil.

Clearly, other authors have used the axes in aseway, and then find, of course, the Pareto
distribution. For example, loannides and Overmad0&} study the evolution of the distribution of
populations of metropolitan areas for the USA; Dtiva (2002) analyses the city-size distribution for
the USConsolidated Metropolitan Statistical Areas (CMSASjsch (2005) provides a meta-analysis
based on Zipf's law; Giesen and Sudekum (2011)axipf's law in Germany at the regional and
country level; and Rosen and Resnick (1980) exatmadareto exponent at the country level. Clearly
the two approaches —i.e. Zipf and Pareto expnessiare formally similar.

2.2 A Spatial-Economic I nterpretation of the Rank-Size Rule

2.2.1 A Brief Review

As mentioned above, there is a large number ofiesugthich show the validity of Zipf's law,
particularly in the upper (truncated) tail (Clemeet al., 2011; Krugman,1996a; Levy, 2009; Mansury,
2010; Rosen and Resnick, 1980). It should noted 8wo (2005) has shown that the degree of
variability of Zipf's law also depends on the esdtion method used: he found contrasting resultsgusi
OLS or Hil* estimators. In particular, by using OLS, Zipfsvlavas rejected for the majority of
countries analysed, while this was not the casegusiHill estimator. The present paper, howeveesdo
not aim to discuss the best estimator for analygiegank-size rule/Zipf's law. Rather, we prefeipay
attention to the theoretical underpinning of thekraize rule of type (1), and hence to an apprépria
spatial-economic interpretation of its parameger

In spatial economics, Zipf's law — and its genesalk-size rule — has enjoyed much popularity,
mainly owing to its excellent fit in many empiricezses (for recent reviews, see, among othersy,Batt
2005; Nota and Song, 2007; Terra 2009). Thesetsasele accompanied by more basic interpretations.
Spatial-economic interpretations of the rank-sizie of type (1) can be positioned in the context of
Central Place theory (Berry, 1961; Krugman, 1996bjjdom growth (Simon,1955; Gabaix, 1999);
revealed comparative advantages (Hinloopen andeMagk;, 2006); Markov chain models of migrating
agents (Mansury, 2010); or general equilibrium thg@rakman et al., 1999). However, in all these
models the ‘real’ spatial arguments are missingndhough spatial interaction is taken into accoasit
for example, in Hinloopen and Marrewijk (2006), andMansury and Gulyas (2007). In our study, we
address this shortcoming in particular.

The first striking observation concerns the chdareand robustness of the power function, which
has been largely accepted and empirically provdrumdreds of studies, often showing an excellent fi
with very highR2 values. But some authors argue that this Rgholds, because the size of a city is
intrinsically correlated to its rank (Gan et alQ0B). This reinforces the argument that Zipf's lswa
statistical regularity and not an economic phenameithere is thus clearly a reason to pursue a more

3 “Geopolis is a data base that includes directly @atge population figures for all towns and citiesthe world
having 10,000 inhabitants or méréPumain and Moriconi-Ebrard, 1997, p. 308).

4 “Gabaix and loannides (2004) propose the Hill ()9&&imator as an alternative procedure for caltgahevalue
of the Pareto exponent. Under the null hypotheisieepower law, it is the maximum likelihood eséitor” (Soo, 2005,
p. 244).
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critical analysis of the economic foundations opfA law. It should be added that, when considering
the entire distribution of cities, including the a&liest ones, the rank-size rule might not hold
convincingly. Instead, a better distribution seeam®e the lognormal distribution. This follows from
Gibrat's law of proportionate growth (Glaeser et 8095; Gibrat, 1931). As a consequence, thessllis

an ongoing debate in the scientific literature loa difference between lognormal and power functions
in the rank-size rule (see, e.g., Giesen et alL02Beckhout, 2004).

Starting from the above considerations, we will dtyyesize here that the rank-size rule of type (1)
is closely associated with entropy maximization,evehthe related power function depends on the
analytical form of the constraint. Different furanial forms for the rank-size rule can then ememge o
the basis of different forms of the constraintse(sdso Section 2.2.2 below). It is noteworthy that
Corominas-Murtra and Solé (2010) demonstratedZhmts law is the outcome of a class of stochastic
systems, described in terms of statistical entrbpyyever, in their contribution, the value of eplyas
fixed and it is neither a minimum nor a maximum.ri®loecently, Corominas-Murtra et al. (2011) show
how Zipf's law can emerge from a variational apgto#o the problem based on Kullbacks’ minimum
discrimination of information principle, in the frework of the evolution of communicating
systems/human languages. In our entropy interpoetgsee Subsection 2.2.2), we will show that the
rank-size rule can also be derived from the entnm@ximization approach as developed by Wilson
(1967, 1970) and others.

2.2.2 Entropy and Rank-size Distribution

This subsection will present some central ideaspatial entropy derived from Wilson’s (1967)
work, but revisited in a geographic population feamork. Spatial flows are not present here, but the
stock of populationP,; in centrej can be considered as the outcome of a stock-flowess: namely, as

the sum of the net incoming flows plus residents,ttsat it is intrinsically connected with spatial
interaction. It is noteworthy that Parr (1985) leeady interpreted the rank-size rule — and rdlate
concentration patterns — in the framework of citigegeraction: ‘the process of concentration is
facilitated by (and ultimately dependent on) immvinterurban and interregional transportation

(Parr, 1985, p. 208). Let us now consiieas the most likely combination of population s®dk,

from among a very large number of realizationsdependent micro-level outcomes, as follows:

P!
: 3
|_|,- Rt <
The entropyE essentially refers here to the maximum probabititydecentralization among

random population centres. In the context of spah&ropy — as the basis for Spatial Interactiordile

— a set of relevant constraints is normally impogegl. on marginal totals or on the system’s totsks.

In our analytical framework based on Zipf's law orban hierarchies, we may trace the aggregate
implications of rank sizes of different centresoag of the cornerstones of our analysis. This thads

to the following Wilson type of entropy model foetworks of centres:

E=

MaxinE = Max- 3" P, (InP, -1)], (4)
S.t.

>, P =P, ()

2., PR=H, (6)
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where R; is the rank of population centygwith population siz&; ). The expression of the constraint
Zj P.R, =H may be seen as some sort of aggregate productesibdity frontier, a potential

function which depicts the position of efficientoan centres as a product of their population sk a
their corresponding rank. This expression mapslweitefficient distribution of population centresan
Christaller-Losch framework. Any position away frahis efficiency frontier means higher spatial sost
for a movement towards this frontiét.may then be seen as the weighted agglomerati@emipaitof the

total spatial system characterized by a Loschierahthical efficiency principle. Thus, the raRk may

be interpreted as a spatial (shadow) cost/benebixyp that will be incurred to reach higher
agglomeration benefits.
Problem (4), (5), and (6) can be solved by meanbkeof.agrangian equation:

L=—Zij(|nPj —1)+/1(P—Zij)+,8(H _Zj PjRj)’ (7)

which leads to the following optimal equilibriumlstion for P, :

P, = Aexd- AR, ), (8)
where
A=exp-1). (9)

In addition, if we consider thd constraint (6) in logarithmic terms, we obtain thikowing power

form (with 3= ):
-q
P =AR . (10)

Formulation (10) issimilar to the rank-size equation (1). In addition, by gsthe maximum
entropy concept, we can also justify — in a ramesule context — analytical forms that are diffgre
from the power function (10), such as the expoméritirm (8) (see also Subsection 2.2.3). From a
methodological viewpoint, the above analysis isadiein line with the generalized cost minimization
principle (see Nijkamp, 1975), and thus also wit fprinciple of least effort’ advocated by Zipf949)
(although this was used by him in a language cahtéixshould be noted here that the rank-size rule
expressions (8) and (9), by being compatible withtisl interaction models of the Wilson type, asoa
compatible with discrete choice models, and hemeg their origin in micro-economic behavioural
theory. In a Ldsch spatial equilibrium frameworke thighest ranking centre has the highest internal
efficiency (i.e. agglomeration advantages) and ltheest system’s overall interaction costs. And
therefore, the exponegtmay be seen as a shadow price for the transactists an moving from a
lower rank towards a higher rank. In this frameworénk-size refers to thepfoperties of the
configuration of opportunities for spatial interamt” (as the vector accessibilitg in Weibull, 1980, p.
54).

It should be noted here that the valuegof 1 in expression (10) represents the specific chse
Zipf's law, in which — following Zipf's terminology- the unification forces (influencing the masBgs
and the opposing diversification forces (influercthe shadow pricelR) are balanced according to a
perfect equilateral hyperbola:

PR =A (11)



where the constart can be then interpreted as a sort of erfargorporating — at the equilibrium — the
conflicting forcesP; R. It seems then obvious to argue that this ‘peréegtilibrium’ (11), emerging
from an entropy maximization approach, may occudeunrspecific space-time conditions, i.e., with
particular samples and conditions of the varid®lgor of any other economic variable under analysis
expression (10)), as we will show in our empiriggplication (Section 4).

2.2.3 Alternative Functions for the City-Size Distributio

The previous section has shown that the exponduotial (12) in the rank-size rule can be derived
from a theoretical framework related to entropy mmazation (or generalized cost minimization). It
should also be noted that ‘spatial’ entropy (5) bannterpreted as an indicator of the variety/diitg
of a system (Nijkamp and Reggiani, 1992; WilsolQ20Gordon, 2010), while it can also be linked to
Central Place theory (Gordon, 2010). The potemfalthe exponential and the power functions
(expressed in formulations (12) and (14)) in magpine homogeneity vs. heterogeneity of spatial-
economic networks has also been highlighted invilr@us regional and urban economic studies, e.g.
by Richardson (1969), Wilson (1967), Willigers &t(@007), and recently by Reggiani et al. (201im),
the context of spatial interaction modelling. lotfaan exponential functional form is consisterttwthe
assumption of a constant distance decay paranwetal trip makers — who are then homogeneous with
respect to this dimension. On the other hand, tveep function is consistent with a gamma distribuati
for the distance decay parameter; that is, the |ptipn of trip makers is heterogeneous with respect
this parameter (Fotheringham and O’Kelly, 1989).

The previous methodological analysis has also lygtdd the empirical relevance of rank-size
rules. The power function (1), as well as the exmtial function of type (8), will be adopted in our
subsequent empirical tests that serve to explagerdink-size distribution of population at different
spatial scales (Section 4). In addition, given t¢mgoing debate on the potential of the lognormal
function in the presence of small units, the logmalr function will also be utilized. Finally, we als
consider the Tanner function, which incorporateth libe power and the exponential form. Therefore,
we test the following set of alternative rank-dizections:

(a) the conventional power form: P=AFR"; (12)
(b) the exponential form: P=Be"™; (13)
(c) the lognormal form: P = Cg"(o9R" . (14)
(d) the Tanner form: P= D(e_ﬁR R™ ) (15)

The empirical results emerging from the estimatbthe above functions (12)-(15) in the context
of German regions will be presented in Section 4.

® Surprisingly, the rank-size rule as in (10) reskesilEinstein’s law (1905F = M C?, whereE is energyM is massC

is the speed of light, which — like the raRk- may clearly have an economic value; here théficmant of C assumes
the value 2 (Newton’s value), instead of 1 (Zipfadue). The populatioR; in Eq. (10) may then be interpreted as mass
M, and the constam as energye (Reggiani, 2012). It should be noted that Isar@7(@) interpreted Einstein’s law in
agglomeration theory; however, in his view the @hlé C represents flux or movement rather than a relatost (or
benefit) factor, as in the present interpretation.
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The next important methodological step concernsatieysis of the validity of the rank-size rule
in spatial networks. In other words, if we considarurban system as a connected network, is tlke ran
size rule/Zipf's law still valid, and how is it ekd to network connectivity analysis? The subsejue
section will offer some new thoughts on this issue.

3 Connectivity Networks under Zipf's Law

In recent years, there has been great interesteinnterdisciplinary study of complex networks
with special reference to the relevance of thepotogical structures. The idea that underlies this
approach is the proposition that the topology (ohiecture) of interactions between the varioustsi
of the evolving networks is an essential constitugihmany dynamic processes, which cannot be
ignored without losing a crucial ingredient of tiphenomena under consideration (Reggiani and
Nijkamp, 2009; Vega-Redondo, 2007).

In this framework, several studies have been devimté¢he relationship between many social and
economic phenomena and their related network camtgcstructures. Although the application fields
are substantially different, it has been shown tihese connected networks display common topolbgica
patterns. These patterns can be roughly associatedwo main network models, Random Networks
(RN) and Scale-Free (SF) networks, on the basteefundamental contributions by Barabéasi and his
co-authors (Albert and Barabasi 2000 and 2002; [Zeria2002; Barabasi and Albert 1999, 2000).
Several applications of these models can be foandifferent fields, such social science, biology,
economics, technology, transport and telecommubitafsee, e.g., Buchanan 2002; Reggiani and
Nijkamp 2006; Reggiani et al., 2011a; Yook et2002).

These network models are characterized by theinn@ctivity) degree distribution, i.e. the
probability P(k) that a chosen node in a certain network has gxadinks. In an RN context the degree
distribution follows a Poisson distribution, while SF models it follows a power-law distributiorg.i
P(k) ~ k™, wherey represents the degree exponent. The Poissorbdistn indicates that most nodes
have approximately the same number of links, wiilethe power-law degree distribution “the
probability that a node is highly connected isistiaally more significant than in a random grafie
network properties often being determined by atiradly small number of highly connected nodes that
are known as hubs” (Barabasi and Oltvai, 2004,08).1lt is interesting to recall here that the powe
law function has also been extensively studiedafogy and economics (Bak 1996; Krugman 1996b).

Interestingly, according to Barabasi, the valug isfrelevant for determining specific properties of
the network.“The smaller the value of, the more important the role of the hubs is in tieéwork.
Whereas fory >3 the hubs are not relevant, for 2<<3 there is a hierarchy of hubs, with the most
connected hub being in contact with a smadicfion of all nodes, and foy = 2 a hub-and-spoke
network emerges, with the largest hub being inadnwith a large fraction of all nodegBarabasi and
Oltvai, 2004, p. 102)In addition,Barabéasi and Oltvai also outline tHat y >3 “most unusual features
are absent, and in many respects the scale-fre@riebehaves like a random one” (2004, p. 102).

We will consider the urban structure as a netwevkere all centres can be linkede.g. by
internet, transport and social links, etc. The raizle rule, or Zipf's law, may now be reconsidefiean
this new perspective, by comparing tteoefficient in expression (1) with the connecividegree
distribution y of the population according to Barabasi's analysr aim is then to infer a
methodological correspondence between the rank-sike/Zipf's law and network connectivity

® According to Barabasi’s analysis, one flow-conitetts sufficient for determining one network-link.
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analysis. In this context, we will start from th@ldwing correspondence between theoefficient and

they-coefficient:
=1+ : 16
r=1+( %) 9

This expression is in agreement with Adamic (2000)0 shows that the power-lawncoefficient
(emerging from the nodes’ probability (frequencigtidbution) is related to the rank-sigecoefficient
(1) (emerging from ranking the variables), as iatéd in equation (16). A systematic analysis — dase
on (15), and under the hypothesis tRataptures the incoming degree distribution — le¢adSable 1,
which summarizes our novel findings and provides fihllowing conclusions for various values epf
andy:

* ¢= 1: this expresses Zipf's law — i.e. a ‘perfedérarchical structure — while we have a value
of the degree distribution= 2, which is considered by Barabasi and OltvaD@) as &ub-and-
spoke network, with the largest hub connected witarge fraction of all nodes, as previously
indicated. In other words, on the one hand, weicter that the highest-ranked cities are also
the more-connected, behaving as hubs. On the b#ret, if we hypothesize that all the centres
are — physically or virtually — connected wheer 1, we can infer that our urban system follows
an SF pattern of a hub-and-spoke type, with alsadal character. In this perspective, we can
state that Zipf may be seen as a predecessorthe basis of his law — of the socio-economic
connectivity features proposed by modern netwoedyais, or vice-versa, that modern network
analysis is revisiting Zipf's law (see also Reg@i@009). Fascinatingly, Berliant and Watanabe
(2008) came, though with a different methodologyatsimilar conclusion, by arguing that an
SF network structure explains the city-size disthiim.

(> 1: from a spatial-economic viewpoint this sitaatindicates a high heterogeneity of the
variables concerned (in our case, population),asalso indicated by other authors (see Section
2.1). From a social connectivity viewpoint, theresponding value < 2 highlights the increase
of the value of the hubs in the networks, whiciiine with the related heterogeneous spatial-
economic patterns, i.e. urban agglomeration pattermd sheds a clear light on the hubs’ role.

* 0.5 <qg<1: from a spatial-economic viewpoint this sitoatindicates even more varied patterns
of the population (in comparison to the previouseda with a trend, however, towards a
hierarchy. The emerging network analysis displays f the values 2 ¢ < 3, which matches a
hierarchy of hubs, with the most connected hub d&ncontact with a smallrdiction of all
nodes. Once again, the results of the two analgégsay an interesting correspondence
between two sides of the same coin, i.e. spat@ah@nic and connectivity patterns.

* (< 0.5: from a spatial-economic viewpoint this atian indicates a very homogeneous pattern
of the population. The network connectivity anadyshows then the valye> 3, corresponding
to a random network, thus completely in line whik even distribution of urban landscapes.

In summary, Table 1 depicts the ‘methodologicalrrespondence between the rank-size
coefficient ) and the degree distribution coefficiept (t shows how Zipf anticipated modern network
analysis, as advocated by Barabasi about 50 ya@ns In particular, we may argue that, in genexal,
increase of thg-coefficient leads to a rise in spatial heteroggneiwhich can also be interpreted as an
increase of economic development, owing to intexarboncentration (Parr, 1985) —, which corresponds
to a decrease of thecoefficient (indicating an increase of network cectivity/hierarchy of hubs). In
particular, for values off > 0.5, we have a rise in spatial heterogeneity. (arban disparities or



inequalities) which corresponds — in our netwanklgsis — to an SF network pattern. In other woads,
value ofq around 0.5 may act as a critical threshold thdterdhe transition from spatial homogeneity
(in terms of population size) towards spatial ireddy, which corresponds to the transition — in the
associated connectivity network — from a randomvoek type to an SF network.

Table 1.Correspondence between Rank-Size Coeffidighand Degree Distribution Coefficie(t)

Urban Structure Urban Network
Rank-size coefficienty) (Connectivity) degree distribution coefficiemj

Scale-Free Network

q>1 r<2
High urban heterogeneity Increase of the valub®hubs in the networks
q=1 y=2

‘Perfect’ urban hierarchical structure Hub-and-spoke network, with the largest hub b¢ing
(Zipf, 1949) in contact with a large fraction of all nodes
(Barabési and Oltvai, 2004)

0.5<qg<1 2<y<3

Hierarchy of hubs, with the most-connected huib

Urban heterogeneity being in contact with a smalicction of all nodes

Random Network

q<0.5 y>3

Urban homogeneity Random network

* Note here thdty=1+(/1aj

Consequently, we can design a ‘methodological’ lsysis framework (see Table 2) which
highlights that economic variables, such as pomriaGDP, etc.., if taken into account in a rargesi
framework, may be more appropriately interpretedjdiytly exploring the associated connectivity
structure (and vice versa).

" See expression (16).
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Table 2. Synthesid=ramework Two Sides of the Same Coin (adapted from Regg0Q9, p. 279)

Rank-Size Analysis Network Analysis
(Complex) interactions between nodes (Complex) interactions between nodes
Focus on the relateztonomic variableand Focus on the relatdohks and theirprobability
their ranking degree distribution
Focus on thepatial-economic meaning of the  Focus on theonnectivity patterns of the
functional forms functional forms

Thus far, we have achieved two major goals: (iprantl correspondence between rank-size rules
and entropy, and (ii) a new methodological intetggien of modern network analysis from a rank-size
perspective. In the light of these findings, itngortant to address the practical relevance ofresults.
And therefore, we now present an extensive empiapplication on spatial-economic connectivity
patterns of population in Germany, at differenttspacales.

4 Empirical Application: City-size Distributions in G ermany

4.1 Rank-Size Rule Resultsfor Different Spatial Scales

As previously outlined, our objective is to exgdrow theg-coefficients, emerging from the rank-
size rules (12) and (15), as well as thand A coefficients emerging from (13) and (14), vary at
different spatial scales. This study uses detadpdtio-temporal data on the Federal Republic of
Germany.

The choice to use German data was partly instigayetdhta availability, but also partly by the fact
that the Christaller-Losch system mainly had itsirttorigin in the German space-economy. The basic
unit is the municipality (Gemeinde); at the end26D6, Germany consisted of 12,375 municipalities.
Administratively, they are grouped into 439 digsi¢Kreise). In the case of the larger municipediti
some districts consist of only one municipalitydahen both these administrative units are idehtica
(117 cases). In these 117 cases, the municipaditgalled a “district-independent municipality”
(“kreisfreie Stadt”). For the sake of analysis, #®9 districts are aggregated to nine spatial types
following the classification of the German Feddraititute for Research on Building, Urban Affairsda
Regional Development (Bundesinstitut fir Bau-, $tadd Raumforschung, BBSR), which refers to the
degree of urbanization and agglomeration. In aalditive will consider in our analysis a subset &f th
municipalities, conventionally named ‘cities’, dmetbasis of two criterfa historical reasons, and size
(usually more than 10,000 inhabitants).

In summary, in our study we analysed the followimgts: aggregation/typologies of districts (9),
districts or ‘Kreise’ (439), cities or ‘Staedte’b@ut 2100), municipalities (about 12,000), and c¢hg-
network (17). The time period of our data coveryédars, so that we have a full panel sample.

Table 3 displays the mean values of the variousficmants g, 3 A over the years, for the three
spatial scale levels (district, city, and municigdg) as well as for each sample size of these |atiom
centres in Germany. It should be noted that it bheesn possible to report the mean values, since the

8 The authors would like to thank Alfred Garloff aBdrsten Pohl (IAB, Germany) for their clarificatiof the German
meaning of a ‘city’
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values of our coefficientgy( [} A) are rather stable over the years (see Secti@r4.8). In addition, the
related mean R? is presented. Table 3 shows thatalue ofg-coefficients, as well as the values of the
3 and A coefficients, vary for different spatial scales. tiis framework, we have also tested the
imposition of the cross-equation coefficient eqyalestrictiol. First, we investigated whether there is
a difference between the coefficients’ values im filbst two equations, the first and the third dopres,
and the second and the third equations. In aletheses the null hypothesis of parameter equalitidc
be rejected at the 5 per cent significance levieésg differences in the coefficients might be aased
with the diverse economic development profiles loé different population centres concerned, by
following the ideas of Berry (1961) on differentyesize distributions related to the relative eaqorm
development of countries.

Table 3: Rank-Size Coefficients for Different Functional Frand Spatial Scales in Germany

District Population City Population Municipality Population
Rank-size Rule's - P ; (about 2,100 (about 12,000
. Coefficient (439 observations; ) .
Functional Form ears: 1985-2006) observations; observations;
y ' years: 1993-2007) years:1993-2007)
q 0.6172 1.0571 1.3979
Powef® (0.00868) (0.00799) (0.001227)
R2 0.9203 0.8963 0.8757
B 0.0047 0.0018 0.000409
Exponentidf (0.000078) (0.00001147) (0.0000002)
R2 0.890597 0.9210 0.9482
1 0.07244 0.08961 0.09581
Lognormaf® (0.000865) (0.000733) (0.000064)
R2 0.941252 0.8703 0.9248
q 0.3668 0.51302 0.5502
(0.011997) (0.008309) (0.000943)
Tannef” B 0.0022 0.00104 0.0003
(0.000092) (0.0000138) (0.0000003)
R2 0.965178 0.9723 0.9818

Note: Standard errors in parentheses.

@Conventional rank-size with power forr:= AR™;
®)Rank-size with exponential fornP = Be X ;

©Rank-size with lognormal formp = Ce™ (%" ;

“@Rank-size with Tanner fornp = D(e ™R ™).

® This is done by means of the SURE test with STARAurther analysis able to correct biases in smathples might
be the rank-1/2 regression advocated by Gabaixlaagimov (2011). The authors wish to thank Giovarasso for
all these suggestions and his valuable assistartbésirespect.
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Moreover, each function (power, exponential, logmalr and Tanner) seems to fit the city-size
distribution well. In fact, the values &2 are very high (the smallest is 0.87 and the bigige8.98). It
means that essentially no particular function tsdoehan another.

If we focus on the conventional power form, it skiole noted that thg-coefficient is very close
to 1 when considering the city population. In ttese, it perfectly matches Zipf's law (hierarchg)the
case of the district population, tleecoefficient is smaller than 1, showing charactessof some
homogeneity between the districts. On the contrayyanalyzing the population of the municipalities,
the g-coefficient appears to be greater than 1. Thismmdhat there is a clear disparity between the
municipalities in Germany, with strong urban agghoation patterns. From a network viewpoint, the
connectivity structures of the three spatial aggimations seem — at their mean level — oriented risva
an SF pattern (see Table 1).

The subsequent sections (4.2-4.6), provide morailgetoncerning the analysis of the
‘conventional’ rank-size — embedding a power forwith reference to different spatial scale levels i
Germany, while Section 4.7 conducts the same asalys considering the alternative rank-size rule
functions described in Section 3.

4.2 Rank-Size Rule Embedding a Power Form: Analysis of Aggregation of Districts in
Germany

As a first step of our empirical analysis, form(@ is applied — for the years 1985-2006 — to the
nine typologies of the 439 German districts, acicwydo their degree of urbanization and agglomenati
(see Section 4.1, as well as Table A1 and Figur@Adnnex A).

Table 4 shows the values of tiecoefficients at district level across the 9 tymdseconomic
regions in Germany. We can observe some interegiifegences in theg-coefficient values; in fact, we
seeg-coefficient estimates between 0.86 and 0.87 fatrigt-type 1, and between 0.71 and 0.73 for
District-Type 2, thus significantly higher than th&alues for the other economic types of distriéis.
the remaining types (3-9) display much lower valoéghe g-coefficient, below the value of 0.50,
except District-types 6 and 8 which show valuearolund 0.50 in the last six years of the data s (
also Figure 1).

Table 4: Rank-Size Coefficients across Nine Types of Ditdrin Germany

District District District District District District District District District

type 1 type 2 type 3 type 4 type 5 type 6 type 7 type 8 type 9

a | R2| g | R? g | RRl g | RR|l g | R|qg|R|qg|R|qg|R| g | R
1985| 0.860| 0.948| 0.711 0.66 0.447 0916 0.379 0.f82 220/40.895| 0.463 0.745 0335 0.799 0.464 0.854 078311
1990 | 0.861| 0.953| 0.71§ 0.67 0.4585 0.9p6 0.267 0.813 070/40.874| 0.475 0.753 0334 0.793 0.470 0.858 08716795
1995| 0.860| 0.956| 0.717 0.66 0.479 0.920 0.269 0.803 880|30.843| 0.496 0.761 0.341 0.798 0.493 0.855 0.3§4818
2000 | 0.859| 0.960| 0.721 0.66 0.488 0.90p2 0.292 0.f14 790[30.832| 0.510, 0.757 0.346 0.8 0513 0.849 0.3®4820
2003 | 0.859| 0.961| 0.724 0.66 0.497 0.892 0.301 0.689 840[30.833| 0.521] 0.757 0.354 0.8 0.523 0.849 0.398830
2006 | 0.866| 0.961| 0.724 0.66 0.504 | 0.883 0311 0.678 0.385 0.828 0.529 0.J60 600{30.816| 0.530| 0.848 0.4056 0.8
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Figure 1: Rank-size Coefficients across Nine Types of Qistin Germany (Table 4).
Legend: x-axis: years (1985-2006y:axis (-coefficients).

These results confirm the argument that an incréagbe g-coefficient is associated with the
economic development of the country/region (seeyragrothers, Berry, 1961; Parr, 1985). It is worth
noting that specific types of district (namely, @ist-types 1 and 2) with higher values of the
coefficient also have a higher GDP. In additionpl€al and Figure 1 show that tlaecoefficients
increase slightly for every type of district ovhetyears considered (except for the District-typelbis
result is also in line with the rise in economizelepment in the German regions.

It should be noted that, in this particular typolad areas, the values of tiqecoefficients show, in
general, values either around 0.8 or around (oefotlwan) 0.5. This means that District-type 1 and
District-type 2, with values off around 0.7-0.8, indicate a tendency towards utiEarogeneity, and
thus towards hierarchical connectivity structurascording to Table 1), while the remaining seven
types of districts (District-types 3-9), with vatuefq < 0.5, display rather homogeneous patterns (‘club
convergence’) — which correspond to a random ndtwaym a connectivity viewpoint (Table 1).
Interestingly, District-types 6 and 8, which shoalues of around 0.5 in the last six years of th@a da
set, are classified as ‘highly urbanized distrietsd ‘urbanized districts’, while District-typesZand 9,
which display very low values of around 0.3, arasslfied as ‘rural districts’ (see Table Al).
Consequently the values of tlecoefficient — and of its counterparthe y-coefficient — seem to
perfectly match the classification of the nine tggees of districts.
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4.3 Rank-Size Rule Embedding a Power Form: Analysis of German Districts

Next, we apply formula (2) at district level (43®i@an districts) for the years 1985-2007. Table
5 illustrates the results, whegarepresents the rank-size coefficient for a pardicykear. The rank-size
regressions of type (2) provide the followiggstimates for total population: a value betwe&® &nd
0.63, with anR? of about 0.92. The values of tlecoefficients show again a slight increase over the
years for the total population. We may thus infettat district level the related population hatea
homogeneous characteristics; however, this patigroriented towards urban heterogeneity and
hierarchical connectivity structures (Table 1).

4.4 Rank-Size Rule Embedding a Power Form: Analysis of German Cities

We will now apply formula (2) at the city level @ermany. Our study is concerned with the
number of inhabitants for about 2,100 cities (Staeoh Germany. It covers the time period from 1993
to 2007. The results are again given in Table teréstingly, the emerging-values at the city level,
although close to 1, slightly increase from thery2@00 to 2007, thus reflecting an increase in enuo
development, probably caused by a rise in physindl virtual interurban connectivity. In generalsth
sample size follows Zipf's law, which states tha¢ walue of theg-coefficient is equal or close to 1,
thus showing a perfect hub-and-spoke system frarat@ork connectivity viewpoint (Tablel). TIr®
values are rather stable over time, and are alnaty®r high (with an averade? of about 0.89). It is
worth noting that, by considering a truncated sa&naplthis city data set, Zipf's law no longer ho(dse
later Subsection 4.9.2).

45 Rank-Size Rule Embedding a Power Form: Analysis of German Municipalities

The data set for the study of the rank-size g-ogdefits at municipality level in Germany contains
the number of inhabitants for about 12,000 munidipa, covering the years 1993-2007. Table 5 shows
the results of formula (2) applied at municipalgyel. In particular, we observe that the valuetheiy-
coefficients are about 1.4 for each year, viréhvery close to 0.87. Values of tlgecoefficient greater
than 1 imply that at the municipality level the esimcreases more than proportionally, while at the
district level it increases less than proportionallhis means that at the municipality level thare
great inequalities between the units, with an iaseeof the value of the hubs seen from a network
connectivity perspective (Table 1).

Table 5 shows that — analogously to the city levide values of thg-coefficient slightly decrease
until 2000, and then slightly increase from 200@@87. Analogously to the district case, we camthe
also interpregy as an indicator of economic development for thenioipality level. In summary, from
our experiments, we may interpret the potentiahefg-coefficient as an (aggregate) indicator of urban
heterogeneity and economic growth, as well of tt&eiated socio-spatial networks, by means of its
‘counterpart’, they-coefficient (see equation (15) and Table Ih)this perspective, in the absence of
flow data, populatiorP; appears to be a fundamental variable which is @bleroxy urban patterns
characteristics, as well the linked socio-spatetiorks. Clearly, any other variable could be used
order to explore the related patterns and netw@@E, incoming flows, etc.).
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Table 5: Rank-Size Rule Distributions Embedding DifferemnEtional Forms: Analysis of Various Spatial
Population Levels in Germany

District Level

Power Exponential Lognormal Tanner
q R2 B R2 A R2 q B R2
1985 0.6042 0.924 0.00459 0.882 0.07p7 0.939 0.3(49.00201 [ 0.963
1990 0.6099 0.926 0.00454 0.879 0.0714 0.941 0.3849.00197 | 0.963
1995 0.6139 0.923 0.00461 0.847 0.0719 0.942 0.3(36.00211 | 0.965
2000 0.6181 0.917 0.00469 0.895 0.07p6 0.940 0.3579.00227 | 0.965
2003 0.6247 0.916 0.00474 0.899 0.0785 0.941 0.3p46.00236 | 0.966
2006 0.6321 0.916 0.00481 0.902 0.0744 0.942 0.3p5D.00242 | 0.968
City Level
Power Exponential Lognormal Tanner
q R2 B R2 A R2 q B R2
1993 1.0488 0.903 0.00171 0.918 0.0929 0.939 0.5B0P.00099 | 0.974
1995 1.0540 0.901 0.00171 0.919 0.0983 0.938 0.5p7H5.00101 [ 0.973
2000 1.0511 0.896 0.00179 0.921 0.0982 0.935 0.5108.00103 | 0.972
2003 1.0613 0.893 0.00179 0.923 0.0866 0.814 0.5p40.00106 [ 0.972
2006 1.0616 0.892 0.00179 0.923 0.0848 0.784 0.5p30.00106 [ 0.971
2007 1.0658 0.892 0.0018d 0.923 0.0869 0.811  0.5p29.00107 | 0.971
Municipality Level
Power Exponential Lognormal Tanner
q R2 B R2 A R2 q B R2
1993 1.4024 0.881 0.00041 0.947 0.0961 0.929 0.5599.0003 0.983
1995 1.3994 0.878 0.00041 0.947 0.09%9 0.927 0.517.0003 0.982
2000 1.3935 0.875 0.00041 0.948 0.0955 0.924  0.54560.0003 0.981
2003 1.3961 0.875 0.00041 0.949 0.0960 0.924  0.5#340.0003 0.982
2006 1.3984 0.872 0.00041 0.930 0.0961 0.924 0.5¢010.0003 0.983
2007 1.4045 0.873 0.00041 0.930 0.0963 0.923  0.5#010.0003 0.982

City Network Level

Power Exponential Lognormal Tanner
q R? B R? A R? q B R2
1985 0.7388 0.958 0.1099 0.844 0.2207 0.487 0.6940.00748 | 0.953
1990 0.7661 0.964 0.1131 0.836 0.22Y3 0.479 0.761D.00081 | 0.959
1995 0.7807 0.963 0.1147 0.846 0.2309 0.§73  0.8p26.00368 | 0.958
2000 0.7788 0.967 0.1139 0.841 0.2298 0.§72 0.8P64€.00801 | 0.963
2003 0.7778 0.968 0.1134 0.816 0.2292 0.470 0.8419.01079 | 0.964
2006 0.7785 0.967 0.1136 0.818 0.2298 0.472  0.8849.00949 | 0.963

4.6 Rank-Size Rule Embedding a Power Form: Analysis of the German City Network

The level of analysis in our study refers to thiey‘aetwork’ identified by Reggiani et al. (2011b),
on the basis of transport and related economicdraakd factors. Our selected city network covers a
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system of 17 German core districts/citfethat have been chosen from the 439 Germany dstric
according to the following criteria (for each disty. (a) high accessibility; (b) high connectivityith
speed railway network; (c) relevance for the Gere@mmomy.

In this particular case, we foundjacoefficient of 0.7, indicating that there is nofparfect’ urban
hierarchy in this network constellation (see agéable 5). From a connectivity viewpoint, the
coefficient indicates the presence of an SF stradfliable 1). This is plausible, since the dissrighder
analysis, being also the highest ranked ones frame@nomic viewpoint, are certainly the best
interconnected ones from a transport viewpoint,

4.7 Ways Forward

Our analysis has brought to light interesting rssoh rank-size rules. If we consider the case
where the rank-size distribution embeds the powemfin the context of different spatial levels of
population in Germany, we can report the followingportant findings: the-coefficient is, in general,
greater than 1 for municipalities, and less thaforldistricts, the city-network and the nine main
administrative-economic regions. Theoefficient is equal to 1 for both the total numbécities, and
for a truncated sample (more than half the sampt ®f the municipalities. Thus, there is scald an
size sensitivity, as was also outlined by otheeg(g.9., Guerin-Pace, 1995; Soo, 2005).

In conclusion, our analysis has clearly demondirdtat the general confirmation of the validity of
Zipf's law for the German spatial system, as claimey Giesen and Suedekum (2011), holds
exclusively — and still under specific conditiondor some samples of the municipality level (sush a
the total city data subset, and a large sampléetunicipality data set). Other spatial scaled kea
totally different values of the rank-size coeffitigand thus the validity of the findings of Giesamd
Suedekum seem to be confined to particular cades.iJ in accordance with Brakman et al. (2001, p.
203) who state:so an important issue in comparing studies on Zif#iv is the choice of the sample
siz€. These authors mention two strategies which mightised to overcome this problem: a) to use a
fixed number of cities; and b) to exclude citietolaea certain size threshold. We will now apply ot
these strategies to our German data set.

Concerning the first approach, we reduced the numbdistricts and municipalities and analysed
the remaining smaller sample size for both theséiapcategories. Concerning the second approageh, w
reduced the sample size by excluding the citiecchviiave a number of inhabitants below a given
threshold (see Section 4.9). Before discussingl#ss step of our analysis, we briefly discussha t
subsequent Section 4.8 the results which emerdesach spatial level — by considering various rank-
size functional forms that are different from theyer function.

4.8 Rank-Size Rule Embedding Alternative Functional Forms: Analysis of Different Spatial
Levelsin Germany

Up to now we have examined the results which eenémgm the adoption of a rank-size rule
embedding a standard power form, with referencdifferent spatial population levels in Germany.
However, as indicated in Subsection 2.2.3, altereagpecifications for city-size distributions cha

19 This selected city network covers the following ihferconnected districts in Germany: Berlin, Botemen,
Dortmund, Dresden, Disseldorf, Essen, Frankfurtmblag, Hannover, Karlsruhe, Koéln, Leipzig, Mannhgim
Minchen, Nirnberg and Stuttgart (see for detaiblgdrani et al., 2011b).
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adopted and also justified from a theoretical vieimp Along these lines, we adopted here rank-size
distributions embedding alternative functions, artgular: the exponential form (12), the lognormal
form (13), and the Tanner form (14).

Table 5 shows that each of these functions appeditsthe different urban structures in Germany
rather well, with highR? values. In addition, we observe that the Tannection very often performs
better. However, since the Tanner function embexdis the exponential and the power form, an F-test
should be carried. In general, the lognormal pemfobetter than the exponential and power forms, at
least at the district, city and municipality levelowever, this does not hold for the city-netwoekél,
but this is a particular case of only 17 districts.

Our empirical results do not clearly discriminattvieen various functional forms, and hence we
cannot infer that one function is superior to arotin summary, other functional forms can be dgual
suitable to represent the rank-size distributionpopulation, as was also argued in Section 3. A
remaining issue is still the role of the sample sizidentifying the particular value of the coeiint in
Zipf's law, i.e. the value of)=1 in the rank-size formulation of type (1). Thesue will be further
explored in Section 4.9.

4.9  Senditivity Analysis: The Rank-Size Coefficient vs. Sample Size

4.9.1 Sensitivity Analysis with Reference to the Germastriots

In this subsection we examine how tpeoefficients (emerging from the rank-size disttibns
embedding power forms) can vary with respect ttedght sample sizes, at different spatial levelghef
German data set.

The first step in our sensitivity analysis conceansnvestigation of the population patterns of the
439 German districts, by varying the sample sizs. iAdicated in the previous sections, aur
coefficient is rather stable over the years. Wes@né here the results for the year 2006, for the s&
comparison with the years concerning the othenapstale levels. In our procedure we start from th
highest ranked districts, and we gradually increadgenumber of districts, by gradually reducing the
minimum number of inhabitants per district (seel@d). These results highlight that the value efdgh
coefficient never gets closer to 1 if the numbethef districts is reduced. In fact, decreasing f&88 to
100 districts, the value of thepcoefficient decreases from 0.63 to 0.48. Subsefyenith less than
100 districts, the value increases to 0.51.

Table 6: Estimated Rank-Size Coefficienty) {/s. Sample Size; German Districts; Year 2006

Number of districts Minimum no. of
(by highest rank) inhabitants per district q R SE
25 444,700 0.5135 0.916 0.0346
50 308,331 0.5135 0.948 0.0171
100 224,347 0.4819 0.969 0.0086
300 108,364 0.5345 0.985 0.0038
439 - 0.6321 0.916 0.0091

Note: 439 districts; min. inhabitants for a didtrig4,842; max. inhabitants for a district (Berli)404,037.
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From our empirical findings we can infer, therefotigat, at the German district level, a rather
homogeneous patterns of population exists — andezpuently a random network from a connectivity
viewpoint — especially for a reduced number ofrditt (see also Table 1).

4.9.2 Sensitivity Analysis with Reference to the Germiie<C

The second step of our sensitivity analysis corgcéna investigation of the population patterns of
German cities, for different sample sizes, foryear 2006. Table 7 shows the related results. kWere
can see that a value of thecoefficient equal to 1, which occurs when consitgthe total number of
the cities (Section 4.4.), is no longer reachedwhie reduce the sample size.

Table 7: Estimated Rank-Size Coefficienty) {/s. Sample Size; German cities; Year 2006

Number of cities Minimum no. of R2 SE
(by highest rank) inhabitants per city q
50 159,060 0.7333 0.982 0.0144
100 82,797 0.7850 0.989 0.0085
500 25,084 0.7741 0.997 0.0021
1000 12,583 0.7923 0.996 0.0015
1500 6084 0.8731 0.978 0.0034
2075 0 1.0616 0.892 0.0081

Note: 2,075 cities; min. inhabitants for a city336nax. inhabitants for a city (Berlin): 3,404,037.

This specific result does not confirm the genergument in the literature that grcoefficient
equal to 1 seems to appear in truncated samplesevghaall cities are not considered (see, e.g. Giese
and Suedekum, 2011).

4.9.3 Sensitivity Analysis with Reference to the Germanibpalities

The third step of our sensitivity analysis concetims investigation of the population patterns of
the German municipalities, for different samplessizagain for the year 2006. Table 8 shows difteren
values of they-coefficient with respect to different sample sifsthe German municipalities.

The values of they-coefficient appear to vary between 0.73 and 1Bé&ween 25 and 1000
municipalities, the values of tlgecoefficient are rather stable with values arourk8@.76. The values
of the rank-size coefficients increase from 0.7@&Hvt000 municipalities) to 1.40 (when we consider
the total sample size). In general, we find a digpaetween all municipalities, which means there
are many small municipalities and a few large mipaidies (see Table 1). Interestingly, tle
coefficient approaches 1 around 6200-7500 munitipsl(more than half the sample size). Figure B1
in Annex B illustrates this point empirically, witteference to the case of 6500 municipalities. In
particular, if we exclude the smaller municipakti@vith less than 1,447 inhabitants per municigplit
we can see @g-value of 0.999% 1, thus indicating the ‘perfect’ Zipf's hierarclaynong them, which
corresponds to a hub-and-spoke system from a nletemmnectivity viewpoint (Table 1). All in all,
these results concerning the municipality dataceafirm the previous findings concerning the German
city data set; in other words, Zipf's law is obeyaath for the total number of cities (2059) and dor
consistent number of municipalities (6200-750@), for specific subsets of German municipalities.
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Table 8: Estimated Rank-Size Coefficienty) {/s. Sample Size; German Municipalities; Year 2006

Number of municipalities Miniml_Jm no. of
) inhabitants per q R2 SE
(by highest rank) s
municipality
25 264,765 0.7370 0.960 0.0308
50 161,345 0.7333 0.982 0.0144
100 83,028 0.7839 0.989 0.0084
500 25,363 0.7741 0.996 0.0021
1000 14,632 0.7618 0.998 0.0011
5000 2208 0.9359 0.977 0.0020
6200 1447 0.9989 0.968 0.0023
6500 1320 1.0152 0.965 0.0024
7500 976 1.0690 0.957 0.0026
12293 0 1.4018 0.874 0.0048

Note: 12,293 (observed) municipalities; min. inltabis for a municipality: 7; max. inhabitants fomainicipality
(Berlin): 3,404,037.

4.9.4 Sensitivity Analysis: Summary

In this final step, we fix different thresholds witespect to the minimum number of inhabitants
for the population at the district and the munittgalevel. Table 9 shows the estimation of the
g-coefficient for these two spatial levels (distilievel and municipal level) for the year 2006. Aaling
to the results of Table 5, we can see in Tableaf Ht the district level, thg-coefficient never reaches
the value of 1, while, at the municipality levéiet-coefficient starts to approach 1 when consideaing
threshold greater than 1000 inhabitants. It shdmchoted that several authors argue that Zipf's law
requires data truncation, with a cut-off below DO®, inhabitants (Giesen and Suedekum, 2011). Our
results do not seem to confirm this standard Byeconsidering more than 100,000 inhabitants ifbot
cases (districts and municipalities), thecoefficient becomes much less than 1. This findiag
illustrated in Figure B2 in Annex B.

Table 9: Estimated Rank-size Coefficienty) for Different Spatial Levels (District Level (Yea
2006) vs. Municipality Level (Year 2006))

: . Districts Municipalities
Inhabitants for city — —
q no. of districts q no. of municip.
> 500,000 0.60712 20 0.72315 14
> 250,000 0.48599 86 0.73539 27
> 100,000 0.54045 321 0.72553 41
> 50,000 0.60542 422 0.80614 188
> 25,000 0.63211 439 0.77357 510
> 10,000 439 0.77033 1566
> 5000 439 0.82687 2874
> 1000 439 1.06510 7427
> 500 439 1.18661 9666
>5 439 1.40179 12,293
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In summary, a Zipf's coefficient equal to 1 is ftgreeached in the above experiments; if it
happens, it depends on the specific sample sizeth)yat does not happen in the upper tail of catad
set, but only in the presence of a population samlich includes those municipalities with morentha
1,000 inhabitants. From the connectivity networkrspective, with reference to the cities and
municipalities, in general the-coefficient varies between 0.7 and 1.4, thus comfig a certain
presence of hub-hierarchies in these two casesli{semunterpart value of thecoefficient in Table 1).

In the case of districts, the lowgr value seems to reflect more homogeneous pattertesnrs of the
districts’ population size, and thus more a randtmcture from a network connectivity viewpoint.

5 Conclusions

In this paper the rank-size rule concept has beditatly reviewed and analysed from two
complementary perspectives: spatial economics ahslank analysis. In the spatial-economics context,
our theoretical and methodological reflections hdemonstrated the following:

» the rank-size rule, and hence, Zipf's law, can beved from an entropy maximization (or
generalized cost minimization) approach and fitds tits roots in welfare theory;

* in the analytical framework outlined above, difiergpecifications for the rank-size distribution
may emerge, such as exponential, lognormal or Tafumetions. These alternative forms are
plausible and can be justified from a theoretiGabkpective.

From a network analysis perspective, we have shbain

* a connectivity interpretation of the rank-size doe&#nt q (by considering a conventional rank-
size expression with the power form) is possibtethat a formal correspondence between the
rank-size rule and network connectivity analysieslexist.

As a consequence, the rank-size coefficient carcdeeived of in a new spatial-economic
framework: on the one hand, as a shadow priceh@rttansaction costs involved in moving from a
lower rank towards a higher rank (correspondingricentropy framework); and, on the other hand, as
an indicator for the type of network connectivityrusture underlying the interaction between the
cities/population units concerned. Thus the rRrdnd its associated coefficiespmay be interpreted as
(shadow) costs associated with the existence wfetibnal-theoretical spatial economic equilibrium.

In summary, the rank-size concept can be conceaged ‘universal’ expression of many models
traditionally used in spatial economics. It is tlalde to: (i) grasp the homogeneity/heterogendithe
spatial system concerned (at an aggregate levehdans of its rank-size coefficient); and (ii) regent
the associated connectivity infrastructure or s@aonomic network (or socio-economic constellation)
of complex spaces.

It is interesting that Zipf certainly anticipatedtronly the conventional models adopted in spatial
economics, such as spatial interaction models/eytneodels, but also the associated socio-economic
spatial networks. In addition, since spatial intdan/entropy models are compatible with discrete
choice models — and the related micro-economicdatians — the rank-size rule can be also intergrete
from this micro-economic perspective. In this framek, the value of thg-coefficient emerging from
the rank-size rule — as well as its counterpagt, they-coefficient in network analysis — acquires the
important connotation of a proxy indicator for thgatial economic development of the region/country
under analysis (in case where the associated Variabthe population), as conjectured by several
authors. As a consequence, it seems that for ragles of the rank size coefficient, i.e. in thesprece
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of increasing economic development, higher urbagualitiesemerge, linked to relevant hub networks
of an SF structure.

To test various propositions mentioned above, s@f empirical experiments was carried out —
with reference to the population of urban centre&ermany — in order to explore the variationshef t
rank-size coefficients for different spatial scadesl population sizes, and for different years.sehe
experiments show — by means of the various rark-sizefficient indicators — a trend towards
heterogeneity in Germany’s population network. émtigular, the case of thepcoefficient = 1 — which
indicates a ‘perfect hierarchy’ between urban @nfr.e. Zipf's law) — is reached at the city le{iey
considering the total number of cities) as well asthe municipality level (by excluding the
municipalities around 1000-1500 inhabitants). Téngpirical result on German urban system highlights
the economic rationale underlying the value of qhepefficient equal to 1 (Zipf's Law). Even though
Zipf's law is only valid for specific subsets of ethGerman municipalities (i.e. the number of
municipalities with more than 1000 inhabitants atiernatively, the total number of cities — whish
again a subset of municipalities), the occurrenicéhis ‘perfect equilibrium’ (Zipf's law) for these
sample cases is remarkable. Clearly, the nextistegnk-size research shall be devoted to the gsoce
of urban growth underlying this ‘spatial-economacjuilibrium. In general, we can conjecture a Lotka-
Volterra mechanism between the city-populations¢esithis is strictly related to a dynamic entropy
maximization and thus to the general formulatio) (&f the rank size-rule (Nijkamp and Reggiani,
1992). Starting from the Lotka-Volterra framewotke underlying dynamic conditions leading to the
value of theg-coefficient equal to 1 deserve a more thoroughstigation, also in the light of Gibrat's
and Gabaix’s arguments (see, e.g., Gabaix, 1999;dtal., 2009).

Our analysis thus prompts various new researchtignes Future research directions should
address, from a theoretical viewpoint, the dynaricthe rank-size rule, for instance, by focussing
Gibrat's law and the related spatial-economic fee#fbeffects. From an empirical viewpoint, more
sophisticated estimation procedures may be takenaiccount, as well as the possibility of examining
the rank-size rule at a more micro-level (e.gmér etc). Certainly, the city-size distributionleets
many aspects of complex network evolution in intean interdependencies, such as the emergence of
new hubs or new city-networks (with the relatedagecf ‘old’ hubs), which deserve further attention,
also in the light of network resilience issues. Bloomparative studies in an international conteodlla/
also be needed in order to test the robustnessrdimulings.
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Annex A. Classification of German Spatial Districts

Table Al: Nine Types of Districts in Germany

Main Types of Districts Type of Districts NumberDistricts
/A. Districts with urban agglomeration 1. Central cities 43
2. Highly urbanized districts 45
3. Urbanized districts 32
4. Rural districts 27
B. Districts with tendencies towards agglomeration Kentral cities 29
6. Highly urbanized districts 81
7. Rural districts 57
C. Districts with rural features 8. Urbanized districts 57
9. Rural districts 68

Type of district

CREERCOE

Figure Al: Visualization of the Nine Types of German Digsic
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Annex B. Zipf's Law and Rank-size Empirics in Germany (Truncated Population

Samples)
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Figure B1: Zipf's Law across 6500 Municipalities (Referenoelable 8).
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Figure B2: Rank-size Rule across 41 Municipalities and 324&trigits in Germany (Truncated Samples:
More than 100,000 Inhabitants) (Reference to T@ple
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